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Direction-aware feedback network for robust lane
detection

Jinhee Kim1 ·Wonjun Kim1

Abstract
Lane detection is a fundamental technique for autonomous driving systems. Various meth-
ods with deep neural networks have been actively introduced for this task, however,
challenging issues, e.g., occlusion by vehicles, ambiguity by deterioration, etc., often give
difficulties to accurately detect lanes in diverse road environments. To alleviate those prob-
lems, we propose the direction-aware feedback network. The key idea of the proposed
method is to abundantly consider the global context of lanes by exploiting the direc-
tional attention module (DAM) in a multi-scale manner, which efficiently explores the
high directionality with consideration of wide-range contextual dependencies both in hor-
izontal and vertical directions. Moreover, such direction-aware features extracted from
our DAMs are progressively refined by utilizing the feedback mechanism across differ-
ent scale spaces, leading to the high-precision lane detection. Experimental results on
benchmark datasets show the effectiveness of the proposed method under various road envi-
ronments. The code and model are publicly available at: https://github.com/JinheeKIM94/
Direction-aware lane detection

Keywords Lane detection · Direction-aware feedback network ·
Directional attention module · Wide-range contextual dependencies

1 Introduction

With the rapid growth of deep learning techniques in the field of computer vision, camera-
based researches for autonomous driving systems have been actively introduced. Under such
color-visible scenarios, lane detection has become a key technique since the corresponding
result guides the direction of vehicles to go forward safely. This lane detection technique
also can be a pre-requisite for further applications, e.g., traffic analysis by lanes, road defect
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(such as crack and pothole) analysis by lanes, etc. To this end, there have been various
attempts via the deep neural network (DNN) in recent days, however, most methods still
struggle with lane detection due to harsh road conditions occurring in real-world environ-
ments, which make lanes invisible, e.g., occlusions by other vehicles or dimmed lanes by
poor weather conditions.

Previous researches for lane detection have been conducted in twomain directions, which
are handcrafted feature-based approaches and learning-based approaches. In the former,
low-level image features, e.g., color and edge properties of lanes [1, 8, 10, 41], were popu-
larly employed with the Kalman filter [4, 16] and the Hough transform [5, 14]. To guide the
process of lane detection more accurately, the additional supervisory information, e.g., van-
ishing point and semantic segmentation map, also has been combined with such low-level
image features [7, 30, 37]. Even though handcrafted feature-based methods perform quite
reliably under simple road environments, they often fail to grasp the semantic information to
produce the consistent result in invisible or cluttered situations. In the category of learning-
based approaches, DNN has been most widely adopted to determine whether each pixel
belongs to the lane area or not. Specifically, DNN-based algorithms have often employed
post-processing techniques, e.g., segment clustering and curve fitting, to refine the initial
result of per-pixel classification [17, 28, 33]. Even though DNN-based methods signifi-
cantly improve the performance of lane detection compared to handcrafted feature-based
ones, the conventional feature extractor, which is generally composed of stacked convolu-
tional layers, has its own limitation to consider the contextual information in a global sense.
In order to involve the whole layout of the road environment in extracting lane areas, var-
ious architectures have been recently introduced with considerations of message passing,
multi-task learning, etc. [15, 19]. On the other hand, several studies have started to concen-
trate on the real-time operation for autonomous driving under diverse real-world scenarios.
For example, the concept of knowledge distillation is adopted to make the training model
be light-weighted while reinforcing the representation power of the model from its own lay-
ers without external supervisors or labels [13]. Furthermore, the anchor point-based method
significantly boosts up the inference speed by selecting the correct location of lanes at prede-
fined row positions instead of segmenting every pixel of lanes [22]. However, those methods
still have difficulties to detect thin or discontinuous lanes due to the limited range of the
receptive field, which is highly related to lack of considering the wide-range dependencies
in the activation results of the deep neural network.

In this paper, a novel yet simple method for robust lane detection is proposed. The key
idea of the proposed method is to grasp the whole shape of lanes by exploiting direction-
ally weighted features in a global manner. Since most lanes on real-world roads exhibit the
continuous line structure, the direction-aware information can be usefully utilized to infer
the whole shape of lanes even with insufficient appearance clues. Based on this observa-
tion, we design the directional attention module (DAM) to reinforce the learning process
of the global context along principal directions (i.e., up, down, right, and left). Specifi-
cally, our DAM firstly explores the high directionality on the embedding space generated by
the recurrent network, and then re-calibrates directionally weighted features by modifying
the self-attentive weighting scheme [29] to consider a wide range of contextual dependen-
cies. Moreover, we propose to apply the feedback mechanism to gradually refine the output
of DAM across different scale spaces for precisely restoring the lane segmentation map.
Experimental results on benchmark datasets show the efficiency and robustness of the pro-
posed method for lane detection. The main contributions of this paper can be summarized
as follows:
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• We propose a novel way to exploit and highlight the directional property in the embed-
ding space for understanding the global context of lanes even under complicated
environments. To this end, the directional attention module (DAM) is devised and
incorporated into the segmentation pipeline of the deep architecture while taking into
account the wide-range contextual dependencies.

• We propose to refine directionally weighted features via the feedback mechanism
across different scale spaces. Such refined features are gradually restored as the precise
segmentation result, i.e., binary lane map.

• We evaluate the proposed method on three representative benchmark datasets, i.e.,
TuSimple [27], CULane [19], and BDD100K [36], and compare ours with state-of-the-
art methods both qualitatively and quantitatively.

The remainder of this paper is organized as follows. A comparative review of related
works is presented in Section 2. The proposed method is explained in detail in Section 3.
Experimental results on benchmark datasets and ablation studies are reported in Section 4.
The conclusions follow in Section 5.

2 Related work

In this Section, we present a comparative review of previous studies for lane detection,
which can be divided into handcrafted feature-based methods and learning-based methods.

2.1 Handcrafted feature-basedmethods

Early works have attempted to model geometric characteristics of lane areas in a given scene
by utilizing low-level image features. Specifically, Aly [1] first generated the top-view of
the road image and then applied Gaussian filtering and thresholding to extract vertical lines
as lanes. To estimate the dominant orientation of lanes, the voting scheme based on results
of Gabor filtering was also introduced [41]. Choi et al. [8] considered the color characteris-
tic of lanes, i.e., white and yellow attributes, and exploited the illumination-invariant color
space to robustly detect such two colors even in complicated lighting conditions on the road
environment. Satzoda and Trivedi [24] re-designed the top-view based filtering method to
include the contextual information (e.g., road environments, traffic, etc.) for adaptively sav-
ing the computational power while keeping the accuracy of lane estimation. On the other
hand, various line fitting techniques, e.g., Hough transform and spline, have been widely
employed to refine predicted results of lane pixels as the post processing step. Borkar
et al. [5] proposed to refine lane markers, which are detected in a similar way of [1], via
their polar randomized Hough transform. Zhao et al. [40] used the Catmull-Rom spline,
which is formed by arbitrary shapes of six control points, in combination with the extended
Kalman filtering technique to accurately represent the curvature of lanes. More recently,
many studies have concentrated on guiding results of lane detection by using the addi-
tional supervisory information. Among various supervisory candidates, the vanishing point
has been most popularly employed as a good guider for lane markers due to the projective
property of the road image, i.e., parallel lanes converge to the vanishing point in the pro-
jected image space. Ozgunalp et al. [18] proposed to extract the global optimum point from
row-wise vanishing points and used it for multiple-curved lane detection on nonflat road
surfaces. In [34], authors devised the probabilistic voting procedure with results of line seg-
mentation to accurately extract the vanishing point in the background clutter and refined
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the result of lane detection by checking the location consistency of the vanishing point. Su
et al. [26] proposed a stereo camera-based method for vanishing point constrained lane
detection. On the other hand, Wu et al. [31] enhanced detection results of lane markings
based on their distribution in the region close to the vehicle and further applied the partition-
ing technique with two simplified masks to such region for reduction of the computational
burden. Even though such handcrafted feature-based methods have shown meaningful
results for lane detection under limited road environments, those still fail to detect lanes
with lack of visible clues due to occlusions by vehicles and dimmed lanes by deterioration.

2.2 Learning-basedmethods

With the development of the deep neural network (DNN) for scene understanding, many
researchers have started to propose various learning-based methods to resolve the prob-
lem of lane detection. In the beginning, a simple encoder-decoder architecture has been
adopted to generate the binary lane map from the color input, and the corresponding result
was refined by post-processing techniques to accurately take into account for curved shapes
of lanes. Specifically, Neven et al. [17] conducted instance segmentation based on two
decoder branches, which were trained to cluster binary segmentation results by using the
distance metric learning technique. After that, they train another neural network to predict
parameters of the perspective transformation for the line fitting process. In [28], authors
generated segmentation-like weight maps for each lane and subsequently used them to
estimate parameters for curve fitting in a weighted least-square sense. On the other hand,
several methods have been proposed to grasp the richer scene context with message pass-
ing or multi-task learning. Pan et al. [19] proposed to propagate the spatial correlation to
the next layer via recurrent slice-by-slice convolutions for accurate lane segmentation. Lee
et al. [15] introduced a unified architecture that jointly handles the problems of lane and
road marking detections, which are guided by the vanishing point. In a similar way, Zhang
et al. [38] jointly trained tasks for segmentations of lane boundaries and road areas to uti-
lize the complementary relation of geometric constraints between these two tasks. More
recently, light-weighted architectures have gained considerable attentions for lane detec-
tion in real-world scenarios. Hou et al. [13] designed the self-learning network with the
concept of knowledge distillation, which was conducted by propagating the attention map
extracted from the network itself to next low-level layers, to efficiently reduce the number
of parameters. Qin et al. [22] only utilized the small number of anchor points at predefined
row positions, thus the computational cost was significantly reduced compared to the case
using the whole image for lane segmentation. Moreover, various domain concepts for lane
detection also have been incorporated into learning-based methods. As an example, Yoo
et al. [35] proposed to reformulate the problem of lane segmentation as the problem of row-
wise classification. To do this, they compressed feature maps along the horizontal direction
and represented each lane marker in rows. The technique of semantic segmentation can be
directly applied to resolve the problem of lane detection. Specifically, the location-aware
segmentation network allows for the spatial flow to integrate the object location into the
segmentation pipeline, and shows the reliable result of road segmentation [6]. Gao et al. [9]
proposed to learn the pixel-pair affinity in the pyramid network architecture, which gives the
precise segmentation result for road components as well as general objects in a hierarchical
manner. Furthermore, Zhang et al. [39] designed a sub-network to predict two-dimensional
pixel embedding, which efficiently guides the output of instance segmentation by calcu-
lating a pixel’s probability of the corresponding instance. This method provides reliable
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segmentation results for various objects in road scenes without the accurate location infor-
mation for the bounding box. However, those methods still had a difficulty to detect whole
lanes in occlusion situations by other vehicles because their networks are designed for per-
pixel classification only on the visible parts. Different from previous segmentation-based
approaches, we propose to exploit the global context of lanes in a direction-aware manner
and refine such directionally weighted features with feedback operations across different
scale spaces. Even though learning-based methods have accomplished the significant per-
formance improvement for lane detection, they still suffer from thin and discontinuous lane
structures due to the neglect of learning the global context.

In this paper, a novel yet simple method is proposed to consider the whole shape of
lanes by exploiting directionally weighted features in a global manner. The feedback-based
refinement process is also included in the proposed network. The technical details of the
proposed method will be explained in the following Section.

3 Proposedmethod

The heart of the proposed method lies in learning the directionality of lanes to consider
the global context of the road environment even under challenging conditions. To this end,
we propose to design the directional attention module (DAM), which efficiently extracts
features along with four principal directions in a recurrent architecture. It is noteworthy
that such directionally weighted features are re-calibrated via the self-attentive process to
allow for a wide range of contextual dependencies in our DAM. Finally, the output of DAM
is progressively refined by feedback operations across different scale levels. The overall
architecture of the proposed method is shown in Fig. 1.

3.1 Overview of the proposed architecture

The proposed network consists of three encoder-decoder streams to generate the lane seg-
mentation map and one auxiliary branch to predict the existence of lane pixels as shown in
Fig. 1. We adopt ERFNet [23] as our encoder, which has shown the reliable performance

Fig. 1 Overall architecture of the proposed method for lane detection. The decoder for each scale space
restores lane segmentation maps two times (i.e., st=1,2, l=1, st=1,2, l=2, and st=1,2, l=3 where t denotes the
iteration index and l represents the scale index, respectively) due to the feedback operations conducted in
DAMs. Note that LDAM indicates the cross entropy-based loss function, which is defined in (2)
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with the low computational cost for the segmentation task. Note that other backbone net-
works, e.g., VGG [25], ENet [20], ResNet [11], etc., also can be employed for the encoder
of the proposed network. More concretely, features of different spatial scales, which are
outputs of each encoder, i.e., E1, E2, and E3 shown in Fig. 1, are fed into the proposed
DAM. The spatial resolution of the feature map is reduced by a 1/2 scaling factor when
passing through each encoder block. Such encoded features are subsequently re-calibrated
according to the directional properties of lanes in a global sense. Note that details of the
proposed DAM will be explained in the following subsection. Each decoder restores the
lane segmentation map with the same resolution of the original input and the corresponding

Table 1 The detailed architecture of the proposed method

Convolution block

Convolution block type Layer type Weight dimension Stride

Bottleneck Conv In×In×3 × 1 1

Conv In×In×1 × 3 1

BatchNorm - -

Conv In×In×1 × 3 1

Conv In×In×3 × 1 1

BatchNorm - -

Downsampler Conv In×Out×3 × 3 2

BatchNorm - -

Upsampler Deconv In×Out ×3 × 3 2

BatchNorm - -

Encoder (E1, E2, E3) / Decoder (D1, D2, D3)

Module Convolution block type Channel

Encoder E1 Downsampler 3/16

Bottleneck 16/16

E2 Downsampler 16/64

5×Bottleneck 64/64

E3 Downsampler 64/128

8×Bottleneck 128/128

Decoder D3 Upsampler 128/64

2×Bottleneck 64/64

Upsampler 64/16

2×Bottleneck 16/16

Upsampler 16/N

D2 Upsampler 64/16

2×Bottleneck 16/16

Upsampler 16/N

D1 Upsampler 16/N

Note : the weight dimension is formulated as the number of input channels × the number of output channels
× the height of the filter × the width of the filter. Channel indicates the number of input (In) and output
(Out) channels for each convolution block. N denotes the total number of lanes. All convolution layers of the
bottleneck block have the same input and output channels
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result is finally compared with the ground truth via the cross entropy-based loss function.
As introduced in [19], the auxiliary network is incorporated into the proposed architecture
for prediction of the lane existence, which is helpful for suppressing results falsely detected
as lane pixels. The decoder is composed of several 3 × 3 deconvolution layers and 3 × 3
convolution blocks (i.e., convolution layer + batch normalization). Note that the number of
layers in the decoder is determined according to the spatial resolution of direction-aware
features, which are extracted from DAMs of different scale levels. The architecture details
of the proposed method are also shown in Table 1.

Unlike previous methods, the proposed architecture contains feedback operations, that is,
outputs for DAMs are returned back and concatenated with inputs of DAMs in three differ-
ent scale levels as shown in Fig. 1. This feedback operation gradually refines the estimated
result by clarifying lane areas as well as suppressing falsely detected pixels. Note that feed-
back operations are conducted two times and all the results are employed together for loss
computation in our implementation.

3.2 Directional attentionmodule

The key contribution of the proposed method is to consider directional properties in a
global sense for lane detection as mentioned. To realize this process, we propose to design
the directional attention module (DAM) as shown in Fig. 2. Motivated by the success of
direction-aware shadow detection [12], we propose to adopt the two-round recurrent trans-
lation scheme along four principal directions, i.e., right, down, up, and left, for exploring
the high directionality of lane features, which are extracted from the encoder, i.e., E1, E2,
and E3 shown in Fig. 1. Specifically, the contextual dependency both in horizontal and ver-
tical directions are highlighted in the first round while such process is repeated based on the
output of the first round to efficiently consider dependencies in the diagonal directions as
well. As an example, we show one round of the recurrent translation to the right direction
as follows [12]:

f (x, y) = max{αrightf (x − 1, y) + f (x, y), 0}, (1)

where f (x, y) denotes the feature value at the (x, y) position. αright denotes the weight
value used in the recurrent translation layer for the right direction, which is initialized as

Fig. 2 The detailed architecture of the proposed directional attention module (DAM). Two rounds of recur-
rent translation are conducted with the direction-aware attention module along four principal directions.
After this two-round process, such features are re-calibrated by the dot product operation with the attention
weights, and the output of DAM is finally generated by the second dot product operation with input features.
Note that attention weights are shared in two-rounds of recurrent translation

21703Multimedia Tools and Applications (2022) 81:21697–21717



Fig. 3 From top to bottom: input images, outputs of the first round recurrent translation, outputs of the
second round recurrent translation, and self-attentive results (i.e., final output of DAM). Note that bright
values indicate high directionalities

the identity matrix and updated during the training phase (see [3] for more details). Note
that this process is similarly conducted for other directions. In addition, attention weights,
which are split into four channels, i.e.,Wright ,Wdown,Wup, andWlef t , are also simultane-
ously learned to enable the recurrent neural networks to selectively leverage spatial contexts
aggregated along each direction for efficiently suppressing noisy responses as shown in
Fig. 2. In order to allow for the wide-range dependency between distant lane pixels, we
propose to slightly modify the self-attentive mechanism introduced in [29]. Specifically,
we first compute the dot product of attention weights and directionally highlighted features
instead of input features used in the original method. This dot product is fairly desirable
to globally explore the whole shape of lanes with the guidance by the high directional
responses. Finally, the output of DAM, i.e., direction-aware feature, is generated by the sec-
ond dot product operation in a similar way of [29]. Note that attention weights are shared for
the two-round recurrent translation process. Unlike [12] that has a limit to consider spatial
connections between far distant pixels, we efficiently highlight the wide-range contextual
dependencies along principal directions via the self-attentive mechanism, which leads to
the reliable detection even with discontinuous lanes. Some visualization examples for direc-
tionally weighted features in the proposed DAM are shown in Fig. 3. We can see that high
directionalities are well revealed on whole areas of lanes by using our DAM.

One important advantage of the proposed method is that the output of DAM is progres-
sively refined by feedback operations. By involving the high-level semantics with input
features, the learning process for DAM is guided towards revealing directional structures
more accurately even with ambiguities driven by occlusions and background clutters. Note
that the feedback operation is conducted two times in our implementation and the perfor-
mance variation according to the number of feedback operations will be analyzed in the
ablation study of Section IV. The advantage of the feedback operation is shown in Fig. 4. As
can be seen, the lane pixels are successfully restored while false positives are significantly
suppressed step by step through feedback operations.
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Fig. 4 Examples of the refinement process through feedback operations. 1st column: input images (green
lines represent the ground truth). 2nd column: lane detection results without the feedback operation. 3rd and
4th columns: lane detection results with one feedback and two feedbacks, respectively

3.3 Loss functions

The proposed network is trained based on two types of loss functions. First, LDAM deter-
mines whether each pixel belongs to the lane area or not, which is defined based on the
cross entropy as follows:

LDAM = −
L∑

l=1

T∑

t=1

∑

x,y

y(x, y) log(st,l(x, y)), (2)

where t and l denote the indices of feedback operations and scale spaces, respectively (thus,
T and L are the total number of feedback operations and scale spaces, respectively). For
the default setting, T = 2 and L = 3 are used. In the t-th feedback operation, st,l(x, y)

indicates the estimation result of the lane probability at the pixel position (x, y) of the l-th
scale space. It should be emphasized that estimation results obtained from all the scales and
feedback operations are used together for loss computation. y(x, y) denotes the value of the
ground truth, i.e., y(x, y) = 1 (lane pixel) or 0 (background), at the pixel position (x, y).

To reduce the number of pixels falsely detected as lane pixels, the binary cross entropy
to check the index of the lane is adopted as the second loss function as follows [13]:

LEXT =
N∑

i=1

−pi log(gi) − (1 − pi) log(1 − gi), (3)

where pi and gi denote the existence of the i-th lane and the corresponding probability
estimated from the auxiliary network as shown in Fig. 1, respectively. N is the total number
of lanes, which is automatically determined according to the training image. By combination
of such two loss functions, the trainable parameters of the proposed network are efficiently
optimized for lane detection as follows:

Ltotal = LDAM + λLEXT, (4)

where λ is the balancing factor and is set to 0.1 in our implementation.

4 Experimental results

In this Section, we demonstrate the robustness and efficiency of the proposed method
through various experimental results based on three representative benchmark datasets,
i.e., TuSimple [27], CULane [19], and BDD100K [36] datasets. Specifically, we firstly
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explain the implementation details of the proposed method. The performance of the pro-
posed method is analyzed based on such benchmark datasets in detail and compared with
state-of-the-art methods both qualitatively and quantitatively. The ablation study is finally
conducted to show the role of each component in the proposed network.

4.1 Implementation details

The proposed method is implemented on the PyTorch framework [21] with the Intel i7-
68850K@3.60GHz CPU and two NVIDIA GTX Titan XP GPUs. The stochastic gradient
descent (SGD) is used to tune all the parameters of the proposed network with the batch
size of 8 where the momentum and weight decaying factor are set to 9 × 10−1 and 1 ×
10−4, respectively. Note that the proposed network is trained for 96 epochs on the TuSimple
dataset, and 32 epochs on the CULane and BDD100K datasets. The initial learning rate is
set to 0.001 and adaptively changed to 0.001× (1− current epochs/total epochs)0.9 during
training. We resize all the samples of TuSimple, CULane, and BDD100K datasets to 368×
640, 288×800, and 360×640 pixels, respectively. Then, the technique of data augmentation,
e.g., random crop and rotation, is subsequently applied to resized images for alleviating the
overfitting problem. In regard to the processing time, it takes about 20 hours for training
the proposed network with 88,880 samples of the CULane dataset, and the inference time
is averagely about 50ms.

Fig. 5 Some results of lane detection in the TuSimple dataset. From top to bottom : input images with the
ground truth (green color), results by ENet [20], SCNN [19], SAD [13], and the proposed method
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4.2 Benchmark datasets

First of all, the TuSimple dataset [27] is composed of 6,408 frames, which are acquired from
the highway scene. Even though this dataset contains relatively easy road environments, it
is a pioneering dataset for learning-based lane detection. The TuSimple dataset is divided
into three groups, i.e., 3,268 frames for training, 358 frames for validation, and 2,782 frames
for test. On the other hand, the CULane dataset [19] consists of 133,235 frames, which are
extracted from 55 hours of driving videos taken in urban, rural, and highway environments.
Specifically, 88,880 and 9,675 frames are used for training and validation, respectively,
while the test is performed with 34,680 frames. In particular, samples obtained from nine
different challenging scenarios, i.e., normal, crowd, highlight, shadow, arrow, curve, cross,
no line, and night, are tested for evaluating the performance in-depth. Lastly, the BDD100K
dataset [36] provides 80,000 frames of driving scenes, and then such frames are newly
divided into training (60,000 frames), validation (10,000 frames), and test (10,000 frames)
subsets in a similar way of [13]. Note that the auxiliary branch of the proposed network to
differentiate lane instances is not used for the BDD100K dataset since multiple lanes with
more than eight are usually very close to each other.

4.3 Performance evaluations

Qualitative evaluation: To show the efficiency and robustness of the proposed method, we
compare ours with several representative methods for lane detection, which are SCNN [19],
SAD [13], and E2E-LMD [35]. In addition to this, two backbone networks most widely

Fig. 6 Some results of lane detection according to eight different scenarios of the CULane dataset. Note that
results for the “Cross” scenario are excluded in this example since it does not contain lanes (see Table 3 for
checking the accuracy). From top to bottom (scenarios) : Normal, Crowd, Night, No line, Shadow, Arrow,
Highlight, and Curve. a Input images with the ground truth (green color). b Results by ENet [20]. c Results
by SCNN [19]. d Results by SAD [13]. (e) Results by the proposed method
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Fig. 7 Some results of lane detection for challenging scenarios in the CULane dataset. 1st column:
input images. 2nd column: input images (green lines represent the ground truth). 3rd column: results by
SCNN [19]. 4th column: results by SAD [13], 5th column: results by the proposed method

employed for image recognition and segmentation, i.e., ResNet [11] and ENet [20], are
also compared with the proposed method as baseline models. Note that the simple decoder,
which is composed of three deconvolution layers, is combined with these two backbone net-
works for generating the lane segmentation result. First of all, some results of lane detection
in the TuSimple dataset are shown in Fig. 5. Specifically, most methods provide reliable
results in the TuSimple dataset since samples are acquired in the highway scene with the
relatively simple background. In Fig. 6, lane detection results in the CULane dataset are
demonstrated according to different scenarios. Since “Cross” scenario does not contain
lanes, we just report the accuracy in Table 3. As shown in Fig. 6, previous approaches often
fail to accurately detect the overall shape of lanes due to occlusions and clarity deteriorations
at the outer boundary. In contrast, the proposed method successfully extracts lanes by con-
sidering directionalities in a whole lane areas with feedback operations. Owing to such an
ability to grasp the global context, the proposed method shows the good performance even

Fig. 8 Some results of lane detection in the CULane dataset. From top to bottom : input images with ground
truth (green color), results by SCNN [19], SAD [13], and the proposed method. Note that the part of the lane
region (i.e., red rectangle) is enlarged in the left corner
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Fig. 9 Some examples of instance classification for lanes detected in the CULane dataset. Note that
differently recognized lanes are represented with different colors

with heavily crowded scene as well as dim lanes (see the second, third, and fourth examples
of Fig. 6e). In addition, we provide additional lane detection results for challenging scenar-
ios in Fig. 7. Specifically, the proposed method shows accurate results for lane detection
even in occlusions by vehicles or road conditions with dimmed lanes. Furthermore, some
experimental results with enlarged local regions are presented in Fig. 8. As shown in Fig. 8,
the proposed method successfully detects lanes in various road environments compared to
previous methods. Specifically, our method shows accurate detection results even in occlu-
sion by vehicles (see the second column of Fig. 8). Moreover, several classification results
for detected lanes are also presented with different colors in Fig. 9. Since the proposed net-
work contains the auxiliary branch for instance classification of lanes, it is helpful for the
traffic and road analysis according to the lane. Finally, we provide lane detection results for
the BDD100K dataset in Fig. 10. Test samples from this dataset contain more challenging
conditions, e.g., split lanes, complicated illuminations, etc., thus the overall performance of
lane detection is not good enough compared to previous two benchmark datasets. Never-
theless, the proposed method shows the reliable results compared to previous methods as
shown in the last row of Fig. 10.

Quantitative evaluation : For the quantitative evaluation, we basically utilize the same
metrics introduced in previous approaches. By following [13], we also tested the proposed
method with different backbones, i.e., ResNet-18, ResNet-34, and ENet. Specifically, the
detection accuracy shown in Table 2 denotes the hit rate, i.e., the ratio of truly detected pixels
and the ground truth. FP and FN denote the false positive and the false negative, respectively.
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Fig. 10 Some results of lane detection in the BDD100K dataset. From top to bottom : input images with the
ground truth (green color), results by ENet [20], SCNN [19], SAD [13], and the proposed method

As can be seen, the proposed method achieves the competitive performance in the TuSimple
dataset. Since test samples contained in the TuSimple dataset are relatively simple (see
Fig. 5), the performance of lane detection is almost saturated. The performance comparison
on the CULane dataset is also shown in Table 3. As introduced in [19], we consider each
lane marking as a line whose width is 30 pixel and compute the intersection over union
(IoU) between estimated results and the ground truth. Note that estimated results whose
IoU values are larger than 0.5 are used as true positives (TP). Based on this, F1 score is

Table 2 Performance comparisons of lane detection based on the TuSimple dataset

Algorithm Accuracy FP FN

ResNet-18 [11] 92.69% 0.0948 0.0822

ResNet-34 [11] 92.84% 0.0918 0.0796

ENet [20] 93.02% 0.0886 0.0734

SCNN [19] 96.53% 0.0617 0.0180

ENet-SAD [13] 96.64% 0.0602 0.0205

E2E-LMD [35] 96.02% 0.0321 0.0428

ResNet-18-Ours 95.87% 0.0524 0.0368

ResNet-34-Ours 96.15% 0.0466 0.0318

ENet-Ours 96.10% 0.0480 0.0322

ERFNet-Ours 96.23% 0.0437 0.0285
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Table 4 Performance comparisons of lane detection based on the BDD100K dataset

Algorithm Accuracy IoU

ResNet-18 [11] 30.66% 11.07

ResNet-34 [11] 30.92% 12.24

ResNet-101 [11] 34.45% 15.02

ENet [20] 34.12% 14.64

SCNN [19] 35.79% 15.84

ENet-SAD [13] 36.56% 16.02

ResNet-18-Ours 32.23% 13.81

ResNet-34-Ours 33.57% 14.63

ENet-Ours 36.98% 16.26

ERFNet-Ours 37.91% 17.04

computed as 2×Precision×Recall
P recision+Recall

where Precision = T P
T P+FP

and Recall = T P
T P+FN

. From
Table 3, we can see that the proposed method provides the reliable results under various
scenarios compared to previous methods. In particular, it is thought that our directional
attention module (DAM) is effective for occlusions and loss of lanes (see “Crowd” and
“No line” scenarios in Table 3) due to the ability to consider the global context based on
directionalities. Finally, the performance on the BDD100K dataset, which is most recently
published dataset, is demonstrated in Table 4. In contrast to previous datasets, it contains
more challenging conditions, e.g., diverse weather conditions, double white lanes, etc., thus
the overall performance of lane detection methods is significantly dropped. Among them,
the proposed method shows the best performance in terms of the pixel-wise IoU metric.
Based on various evaluation results, it is naturally thought that the proposed method works
reliably under diverse road environments.

4.4 Ablation study

In this subsection, we investigate the performance variation according to different settings of
the proposed architecture. Specifically, we first verified the advantage of the proposed DAM
for lane detection as shown in Table 5. In Table 5, the baseline model represents the network,
which utilizes only the backbone network (i.e., ERFNet) in the encoder part without DAM
and feedback operations. Also, the ‘+ Feedback’ model conducts two times feedback itera-
tions via simple convolution blocks (i.e., one 1×1 convolution and three 3×3 convolution

Table 5 Performance analysis of the proposed method according to changes of network architectures

Architectures TuSimple CULane BDD100K

Acc. F1-score Acc. IoU

Baseline 95.18% 73.1 35.38% 15.65

+ DAM 96.03% 74.0 37.37% 16.71

+ Feedback 95.46% 73.5 36.12% 15.98

+ DAM + Feedback 96.23% 74.3 37.91% 17.04

Note : baseline indicates the architecture without DAM and feedback loops in Fig. 1
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Table 6 Performance analysis of the proposed method according to the change of the directional attention
module

Architectures TuSimple CULane BDD100K

Acc. F1-score Acc. IoU

Baseline 96.09% 74.1 37.64% 16.82

+ Self-attentive weighting 96.23% 74.3 37.91% 17.04

Note : baseline indicates the directional attention module without self-attentive weighting in Fig. 2

layers), which are replaced with DAM, in different scale spaces. From Table 5, we can see
that our DAM plays an important role to accurately detect lane pixels. The feedback loop,
which is defined for DAM, is also helpful to improve the performance of lane detection. In
the following, the effect of self-attentive weighting in DAM is tested and the corresponding
result is shown in Table 6. In Table 6, the baseline model indicates the network where two
dot product operations shown in Fig. 2 are removed from DAM. Based on the meaningful
improvement, it is thought that directionally highlighted responses are effectively refined
to restore the whole shape of lane areas based on the proposed dot operation. Additionally,
we provide more detailed quantitative results in challenging scenarios where occlusions or
loss of lanes occur frequently as shown in Table 7. As can be seen in Table 7, the pro-
posed method shows the better performance than the reference spatial module (“Baseline”
in Table 6), thus it is thought that our DAM is effective for lane detection.

Moreover, we explore the optimal number of feedback operations for our DAM as shown
in Table 8. Interestingly, the large number of feedback operations slightly drops the perfor-
mance. This is because parameters in DAM are probably overfitted as the feedback process
is repeated too much. From Table 8, we conduct feedback operation two times, i.e., T = 2
as shown in (2). In addition, we tested the proposed method using a more effective loss func-
tion, which assigns a higher weight to the loss value when the feedback iteration increases,
and the corresponding results are shown in Table 9. Since refined features have higher
weights, the performance is improved while efficiently overcoming the limitation caused by

Table 7 Performance analysis of the proposed method according to changes of network architectures in
challenging scenarios of the CULane dataset

Category

Architectures Crowd No line

F1-score

Baseline 71.6 45.1

+ DAM (w/o self-attentive weighting) 72.9 45.9

+ DAM (with self-attentive weighting) 73.4 46.6

+ Feedback 72.2 45.4

Full model (ours) 73.5 46.8

ENet-SAD [13] 68.8 41.6

E2E-LMD [35] 73.1 46.6

Note : baseline indicates the architecture without DAM and feedback loops in Fig. 1
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Table 8 Performance analysis of the proposed method according to the number of feedback operations

# of feedbacks TuSimple CULane BDD100K

Acc. F1-score Acc. IoU

T = 1 96.03% 74.0 37.37% 16.71

T = 2 96.23% 74.3 37.91% 17.04

T = 3 96.21% 74.2 37.84% 16.91

T = 4 96.22% 74.1 37.90% 17.01

T = 5 96.19% 74.2 37.85% 16.95

the unbalanced distribution of lane pixels. Furthermore, the performance variation according
to the different number of the scale spaces in the encoder is evaluated and the corresponding
result is also shown in Table 10. It can be seen that the performance of lane detection gradu-
ally improves as the number of scale spaces increases. Since the performance improvement
is not noticeable compared to the increase in the number of parameters between three and
four levels, we use the backbone encoder of three levels as shown in Fig. 1, i.e., E1, E2, and
E3, which can still achieve the best performance for CULane and BDD100K datasets com-
pared to previous methods. Additionally, we conducted additional experiments to check the
effect of recurrent translations along each direction (i.e., right, down, up, and left) in the
directional attention module as shown in Table 11. From Table 11, we can see that the recur-
rent translation process only along one direction shows the performance drop compared to
the case of exploring all principal directions.

In addition, we also compare our directional attention module with the bidirectional
convolutional LSTM module [2] as shown in Table 12. More specifically, we utilize the
bidirectional convolutional LSTM in each encoder layer to grasp the spatial correlation
instead of the proposed DAM for this experiment. Furthermore, we conducted the additional
experiment, which replaces DAM with the spatially adaptive convolution layer [32], and
the corresponding result is also shown in Table 13. As can be seen in Tables 12 and 13, the
directional attention module (DAM) yields the better performance than other approaches
for considering the spatial context regardless of types of backbone architectures.

Table 9 Performance analysis of the proposed method according to the weight to the loss value of each
feedback operation on the CULane dataset

Weight

# of feedbacks α = 1 α = 1.1

F1-score

T = 1 74.0 74.2

T = 2 74.3 74.3

T = 3 74.2 74.4

T = 4 74.1 74.5

T = 5 74.2 74.4
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Table 10 Performance analysis of the proposed method according to the number of scale levels in the encoder

# of scales TuSimple CULane BDD100K

Acc. F1-score Acc. IoU

One level 95.73% 73.8 37.18% 16.53

Two levels 96.01% 74.1 37.75% 16.87

Three levels 96.23% 74.3 37.91% 17.04

Four levels 96.31% 74.4 38.02% 17.09

Note : ERFNet is adopted as the encoder for this experiment

Table 11 Performance analysis of the proposed method according to changes of the recurrent translation
process in the directional attention module

Architectures
CULane

F1-score Prec. Recall

Baseline 73.6 74.3 72.9

+ Right direction 73.6 74.2 73.0

+ Down direction 73.8 74.3 73.3

+ Up direction 73.9 74.4 73.4

+ Left direction 73.7 74.1 73.3

Full model (ours) 74.3 74.9 73.8

Note : baseline indicates the directional attention module without the recurrent translation layer in Fig. 2

Table 12 Performance comparison between the proposed directional attention module and the bidirectional
convolutional LSTM module

Architectures CULane

F1-score Prec. Recall

ResNet-34 - BiLSTM [2] 70.6 71.1 70.1

ResNet-34 - Ours 71.9 72.4 71.4

ENet - BiLSTM [2] 71.2 72.6 69.8

ENet - Ours 71.7 72.0 71.4

ERFNet - BiLSTM [2] 73.5 74.4 72.6

ERFNet - Ours 74.3 74.9 73.8

Table 13 Performance comparison of the proposed directional attention module and the spatially adaptive
convolution module

Architectures CULane

F1-score Prec. Recall

ERFNet - SAC [32] 73.9 76.9 71.1

ERFNet - Ours 74.3 74.9 73.8

Note : SAC indicates the spatially adaptive convolution
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5 Conclusion

In this paper, a novel method for robust lane detection is proposed. The key idea of the
proposed method is to allow for direction-aware features in a global sense, and refine such
features based on feedback operations across different scale spaces. To grasp the whole
shape of lane areas more accurately, the self-attentive mechanism is applied to directionally
weighted features in the proposed DAM. Based on various experimental results on three
representative benchmark datasets, i.e., TuSimple, CULane, and BDD100K, we conclude
that the proposed method provides reliable lane detection results even with occlusions and
other challenging conditions.
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