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Abstract
This paper proposes BoF-CP approach which is a novel scheme feature fusion for writer-
dependent offline signature verification. At the heart of the new methodology lies feature
extraction in surrounded candidate points. In the proposed method, at first, several
features of the type of component-oriented and pixel-oriented features are extracted at
the region of candidate points. Due to the different geometric structure in different
signatures, several short feature vectors are created to the number of candidate points in
each image. In the proposed approach, the corresponding homogeneous feature vectors
are fused based on standard deviation and variance at the candidate points to create a
normalized vector. We called the proposed method Bag of Features in Candidate Point
(BoF-CP). Finally, the normalized feature vector enters the classification stage to verify
the query samples. To evaluate the proposed method, standard datasets MCYT, GPDS,
and CEDAR have been used. According to the experimental results, the proposed
approach has been able to import optimal features into the classification algorithm by
which the recognition rate in the separation of the genuine and forgery samples has been
enhanced. According to the obtained statistical results, the proposed method has im-
proved in several criteria such as average error rate, accuracy, sensitivity, specify as
compared to state of the art.

Keywords Off-line signature verification system (OS-VS) .Candidate point .Hand-craft feature .

Bag of feature

https://doi.org/10.1007/s11042-022-12499-7

* Maryam Houtinezhad
m.houtinezhad@srbiau.ac.ir

Hamid Reza Ghaffari
hghaffari@ferdowsiau.ac.ir

1 Department of Computer Engineering, Ferdows Branch, Islamic Azad University, Ferdows, Iran

Published online: 22 March 2022

Multimedia Tools and Applications (2022) 81:24815–24847

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12499-7&domain=pdf
http://orcid.org/0000-0003-2808-6881
mailto:m.houtinezhad@srbiau.ac.ir


1 Introduction

“Are you really Ms. / Mr. X?” and “Who are you?” are the sentences that these days are often
seen in the authentication and identification issue. In this topic, the offline signature system is
one of the behavioral biometrics used to verify identity [25–28, 35, 58, 76, 82]. Biometrics is
one of the most widely used tools for the verification and identification of individuals.
Biometric techniques are divided into two categories [12]: behavioral and physical. In physical
subsets, special properties such as gait [6], facial [9, 43, 47, 74] and iris [44, 46], and etc. are
examined. On the other hand, in the behavioral subset, properties such as signature [16, 27],
speech [29] and handwriting [2–4], and etc. are examined. In this research, we are focused on
signature behavioral biometrics. The advantage that has made signature so popular is that
signature has a long usage history of presence in different societies. Besides that, most persons
are familiar with how it is used throughout life, which is why it is generic, legal, and acceptable
to the majority of individuals in the community [27]. For example, the signature has been
widely accepted in the bank as an indicator of the identity of the individual. Also, the tools for
receiving and recognizing signatures are less expensive than other biometrics. Figure 1 shows
the grouping of different aspects studied by researchers for the offline signature verification
system (OSV). This classification is based on the references of [16, 27].

According to the literature, there are various terms that are discussed below:
In term online/dynamic, special tools and tablets are used in real-time. In this case, in

addition to enrolling the signature samples, other dynamic features that are generated by the
writers when drawing the signature such as pen pressure, pen up, pen down, pen direction, and
etc. are also registered in the system. But in term offline/static, only the scanned image of the
signature sample is registered, so one of the challenges of static acquisition is that it lacks the
informative features that are created when drawing. Hence, static-based methods focus more
on providing informative features that distinguish genuine signatures from forgery ones.

On the other hand, in the offline signature verification system, the decision-making process
to classify the genuine and forgery samples are made based on the trained model. In general,
there are two scenarios for the training phase in the signature verification system. (1) The
writer-independent (WI) scenario in which the training is done in generic and with an
analogous classification. (2) The writer-dependent (WD) scenario in which the training is
done individually for each sample of signature. From another point of perspective, the process
of forging signatures is divided into three groups [16, 42, 82]:

Aspects of the signature verification system
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Fig. 1 Perspective of aspects of the SV

24816 Multimedia Tools and Applications (2022) 81:24815–24847



(A) Simple forgery: In simple forgery, the forger knows the name of the user but does not
know how his/her signature is drawn. In this case, the signature is less similar to the
genuine sample.

(B) Random forgery where the forger does not know the user profile or signature. So, the
forger draws a random signature. In this case, forgery samples have different shapes than
the genuine sample.

(C) Skillful forgery: In this type of forgery, the forger has access to the name and signature of
the user and has practiced how to draw a signature. In this case, the signature is very
similar to the genuine signature, which makes it difficult to identify.

The performance of the signature verification is strongly influenced by the practice of forgers.
In this case, the forger can imitate the genuine signature with a lot of practice. This issue causes
increases the similarity of the class of forgery and genuine samples, which can ultimately
reduce the efficiency of the signature system.

Therefore, according to the state-of-the-art, focusing on the three main phases of prepro-
cessing, feature extraction and classification can be increased system efficiency. For example,
in the preprocessing step, an operation can be performed to enhancement of image resolution
[16]. Many types of research such as background removal [14], morphological operations [80],
filtering [15, 20] and etc. have been done in this field. In addition, various operations such as
cropping [22, 80] fixed area [71], and length equalization [79] have been performed to
normalize the size of the signature box.

It is necessary to mention, in the feature extraction phase, one can focus on one of the
techniques based on hand-crafted features and deep features [27]. Due to the focus of this
article on hand-crafted methods, we can refer to such things as the geometric features of the
signature, the direction of the baseline, graphometric and curvature, which are called
component-oriented features [16]. Other commonly used features in the SV include the
extraction of key-points, which can include SIFT, SURF, BRISK, and KAZE, these types of
features are called pixel-oriented. All the techniques presented in the feature extraction phase
are in order to better represent the features of the signature image. In addition, providing an
informative feature vector can increase the recognition rate in the verify/classify phase [30].

In addition to the above-mentioned many studies in the classification phase have provided
various techniques for separating the genuine and forgery signatures. Conforming to reference
[16], classification methods divided into five categories: (1) template matching such as
dynamic time warping (DTW) [66, 67], direct matching points [57], Euclidean [22], (2)
statistical measures such as mahalanobis [72], membership [13] functions, cosine [55], (3)
statistical models such as neural networks (NNs) [38], deep learning, recurrent neural networks
(RNNs), deep neural networks (DNN) [1, 39, 73], deep multitask metric learning (DMML)
[68], convolutional neural networks (CNNs) [25, 26, 78], hidden markov models (HMMs) [14,
19] support vector machine (SVM) [23, 81], random forest [53], (4) structural such as decision
tree [56, 59], graph models [54], and (5) fusions such as ensemble of classifiers [5, 7], template
level [21], and score level [67, 71, 77].

1.1 Motivation and contribution of the proposed work

Despite the widespread use of signatures in the process of the verifying Identification of
persons but as mentioned, there are many challenges that must be addressed. If query
signatures are created by forgery with a lot of practice, it will increase the similarity of the
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genuine and forgery class. This leads to an increase in the false acceptance rate (FAR) of
signatures. Of course, in some cases, the genuine signatures are also mistakenly identified as
forgery samples that mean false rejection rate (FRR).

Since the FRR and FAR criteria are in conflict with each other, we intend to the trade-off
between them. Deep learning methods require a large number of signature samples for the
training process and they are not of interest to us. Therefore, by focusing on handcrafted
feature extraction and with the aim of increasing the recognition rate, we want to obtain several
levels of features for each sample of the signature. Our methodology summarizes the following
steps: (1) selecting candidate points in each signature image, (2) extracting component-
oriented and pixel-oriented features in the candidate point regions, (3) fusion the correspond-
ing features in the candidate points. Thus, major contributions of the proposed method are
categorized as below:

1. Introducing the approach of fusion, the bag of corresponding feature in the candidate
points of each signature based on standard deviation and variance (BoF-CPS and BoF-
CPV).

2. Feature extraction based on types conventional features such as of texture, direction,
entropy, and shape features in the regions of candidate points.

3. Focusing on improve the rate of correct positive responses (sensitivity) and the rate of
incorrect positive responses (specificity).

4. Focusing on improve average error rate.

The rest of this paper is organized as follows: section 2 is dedicated to the literature review. In
section 3, the proposed methodology of fusion of the corresponding features around candidate
points are presented. Experimental results are explicated in section 4. Finally, in section 5 we
provide conclusions and future works.

2 Literature review

The handwritten signature is one of the popular methods of identification and verification that
has attracted many researchers in the last few years. As mentioned in the previous section
handwritten signature has been studied in various aspects such as pre-processing, feature
extraction, and classification. In the following, some related research in the OSV has been
discussed.

Faiza et al., have proposed the HPFI parallel approach to fusion GLCM and geometric
features. Besides that, they have introduced the SKcPCA that selects the best features for
verifying [17]. Jaine et al., have used sCNN for OSV that is based on a custom shallow
convolution neural network for sample learning. In this research, two datasets CVBLSig-V1
and CVBLSig-V2 have been provided in which 137 and 467 users have registered [33]. In
another study, signature samples extracted based on geometric features and separated by the
artificial neural network [34]. Okawa in [49] provided a single-template matching method for
verifying online signatures that is based on time-series averaging and gradient boosting. In this
method several multiple DTW distances with respect to multivariate time series are calculated.
In [65] the method of feature extraction presented which base on global features (such as area,
width, and height) as well as local features (such as centroid, distance, angle, and slope). Then
the best features are selected using a genetic algorithm. Researchers in [32], have used the
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Siamese neural network (SNN) to OSV. For this purpose, they have presented a CNN sub-
network which has used statistical measurements to strengthen the generated vector.
Hofemann et al. in [28], have used fixed-size method in representation learning sample of
different sizes in the offline signature system. In this method, the spatial pyramid pooling used
to resize the sample of the signature. In another study [26], an approach based on measuring
the difference vector have been presented, which is generated according to the difference
between the genuine signature of the writer and other signatures of the same writer, as well as a
forgery sample. In this strategy, two collections of separators of signatures are considered:
collection ‘D’ for signing the writers who enrolled in the system and collection ‘E’ along with
different signatures for evaluation. The set of D have used only to learn signature represen-
tation features and set of E have used to feature extraction, which is used to test and classify
signature of writers. Hofemann et al., have presented a deep neural network to learn the
features of an independent writer structure and used it to obtain a feature representation model
to train the dependent writer structure, and to classify it [25]. Soleimani et al., have provided a
method based on similarity and heterogeneity between genuine and forged signatures in each
class based on distance metrics as deep multitask metric learning (DMML). In this method, the
features of HOG and DRT have been used [68]. In [48], has been presented a writer-dependent
structure that uses the KAZE features and the Fisher vector. In this method, the samples are
evaluated based on the SVM classifier. Zoei et al., presented writer-dependent structure that
using features based on hierarchical dictionary learning and sparse coding. Besides that,
verification phase has done using the threshold [83]. Serdouk et al. in [61] have used the
gradient local binary patterns and longest run features for the handwritten signature verification
system. Also, in this method, an artificial immune recognition system has been used.

According to the research literature, a suitable feature extraction method can improve the
classification performance. Figure 2 shows the classification of feature extraction methods
based on [16]. In general feature extraction techniques are applied global and local to images.
In order to extract the informative features from the query and reference samples image.
According to the research literature such as [65, 68], it is clear that the FAR and FRR criteria
are in conflict with each other. In the proposed approach, we want to improve these two
criteria, along with several others such as average error rate, accuracy and sensitivity.
Therefore, the basis of our proposed method in the fusion stage is the features that are extracted
from around the candidate points. In this way, by considering the details of baselines of each
signature, multiple short feature vectors are generated for each candidate point. Multiple
feature vectors are unified by the proposed approach (BoF-CPS and BoF-CPV) afterward
normalized feature vectors imported to the classification stage to separate the genuine and
forgery sample.

3 Proposed scheme

In this paper, a method is presented with a focus on feature fusion to verifying the handwritten
signature system. For this purpose, several features are extracted in the range of candidate
points. Feature extraction approach is based on the tracing of distribution of connected pixels
around the candidate points in the signature image. In the area of candidate points, conven-
tional features are extracted (which is described in section 3.2). In addition, the pixels within
the radius of the candidate points are examined in depth by recursive segmentation, and in each
sub-division created, local spatial features representation is addressed. The important point in
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the proposed approach is that the number of candidate points per image varies (because the
nature of handwritten signatures varies for each writer). We propose a feature fusion approach
for the corresponding feature vectors in the candidate points. Thus, the homogeneous features
are fused separately for each candidate point to produce a normalized feature vector for each
image. Normalization of feature vectors is performed based on the calculation of standard
deviation and variance of homogeneous features of candidate points. (which is described in
section 3.3). Figure 3 shows an overview of the proposed method.

In the following, each of the steps is explained:

3.1 Pre-processing phase

According to the state-of-the-art in this phase, initial steps can be taken to improve the images
in the datasets. The choice of preprocessing techniques should be consistent with the feature
extraction phase and lead to the extraction of the informative features in the signature samples.
Hence, in the preprocessing stage, first, the gray level images are converted to binary, and after
removing the noise, the signature baselines are thinned using morphological operators. The
pre-processing steps are described below:

3.1.1 Convert to binary image

In the beginning, gray-level images are converted to binary images because methods of
acquiring signature samples are different in various datasets and may be captured with
different light intensities. In this regard, the Otsu method can be used [51]. Therefore, the
thresholds are assessment in the range of [0 to 255]. And in each assessment, the amount of
variance intra-class is calculated for the left and right status. This process is repeated until a
threshold is found with the lowest value. Afterward considering a threshold value, the image
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histogram is divided into two background and foreground classes. The composition of the
intra-class variance is calculated as follows [8, 31, 64]:

σ2
ω tð Þ ¼ ω0 tð Þσ2

0 tð Þ þ ω1 tð Þσ2
1 tð Þ ð1Þ

Weights ω0 and ω1are the probabilities of classes that are separated by the t-threshold. Values
of σ2

1and σ
2
2 are variance the above classes. Class probability ω0,1(t)is calculated based on bins

Fig. 3 Overview of the proposed methodology
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of histogram.

ω0 tð Þ ¼ ∑
t−1

i¼0
p ið Þ ð2Þ

ω1 tð Þ ¼ ∑
L−1

i¼t
p ið Þ ð3Þ

The process of each class minimization is similar to maximization inter-class variance. This
process is defined based on Eq. 4:

σ2b tð Þ ¼ σ2−σ2
ω tð Þ

¼ ω0 μ0−μTð Þ2 þ ω1 μ1−μTð Þ2
¼ ω0 tð Þω1 tð Þ μ0 tð Þ−μ1 tð Þ½ �2

ð4Þ

That ω is the probability of class and μ indicates class. And the classesμ0, μ1 and μT are
calculated based on the following equations:

μ0 tð Þ ¼ ∑t−1
i¼0ip ið Þ
ω0 tð Þ ð5Þ

μ1 tð Þ ¼ ∑L−1
i¼t ip ið Þ
ω1 tð Þ ð6Þ

μT ¼ ∑
L−1

i¼0
ip ið Þ ð7Þ

3.1.2 Noise reduction

In the proposed method, after converting the signature images to binary images, the median
filter is used to reduce noise. This filter represents the central pixel based on neighboring pixels
as follows [77].

Sig x;yð Þ ¼ median sigbin s; tð Þ∈neighboringPixelf g ð8Þ

In the above equation sigbin is the binary image, and neighboringpixel adjacent pixels in the
neighborhood coordinates X and Y.

3.1.3 Thinning of signature lines

Due to the nature of the feature extraction approach in this research, thinning operations are
necessary at this stage because the skeletal image is a compact representation of the samples of
signature, the additional information of which has been reduced. In Fig. 4 how to thin baselines
of one of signature sample is shown.
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To do this, we first expanded the image using morphological (dilation) operations to
strengthen the weak connection of the pixels (otherwise, it will cause the signature baselines
to discrete). Due to the output of the thinned image, the curves present in the pixel junctions
and baselines are well represented, consequently, tracing the approximate paths of the central
pixel and intersection points can be easily determined accordingly. Figure 5 shows the pre-
processing operation on three samples of signature images.

3.2 Feature extraction phase

Assuming that in a signature verification system we consider the features of the genuine
signature set as Gk = {g1,k, g2,k,…, gn,k} and the forgery signature set as Fk = {f1,k,f2,k,…,fn,k}
while Gk,Fk∈ℝWhich refers to the entire data set. Hence two feature vector N-dimensional are
generated according to the genuine and forgery samples, according to which the samples will
be separated. In Fig. 4 each image has background pixels with a value of zero and foreground

0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Fig. 4 Thinning the digital image pixels

)c()b()a(

Fig. 5 a binary image, b Morphological operations to strengthen strokes, c Applying the thinning operator
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pixels with value of one. Considering baseline pixels, different features of the image, such as
area, signature box, and density of pixels, can be extracted.

In general, relationships between image pixels are examined based on neighborhood,
proximity, connections, paths, and region. In this regard, each central pixel has 4 pixels are
vertical and horizontal neighbors and 4 diagonals pixel of neighbors. The coordinates of the
vertical and horizontal neighbors of the central pixel are as follows:

Pixel4 Ver;Horð Þ ¼ iþ 1; jð Þ; i‐1; jð Þ; i; jþ 1ð Þ; i; j‐1ð Þ ð9Þ
The coordinates of the diagonal neighbors of the central pixel are as follows:

Pixel4 Diagð Þ ¼ iþ 1; jþ 1ð Þ; iþ 1; j‐1ð Þ; i‐1; jþ 1ð Þ; i‐1; j‐1ð Þ ð10Þ
Thus the 8-pixel neighbors of the central pixel with the coordinates (i, j) are obtained from the
integration of horizontal, vertical, and diagonal neighbors. 8-neighbors of the central pixel are
defined as follows:

Pixel8 Neighborð Þ ¼ iþ 1; jþ 1ð Þ; iþ 1; j‐1ð Þ; i‐1; jþ 1ð Þ; i‐1; j‐1ð Þ; iþ 1; jð Þ; i‐1; jð Þ; i; jþ 1ð Þ; i; j‐1ð Þ
ð11Þ

Figure 6 shows the arrangement of adjacent pixels relative to the center pixel.
In the proposed method, we intend to specify the central pixel based on the intersections of

the pixels of the baselines (section 3.2.1 explains how to determine intersections pixels). In
general, these points differ according to the shape and structure of the signature baselines in
different datasets. Therefore, each signature sample can have multiple numbers of intersecting
points. In our proposed method, these points are introduced as candidate points. After defined
the candidate points, we are specifying the neighborhood range of each point according to the
windows with radius r. In this case, the features extraction in the area surrounded is applied as
2r + 1 around the candidate points as shown in Fig. 7. (We consider the value of the radius is
equal to 2; this radius produces a 5 × 5 window). According [38] within each radius, there are
a certain number of neighbors in the range0 ≤ nr ≤ 8r. Hence, the relative distribution of
pixels scattering along predetermined signature paths at different radii be tracing in this
surrounded region.

In the following, how the definition of candidate points and the extraction of features
around this region are explained.

I-1,J+1I-1,JI-1,J-1I-1,J+1I-1,JI-1,J-1I-1,J+1I-1,JI-1,J-1

I,J+1I,JI,J-1I,J+1I,JI,J-1I,J+1I,JI,J-1

I+1,J+1I+1,JI+1,J-1I+1,J+1I+1,JI+1,J-1I+1,J+1I+1,JI+1,J-1

(c)(b)(a)
Fig. 6 a vertical and horizontal neighbor, b diagonal neighbors and c 8-pixel neighbors
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3.2.1 Determining candidate points

The majority of the instances in the database have lines that have crossed from each other. In
the first step of the proposed method, we distinguish these points to determine the range of
feature extraction. For example, in Fig. 8, the candidate points for a sample signature image are
specified [8, 30].

The location of the intersection of pixels in baselines varies according to the shape and
structure of the signature curve in different samples. So, the intersection points of image pixels
in the horizontal, vertical and diagonal neighbor are considered as candidate points. In Fig. 9,
the modes of the approximate paths of baselines of the candidate points within a radius of 2 are
shown.

Given the local complexities of the signature baselines at the intersection points, it is
necessary to determine the end position at the radius boundary for each sample of reference
and query signatures are done.

3.2.2 Determining termination points

At this phase, the extraction of the ending points is performed to determine the final position of
the signature pixel distribution. For this purpose, baselines of the signature image are tracked,
and pixels with only one neighbor are specified as endpoints [41]. In this case, we consider
local end pixels that lie along the boundary margin of the radius of the candidate points. Hence
the last pixel at the border is introduced as the endpoint. In this case, the local endpoint has
more than one neighboring pixel because the pixels within the radius have connected to the

Fig. 7 Surrounded pixels with radius 3, 2 and 1 have highlighted in different colors

Fig. 8 Determine candidate points

24825Multimedia Tools and Applications (2022) 81:24815–24847



pixels outside the radius boundary. Figure 10 shows the local endpoints in some candidate
points of sample of signature.

Finally, the positions of local endpoints are determined, and tracing of the connected pixels
according to endpoints is investigated.

I-2,J+2I-2,J+1I-2,JI-2,J-1I-2,J-2I-2,J+2I-2,J+1I-2,JI-2,J-1I-2,J-2

I-1,J+2I-1,J+1I-1,JI-1,J-1I-1,J-2I-1,J+2I-1,J+1I-1,JI-1,J-1I-1,J-2

I,J+2I,J+1I,JI,J-1I,J-2I,J+2I,J+1I,JI,J-1I,J-2

I+1,J+2I+1,J+1I+1,JI+1,J-1I+1,J-2I+1,J+2I+1,J+1I+1,JI+1,J-1I+1,J-2

I+2,J+2I+2,J+1I+2,JI+2,J-1I+2,J-2I+2,J+2I+2,J+1I+2,JI+2,J-1I+2,J-2

(b) The central pixel (i,j) with three 

neighboring pixels

(a) The central pixel (i,j) with two 

neighboring pixels

I-2,J+2I-2,J+1I-2,JI-2,J-1I-2,J-2I-2,J+2I-2,J+1I-2,JI-2,J-1I-2,J-2

I-1,J+2I-1,J+1I-1,JI-1,J-1I-1,J-2I-1,J+2I-1,J+1I-1,JI-1,J-1I-1,J-2

I,J+2I,J+1I,JI,J-1I,J-2I,J+2I,J+1I,JI,J-1I,J-2

I+1,J+2I+1,J+1I+1,JI+1,J-1I+1,J-2I+1,J+2I+1,J+1I+1,JI+1,J-1I+1,J-2

I+2,J+2I+2,J+1I+2,JI+2,J-1I+2,J-2I+2,J+2I+2,J+1I+2,JI+2,J-1I+2,J-2

(d) The central pixel (i,j) with five 

neighboring pixels

(c) The central pixel (i,j) with four 

neighboring pixels

Fig. 9 Approximate paths of candidate points on signature baselines in radius 2. a The central pixel (i,j) with two
neighboring pixels, b The central pixel (i,j) with three neighboring pixels, c The central pixel (i,j) with four
neighboring pixels, d The central pixel (i,j) with five neighboring pixels

Fig. 10 Determine some local endpoints within the radius of the candidate points
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3.2.3 Segmentation recursive in the radius of candidate pixels

This technique is similar to a quad-tree that divides quadratically evenly into a subregion and
represents spatial features in each region. Of course, in our approach, partitioning is done by
the centers of gravity at each candidate point in the signature image. Hence, due to the depth
recursive partitioning locally at each point, the shape information of adjacent pixels is
extracted. In descriptors that use recursive tree strategy (such as quad-tree or quin- tree), the
feature extraction process applies to smaller sub-division of the image in each recursive
implementation, and in each recursive implementation, spatial features are [75]. According
to this strategy, the images are divided into four or five sub- division. If the N depth variable
refers to the maximum tree produced and the maximum number of branches added in each
iteration, is set to NBranch, then the following image in ith tree node at the specified depth (d) is:

Subimg NDepth;NBranchð Þ ¼ ∑
ND−1

d¼0
NBð Þd ð12Þ

Where d ∈ {0, …ND − 1}, so the features in each observed node are computed [52]. The
extracted features are redirected coarse to the fine surface at each step. In fact, by maintaining
stability at higher levels, feature extraction is performed at lower levels. Given the function of
the quad tree and given that the R area corresponds to the whole sample image of the signature
and the P statement of the segmentation operation, if each region isP(Ri) = TRUE, Ri, the
segmentation becomes progressively smaller. If the condition isP(Ri) = False, then the image
is divided into four quadrants. In the next step, the condition is checked again and if the
statement is false in each of the following quadrants, the steps are repeated for it. In the
proposed approach, for the recursive partitioning, the centers of gravity of the candidate points
are considered as roots and the properties of each candidate point are extracted as a recursive
tree. Figure 11a shows how the tree splits recursively from the root node with the central
coordinate of the candidate point and Fig. 11b shows the segmentation within the surrounded
of candidate points.

According to Fig. 11a, the vector obtained from the candidate point decomposition as root
to the lower surfaces is defined as follows:

(b) (a) 

Fig. 11 a Extractive recursive feature on tree surfaces, b Segmentation in candidate pixel in the level 3
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Since the nature of the signature is such that it does not cover the entire signature box [62, 63],
so in experiments, after several stages of evaluation, we considered the value of the segmen-
tation level equal to 3 which leads to the division of the image into 8 sub-division. If we choose
level value more than 3 in the candidate region may result in the formation of multitude null
cells. Eventually, according to the value of level the numbers of features extracted in sub-
division of candidate points in this methodology are equal to 2*(2level − 2).

According to the aforementioned above, segmentation of the candidate signature regions is
done based on the gravity centers of each region. Besides that, we have considered gravity
centers in the x and y coordinates separately as features. In general, the gravitational centers of
the mean black pixels at the candidate points of the signature image are defined as follows:

CGx ¼ ∑n
i¼1xi
n

ð14Þ

CGy ¼ ∑n
i¼1yi
n

ð15Þ

Where n is the number of black pixels in the candidate points of the signature. xi the value of
the x coordinates for i th black pixel in the candidate points. And yi is the coordinate value of y
for the i th black pixel in the candidate points.

One of the limitations of this segmentation phase on our proposed method is that some
sample of signatures may not have any intersection pixels. In these samples, we applied global
recursive segmentation separately to obtain informative features. In Fig. 12 how to global
equal-mass segmentation on the signature sample is shows.

(a) Level 0 (b) Level 1 (c) Level 2 

(d) Level 3 (e) Level 4 (f) Level 5 

Fig. 12 Global segmentation in a sample image with different levels
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3.2.4 Statistical moments features

One of the statistical methods used to describe the texture is to use statistical moments related
to the intensity histogram in an image or region [45]. All candidate points of the signature
image have gravitational centers according to which the complexity of adjacent pixels can be
examined. So, using the statistical measure general and representative features such as the
texture of the regions of each radius of the candidate points, the mean (m1), variance (m2),
skewness (m3) and kurtosis (m4) can be described in candidate points region. Hence, we
calculate the four moments of a probability distribution around candidate points of each
instance as below [45].

Mean or μ ¼ E x½ � ¼ ∑
i
xip xið Þ ð16Þ

Variance or σ2 ¼ E x‐μ2
� � ¼ ∑

i
xi−μð Þ2p xið Þ ð17Þ

Skewness or γ1 ¼ E
x‐μ
σ

� �3
� 	

¼ E x3½ �−3μσ2−μ3
σ3

ð18Þ

Kurtosis or k ¼ E
x‐μ
σ

� �4
� 	

¼ 4thcentral moment

variance2
ð19Þ

For more details, in the first-order moment, according to the central tendency, the shape is
described. In the second-order moment, the histogram intensity contrast is calculated in the
candidate point regions, and the relative smoothness of the signature baselines within the
radius of the candidate points can be described. On the other hand, in the third-order moment,
the skewness of the histogram in the radius of the candidate region is calculated. Besides that,
this moment describes the degree of symmetry of the histogram in the candidate regions. The
fourth-order moment describes the relative flatness of the histograms of the candidate points.
Higher order moments distribute probability such as deviation from the mean.

3.2.5 Gradient direction and magnitude extraction

All baselines pixels with respect to the length of the adjacent pixels have horizontal, vertical,
and diagonal direction. In this step, we extract the magnitude and direction of the pixels in the
radius of surrounded candidate points. The direction feature extracts the slope and curvature of
neighboring pixels within the radius of the candidate points in different directions. Since
forgery signatures have a lot of vibration at the drawing epoch, so they have a lot of variations
in the direction features of relative to the baselines of genuine signature. Figure 13 shows a
perspective of the magnitude and direction feature extraction.

The gradient is used to find the direction of each pixel in the coordinates (x, y) and is
defined following [40]:
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θ x; yð Þ ¼ tan−1
gy
gx

� 	
ð20Þ

The output of this feature contains the important geometrical features that have the highest
variation rate of the gradient in the coordinates (x, y) [40, 69]. One of the requirements for
calculating the gradient of the baseline of the signature is to calculate the partial derivatives.
The partial derivative in the coordinate (x, y) is calculated as follows:

gx ¼
∂ f x; yð Þ

∂x
¼ f xþ 1; yð Þ− f x; yð Þ

gy ¼
∂ f x; yð Þ

∂y
¼ f x; yþ 1ð Þ; f x; yð Þ

ð21Þ

Different masks such as Sobel can be used to apply gradients to images [69]. In order to
remind the equation for the Sobel mask in the horizontal and vertical direction as follows:

Sigx ¼
−1 0 1
−2 0 2
−1 0 1

2
4

3
5; Sigy ¼

1 2 1
0 0 0
−1 −2 −1

2
4

3
5

Sigx i ; jð Þ ¼ I i−1; jþ 1ð Þ þ 2I i ; jþ 1ð Þ þ I iþ 1; jþ 1ð Þ−I i−1; j−1ð Þ−2I i ; j−1ð Þ−I iþ 1; j−1ð Þ
Sigy i ; jð Þ ¼ I i−1; j−1ð Þ þ 2I i−1; jð Þ þ I i−1; jþ 1ð Þ−I iþ 1; j−1ð Þ−2I iþ 1; jð Þ−I iþ 1; jþ 1ð Þ

ð22Þ

Gradient direction with 100% zoom (a) Gradient magnitude with 100% zoom (b)

(c) Gradient magnitude with 150% zoom (d) Gradient direction with 150% zoom 

(e) Gradient magnitude with 200% zoom (f) Gradient direction with 200% zoom 

Fig. 13 Perspective of the magnitude and direction feature. a Gradient magnitude with 100% zoom, b Gradient
direction with 100% zoom, c Gradient magnitude with 150% zoom, d Gradient direction with 150% zoom, e
Gradient magnitude with 200% zoom, f Gradient direction with 200% zoom
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According to [69] we have used the mask Sobel to extract the gradient features of the signature
samples.

3.2.6 Entropy extraction

The entropy feature measures the randomness of the covariance matrix elements within the
radius of the candidate points. Hence, we used entropy measures to compute the randomness
of the nature of the texture in candidate points, which indicates the amount of information of
surrounded regions and is defined as. In Eq. (22) entropy and Eq. (23) mean entropy are
defined [11, 24]:

entropy ¼ ∑
k

i¼1
∑
k

j¼1
pijlog2pij ð23Þ

entropy zð Þ ¼ ∑
L−1

i¼0
p zið Þlog2p zið Þ ð24Þ

We applied the entropy feature in radii 2 and 3 around the candidate points to calculate the
probability density in these areas.

3.3 The proposed feature fusion phase

The proposed method focuses on feature vector fusion. Since the structure and
geometric shape of the signature are different in the sample signatures of each
database. This leads to the production of different numbers of candidate points. Since
some of the hand-craft features have extracted within the radius of the candidate
points, so the length of the feature vectors may vary in the database images. To
overcome this issue, we proposed a methodology to unify the feature vector lengths
by fusion the corresponding homogeneous features in the candidate points, based on
the standard deviation and variance. In the proposed approach, the scatter of features
around their mean is measured. For this purpose, the standard deviation and variance
of the corresponding homogeneous features at the candidate points are calculated
separately. We called the proposed method as BoF-CPS1 and BoF-CPV2 respectively.
Figure 14 also presents the feature fusion algorithm given requirements applied in the
preprocessing and feature extraction stages.

In this case, it is assumed that p candidate points are found for each signature sample and n
features have been extracted for each point. For each candidate point, the features introduced in
the section 3.2 are extracted, and thus multiple feature vectors are generated for each image
according to the number of candidate points. Since features vectors must be the same length to
apply to the classifier, we fusion homogeneous features at each candidate point separately. If
that we have n separate homogeneous features as f1, f2, …fn, then their standard deviation is
defined by the symbol σ as follows [70]:

1 Bag of Feature in candidate Points base on Standard deviation
2 Bag of Feature in candidate Points base on Variance
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σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
f i− f

� �2

n

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1− f

� �2
þ f 2− f
� �2

þ…þ f n− f
� �2

n

vuut
ð25Þ

We considered ð f i− f Þ as the standard deviation of i th features from the mean of the feature.
On the other hand, variance is a statistical concept that examines how a random variable is
distributed around the mean. In general, the variance is the sum of the data distances from the
center, which is defined in a statistical population as follows [70]:

σ2 ¼
∑
n

i¼1
f i−μð Þ2

N
ð26Þ

In this case we assume fi represents i features and μindicates the average statistical population
and N data values in the statistical sample. Therefore, the calculation of variance in a
corresponding feature is as follows:

S2 ¼
∑
n

i¼1
f i− f

� �2

N−1
ð27Þ

According to the above-mentioned f indicates the average of the sample and N-1
refers to the statistical population in which the sample has been extracted. According
to the dependence of the variance and the standard deviation, the standard deviation
can be defined as follow:

Algorithm 1 Feature Fusion Approach

REQUIRE: Sig img, the output of the preprocessing phase 

DEFINE candidate points (CP) in each Sig img

DEFINE of special radius to achieve a 5 * 5 mask on each CP

Extracted features in section 3.2

Calculate the number of CP in each Sig img 

IMPOSE Feature vector for each CP 

Indexing corresponding features in the FVs of each CP, Assume that:
CP(1,1) = {f1,1, f1,2, f1,3,…, f1,n}, CP(1,2) = {f2,1, f2,2, f2,3,…, f2,n}, 

CP(1,3) = {f3,1, f3,2, f3,3,…, f3,n}, …, CP(1,p) = {fp,1, fp,2, fp,3,…, fp,n}  

FOR i=1 to num_Sig img

Calculate STD (f1,1, f2,1, f3,1,…, fp,1)=f1, STD (f1,2, f2,2, f3,2,…, fp,2)=f2
STD (f1,3, f2,3, f3,3,…, fp,3)=f3, .., STD (f1,n, f2,n, f3,n,…, fp,n)=fp

ASSIGN feature vector { f1, f2, f3,.., fp} as BoF-CPS for Sig img

END
FOR i=1 to num_Sig img

Calculate Var (f1,1, f2,1, f3,1,…, fp,1)=f1, Var (f1,2, f2,2, f3,2,…, fp,2)=f2
Var (f1,3, f2,3, f3,3,…, fp,3)=f3, …, Var (f1,n, f2,n, f3,n,…, fp,n)=fp

ASSIGN feature vector { f1, f2, f3,.., fp} as BoF-CPV for Sig img

END
RETURN: Two separate normalized vectors BoF-CPV and BoF-CPS

Fig. 14 Algorithm of the corresponding features fusion in candidate points
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σ ¼
ffiffiffiffiffi
σ2

p
ð28Þ

In our proposed method the calculation of the standard deviation in the fusion of the
corresponding homogeneous features in the candidate points of an image is performed as
follows:

In the above equation CandidatePimg1 is the first candidate point in the first sample of signature
and CandidatePimg1

2 is the second candidate point in the first sample of signature. Similarly,

CandidatePimg1
p is the final candidate point in the first sample of signature. f 21is the first

feature of the second candidate point. f 2n is the nth feature of the second candidate point. If the
standard deviation of the set of features obtained has a small value, it means that the
distribution of features around their average is low, to put it simply meaning that the features
are close together. On the other hand, if the standard deviation of a set of features is a large
value, it indicates a high distribution of the value of the features and their distance from each
other. The calculation of the variance of the corresponding homogeneous features in the
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candidate points for each sample of signature is done as follows:

In this way, the corresponding multidimensional features of the candidate points are trans-
formed into a unified vector. Finally, the vector of the produced features is applied separately
to the classification and the final results are compared.

4 Experimental protocols

In this method, evaluation protocols set as follows: (1) Offline signature verification system is
presented based on writer-dependent (WD) approach to separate the genuine and forgery
samples. (2) K-Fold cross-validation is performed on datasets to testify the performance of
proposed method in evaluation criteria where k = 10, in this way, the average overall
performance is presented in the results. (3) We used the classification support vector machine
with RBF kernel. (4) All experiments were performed on an intel core i5 machine with a
frequency of 2.50 GHz and 6 GB RAM in MATLAB environment.

4.1 Classification phase

The proposed signature verification system separates the genuine and forgery sample based on
two-class Support vector machine (SVM) on feature vectors. Support vector machine is known
as a desirable way to solve optimization problems. This method is a kernel-based machine
learning model that has received much attention in segmentation and regression. Considering a
binary classifier, the two general categories are defined [10]:
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x1; y1ð Þ; x2; y2ð Þ;… xn; ynð Þ ð31Þ
Where is X ¼ xif ; yigni¼1, xi ∈ Rd and yi ∈ (+1, −1). The optimal separator hyper-plane is
thus defined as follows:

y ¼ sign wTφ xi
� �þ b

� � ð32Þ
The above equation is solved by QPP terms:

min
w;b

wð Þ ¼ 1

2
wwT þ c ∑

n

i¼1
ξiS:T : yi w

Tφ xið Þ þ b
� �

≥1−ξi ð33Þ

Generally, the optimal decision function is defined as follows:

yi ¼ sign ∑
n

i¼1
αiyiK xi:x j

� �þ b

 �

ð34Þ

α is Lagrange coefficient α for each point of learning. When the maximum margin of a hyper-
plane is set, only the position of the cloud page is set to a value of α > 0, which is known as
support vector [10].

4.2 Performance evaluation

In the handwritten signature verification system, different criteria can be used, all of which are
based on the confusion matrix. Table 1 is explained some of the important criteria in the
experiments [8].

4.3 Dataset

We evaluated the proposed approach in this research on three standard databases MCYT
database [50], GPDS [18] and CEDAR [36].

4.3.1 MCYT-75

In general, there are 75 signature samples from different users in the MCYT-753 database. For
each signature, there is a set consisting of 15 genuine samples and 15 forgery samples. In
general, MCYT-75 database consists of 2250 signature images. In the Fig. 15 shown three
samples of signature in the genuine and forgery groups from the MCYT-75 dataset.

4.3.2 GPDS-synthetic

In the GPDS4 database there are 4000 samples of signatures from different users and each
sample has 24 genuine samples and 30 forgery samples. In total, GPDS database consists of
216,000 signature images that we randomly selected 100 samples for training and testing from
this database. In the Fig. 16 shown three samples of signature in the genuine and forgery
groups from the GPDS dataset.

3 Available on: http://atvs.ii.uam.es/atvs/mcyt75so.html
4 Available on: http://www.gpds.ulpgc.es/download
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4.3.3 Cedar

The CEDAR5 database includes 55 samples of signatures from different users. Each sample
covering 24 genuine samples and 24 forgery samples. In total in this database, there are 2640
~ different signature samples. Figure 17 shows some examples of CEDAR data sets.

4.4 Experimental results and discussion

In the following, the results of the simulation of the signature system in the fusion approach of
the corresponding feature vectors in the candidate points of the samples of signature provided.
According to the achieved results, the BoF-CPS approach is very useful in minimizing the
dimensions of the feature. In this case, the aggregation of the corresponding homogeneous
features is calculated based on the standard deviation. To achieve accurate evaluation, we
compare the results of BoF-CPS and BoF-CPV approaches presented in this research with
three widely used algorithms in the field of feature extraction. In this stage of evaluations, the
features of the Haralick matrix, Gray Level Co-Occurrence Matrix (GLCM), and Histogram of
Oriented Gradients (HOG) algorithms are manually combined.

ClassicManual Fusion ¼ ∑
3

i¼1
Haralick1*14;GLCM1*22;HOG1*81f g ð35Þ

5 Available on: http://www.cedar.buffalo.edu/NIJ/data

Table 1 Some of the important evaluation criteria used in the experiments

Symbols Description Mathematical Equation

TPR Where TP is equal to true positive and FN is equal to false negative.
This measure is also known as sensitivity also. This criterion
identifies the class of positive samples. On the other hand, it
determines to what extent the system has been successful in
classifying forgery samples. Therefore, the number of genuine
signatures considered to be falsely false has no effect on the
sensitivity parameter calculation.

TPR ¼ TP
TPþFNð Þ

FAR False-Acceptation rate criterion which means the sample rate of forgery
signatures identified as the genuine sample. Where FP equals false
positive and TN equals true negative.

FAR ¼ FP
FPþTNð Þ

FRR False-rejection rate criterion, which means the rate of incorrect rejection
of a sample that, is genuine.

FRR ¼ FN
TPþFNð Þ

TNR The rate of the true negative response, this criterion represents forgery
samples that have been correctly identified as a forgery sample. This
criterion, also known as specificity, addresses the negative class
accuracy.

TNR ¼ TN
FPþTNð Þ

AER Average error rate criterion which means optimal decision threshold
based on false-negative rate and false acceptance rate.

AER ¼ FNRþFAR
2

ACC Accuracy criterion, which means measuring system errors, based on
which the overall performance of the system is evaluated.

ACC ¼ TPþTNð Þ

TPþ TNþ FPþ FNð Þ
F1 The F1 means the harmonic mean of the true positive rate and accuracy.

This criterion is used to evaluate classification performance.
F1 ¼ 2TP

2TPþFNþFPð Þ

Kappa This criterion based on Po and Pe. The observed probability (Po)
criterion examines the differences in evidence obtained between the
observed probability and what is probability expected (Pe).

kappa ¼ Po�PeÞ
1�PeÞð
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Afterwards, to evaluate the results, the feature vectors obtained from classical algorithms are
combined with the BoF-CPS approach. In Fig. 18 the confusion matrix is shown for four
methods aforementioned in the database MCYT, GPDSsynthetic, and CEDAR databases.

As previously mentioned, in the offline signature verification system, different criteria can
be used which are based on the confusion matrix. Tables 2, 3 and 4 the results of several
important evaluation criteria based on tests of four6 types of feature vectors provide. It is worth
noting that the verification time for method implies the time required to classify signature
samples by classifier SVM.

According to the results obtained in the above table, the accuracy criterion in the GPDS
database is in the best case for the first approach and the combination of this approach with
classical algorithms, which is equal to 98%. The GPDS database has more samples than the

6 The two proposed fusion methods (BoF-CPS and BoF-CPV) and two comparison steps according to the
combination of classical algorithms (Haralick+GLCM+HOG) without considering the proposed BoF-CPS
method and once along considering the features obtained by BoF-CPS method have done.

(a) Ge

(b) Fo

enuine Sample o

orgery Sample of

of  GPDS 

f  GPDS

Fig. 16 Signature samples in GPDS Dataset. a Genuine Sample of GPDS, b Forgery Sample of GPDS

(A) Genuin

(B) Forgery

ne Sample of  M

y Sample of  MC

CYT

CYT

Fig. 15 Signature samples in MCYT Dataset. A Genuine Sample of MCYT, B Forgery Sample of MCYT
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other two datasets, so the results indicate that the number of samples affects the accuracy rate.
On the other hand, the highest precision for the BoF-CPS approach in the GPDS database is
98%. Then the results of this criterion in BoF-CPV and BoF-CPS + classical approach with
equal value of 97% have been obtained. The results have been obtained in the criterion average
error rate at best 0.01 and 0.03. If a lower value is obtained for this criterion, it indicates that
the method used was more desirable.

According to the results of the FAR criterion in the MCYT dataset, it was obtained in the
best case for the BoF-CPS approach, which by combining feature vectors related to classical
algorithms has led to the same results. Besides, the presented BoF-CPS approach in GPDS and
CEDAR datasets has achieved optimal results in the FAR criterion. Another important
criterion is FRR, the values of which have the best result in the proposed BoF-CPS approach.
According to the results, sensitivity and specificity criteria have achieved the best level of
results in the proposed approach. Besides that, the combination of this approach with classical
algorithms can provide an acceptable result. Table 4 shows the results of the evaluations in the
observed probability criterion and the expected probability. In fact, these criteria examine the
differences between the evidence obtained between the observed pattern and what is expected
[8]. Based on these two criteria, the kappa coefficient is calculated.

In Fig. 19 the results of FAR and FRR criteria respectively in (a) BoF-CPS approach, (b)
BoF-CPV approach (c) the classical algorithms without considering the proposed method, and
(d) classical algorithms+BoF-CPV features shown graphically.

Besides that, for further experiments, we evaluated the proposed method compared to a
number of popular feature extraction methods in the field of biometrics. All comparisons have
been performed under the uniform conditions and the results of the comparisons are shown in
Table 5. In Figs. 20 and 21 the graphical representation of the accuracy and average error rate
criteria for the aforementioned methods, respectively are shown.

According to the background of the literature, the methods presented in offline signature
verification systems have different data sets, test protocols, evaluation criteria and different
validation methods. Therefore, direct comparison of the obtained results with each other does
not seem appropriate [16, 27, 80]. However, in Table 6 a direct comparison of the results
presented in the related articles is used.

(a) Genuine

(b) Forgery 

Sample of CED

Sample of CED

DAR

DAR

Fig. 17 Signature samples in CEDAR Dataset. a Genuine Sample of CEDAR, b Forgery Sample of CEDAR
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Due to the wide range of experiments performed on feature vectors, it can be concluded that
the BoF-CPV approach effectively improves classification performance; because the

(a) The graphical result of confusion matrix on MCYT dataset

(b) The graphical result of confusion matrix on GPDS dataset

(c) The graphical result of confusion matrix on CEDAR dataset
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Fig. 18 Confusion matrix in evaluation methods. a The graphical result of confusion matrix on MCYT dataset, b
The graphical result of confusion matrix on GPDS dataset, c The graphical result of confusion matrix on CEDAR
dataset
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corresponding homogeneous features in the radius of the candidate points are strongly
correlated with each other. On the other hand, the fusion of the corresponding homogeneous
features based on the BoF-CPS approach performs better than the Bof-CPV approach. In
general, according to the statistical results, the proposed method of feature extraction and
fusion of feature vectors has been able to separate the samples at high speed and accuracy.

5 Conclusions and future work

Our proposed method focuses on the fusion of feature vectors. For this purpose, the corre-
sponding homogeneous features in the candidate points are normalized based on the standard
deviation and variance. Feature vector fusion is done because in our proposed approach the
extracted properties are around the signature candidate points and the number of these points in
each sample is different. The basis of our idea was that ideally the distinguishing features
should reflect the process of how to produce signature samples, which is not the case in offline
acquisition due to the use of scanners in the collection phase. For this purpose, the feature
extraction phase has been done with this assumption that by examining the relationships of
connected pixels that are adjacent to certain points of the signature the shape of the signature
can be well described. One of the key processes is the pre-processing phase that thinning out

Table 2 Results of criteria accuracy, precision, F1, average error rate and verification time on datasets

Dataset Method Accuracy Precision F1 AER Verification Time (s)

MCYT BoF-CPS (Proposed) 85% 84% 58% 0.14 05.61
BoF-CPV (Proposed) 62% 57% 69% 0.38 06.94
Classical algorithms (VS) 65% 65% 65% 0.30 06.08
BoF-CPS+classical (VS) 85% 84% 85% 0.14 07.60

GPDS BoF-CPS (Proposed) 98% 98% 99% 0.03 08.71
BoF-CPV (Proposed) 88% 97% 87% 0.11 27.70
Classical algorithms (VS) 72% 77% 69% 0.27 23.35
BoF-CPS+classical (VS) 98% 97% 98% 0.012 25.04

CEDAR BoF-CPS (Proposed) 91% 92% 91% 0.08 04.74
BoF-CPV (Proposed) 52% 52% 60% 0.47 05.50
Classical algorithms (VS) 82% 83% 82% 0.17 05.69
BoF-CPS+classical (VS) 92% 94% 92% 0.07 03.80

Table 3 Results of criteria FAR, FRR, specificity, and sensitivity on datasets

Dataset Method FAR FRR Specificity Sensitivity

MCYT BoF-CPS (Proposed) 0.16 0.13 83% 86%
BoF-CPV (Proposed) 0.63 0.12 36% 87%
Classical algorithms (VS) 0.33 0.35 66% 64%
BoF-CPS+classical (VS) 0.16 0.13 83% 86%

GPDS BoF-CPS (Proposed) 0.06 0.003 93% 99%
BoF-CPV (Proposed) 0.01 0.20 98% 79%
Classical algorithms (VS) 0.18 0.36 81% 63%
BoF-CPS+classical (VS) 0.15 0.19 84% 80%

CEDAR BoF-CPS (Proposed) 0.07 0.09 92% 90%
BoF-CPV (Proposed) 0.65 0.28 34% 71%
Classical algorithms (VS) 0.15 0.19 84% 80%
BoF-CPS+classical (VS) 0.05 0.08 94% 91%
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the pixels of signature samples. Hence, the topological skeleton of an image provides a
compact representation of the signature image which according to it, baselines of the signature
can be traced well. After that, the candidate points in the signature lines have been determined,
which are obtained based on the intersection of the pixels in different directions. Most previous
methods used a sliding window on the signature pixels to extract the features. While in the
proposed method, while identifying the intersection points and introducing them as candidate

Table 4 Results of criteria kappa, OP, and EP

Dataset Method Kappa Coefficient Observed Probability Expected Probability

MCYT BoF-CPS (Proposed) 0.47 0.61 0.2
BoF-CPV (Proposed) 0.24 0.62 0.5
Classical algorithms (VS) 0.31 0.65 0.5
BoF-CPS+classical (VS) 0.70 0.85 0.5

GPDS BoF-CPS (Proposed) 0.98 0.99 0.5
BoF-CPV (Proposed) 0.77 0.88 0.5
Classical algorithms (VS) 0.44 0.72 0.5
BoF-CPS+classical (VS) 0.97 0.98 0.5

CEDAR BoF-CPS (Proposed) 0.82 0.91 0.5
BoF-CPV (Proposed) 0.05 0.52 0.5
Classical algorithms (VS) 0.65 0.82 0.5
BoF-CPS+classical (VS) 0.85 0.92 0.5

(b) BoF-CPV Proposed(a) BoF-CPS Proposed
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Fig. 19 Results of FAR and FRR criteria. a BoF-CPS Proposed, b BoF-CPV Proposed, c classical algorithms, d
BoF-CPS + classical
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points, features are extracted in these areas. The proposed approach locally extracts the
correlations and informative features of the pixels in the neighborhood of the candidate points.
Therefore, considering how the arcs are distributed and the curvature of the pixels in the
boundary radius of the candidate points, the potential paths of each stroke are well identified.
Differences like the geometric structure of different signatures lead to the production of multi-
dimensional feature vectors. In this step, for each signature sample, a number of short feature
vectors are created that are around the candidate points. Hence, focusing on the fusion of

Table 5 Comparison of the results of the proposed method with some feature extraction methods

Dataset Feature Extraction method ACC AER FAR FRR

MCYT BoF-CPS (proposed) 85% 0.14 0.16 0.13
BoF-CPV (proposed) 62% 0.38 0.63 0.12
Classical algorithms 65% 0.30 0.33 0.35
BoF-CPS+classical 85% 0.14 0.16 0.13
PoSET1 50% 0.5 0.50 0.49
LBP 48% 0.51 0.42 0.61
HOG 51% 0.4 0.24 0.72
GLCM 50% 0.4 0.94 0.05
Haralick 50% 0.4 0.99 0.0027

GPDS BoF-CPS (proposed) 98% 0.03 0.06 0.003
BoF-CPV (proposed) 88% 0.11 0.01 0.20
Classical algorithms 72% 0.27 0.18 0.36
BoF-CPS+classical 98% 0.01 0.15 0.19
PoSET 50% 0.49 0.59 0.40
LBP 50% 0.50 0.30 0.70
HOG 53% 0.46 0.25 0.66
GLCM 54% 0.45 0.56 0.34
Haralick 52% 0.47 0.62 0.32

CEDAR BoF-CPS (proposed) 91% 0.08 0.07 0.09
BoF-CPV (proposed) 52% 0.47 0.65 0.28
Classical algorithms 82% 0.17 0.15 0.19
BoF-CPS+classical 92% 0.07 0.05 0.08
PoSET 49% 0.50 0.83 0.10
LBP 49% 0.50 0.20 0.80
HOG 52% 0.47 0.65 0.30
GLCM 54% 0.45 0.66 0.25
Haralick 52% 0.47 0.78 0.16

1 Avilable on: https://github.com/ezois/Poset
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Fig. 20 Comparison of accuracy criterion results in different methods
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feature vectors, we normalized the corresponding short feature vectors for each candidate point
in the signature image. In this step, we implemented two approaches to fusion. First, the short
feature vectors are fused by measuring the standard deviation of the corresponding homoge-
neous features in the short vectors Which we call BoF-CPS. In the second approach, the
corresponding homogeneous features in short vectors are fused based on the calculation of
variance of homogeneous features which we call BoF-CPV. Then the feature vectors obtained
from BoF-CPS and BoF-CPV approaches are applied to the classifier SVM separately and
their results are evaluated. According to the experimental results, as we expected, the normal-
ization of homogeneous features by maintaining local correlations in the radius of the
candidate points has been able to provide the vector of distinguishing features. This method
is very effective for equalizing the lengths of multiple feature vectors that are generated in
different regions of the signature image. The proposed method has been evaluated on three
standard MCYT, GPDSsynthetic, and CEDAR databases. According to the results, the average
error rate in the MCYT database is 0.14, in the GPDSsynthetic database is 0.03 and in the
CEDAR database is 0.08, which is a significant decrease compared to previous researches.
Also, according to the results, the accuracy values for the above databases have achieved 85%,
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Fig. 21 Comparison of average error rate criterion results in different methods

Table 6 Comparison of the results of the proposed method with previous works

Reference# Dataset FAR FRR AER Accuracy

[60] GPDS 9.61 8.29 9.14 –
[60] CEDAR 1.36 2.04 1.71 –
[61] CEDAR 4.93 2.12 3.54 –
[61] GPDS 13.16 11.38 12.52 –
[40] CEADR 89.04 91.84 – 90%
[40] GPDS 82.76 89.21 – 85%
[37] CEDAR 11.23 12.39 – 88%
[68] CEDAR 11.07 6.40 – 93%
[8] MCYT 25.8 24.7 – 74%
[38] GPDS 13.76 13.76 – 86%
[38] CEAR 8.33 8.33 – 91%
[35] MCYT 2.60 2.34 – 87%
[17] GPDS 8.98 9.17 9.08 –
[17] MCYT 5.36 1.25 3.31 –
[17] CEDAR 1.67 2.50 2.09 –
[65] GPDS 4.16 6.67 5.42 –
BoF-CPS approach MCYT 0.16 0.13 0.14 85%
BoF-CPS approach GPDS 0.06 0.003 0.03 98%
BoF-CPS approach CEDAR 0.07 0.09 0.08 91%
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98%, and 91%, respectively. In future work, the focus will be on combining the writer-
dependent and the writer-independence scenarios to recognize the signature pattern. Based on
the studies and results of the evaluations performed in the proposed approach, the following
can be suggested for subsequent research: (1) imposing the initial restriction on the selection of
candidate points, (2) determining candidate points based on pixel density in the sample that do
not have intersecting pixels and (3) Frequency assessment of the occurrence of features in the
corresponding candidate points in the fusion feature phase.
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