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Abstract
Fake news detection is a challenging problem in online social media, with considerable
social and political impacts. Several methods have already been proposed for the automatic
detection of fake news, which are often based on the statistical features of the content or con-
text of news. In this paper, we propose a novel fake news detection method based on Natural
Language Inference (NLI) approach. Instead of using only statistical features of the content
or context of the news, the proposed method exploits a human-like approach, which is based
on inferring veracity using a set of reliable news. In this method, the related and similar
news published in reputable news sources are used as auxiliary knowledge to infer the verac-
ity of a given news item. We also collect and publish the first inference-based fake news
detection dataset, called FNID, in two formats: the two-class version (FNID-FakeNewsNet)
and the six-class version (FNID-LIAR). We use the NLI approach to boost several classical
and deep machine learning models, including Decision Tree, Naı̈ve Bayes, Random Forest,
Logistic Regression, k-Nearest Neighbors, Support Vector Machine, BiGRU, and BiLSTM
along with different word embedding methods including Word2vec, GloVe, fastText, and
BERT. The experiments show that the proposed method achieves 85.58% and 41.31% accu-
racies in the FNID-FakeNewsNet and FNID-LIAR datasets, respectively, which are 10.44%
and 13.19% respective absolute improvements.
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1 Introduction

News and information is the tool and the basis of society’s awareness and actions. Tra-
ditionally, news agencies have been the source of news. However, the rapid growth and
attractiveness of online social media such as online social networks, messengers, and blogs
have led to a significant amount of news being broadcast and disseminated through these
platforms today. These Internet platforms are currently the most popular media in the world,
so that even ordinary people have the opportunity to monitor the latest information and
observations of each other at any time and communicate with each other. Every day a con-
siderable amount of political, social, economic, health, art, information technology, or other
news is produced [63]. Social media allows the audience to follow the news in their favorite
areas instantly and republish it in the media as soon as they see an interesting one. That
is why the present decade has been called the information age. Every person in society is
consciously or unconsciously involved in the production and dissemination of news and
information, and the news is published more quickly than ever before.

Fast publishing is one side of the story. On the other side, the publication of uncon-
firmed and unprofessional news by individuals may intentionally or accidentally contain
false information. The news in these media, unlike traditional media, is published without
supervision and verification,so recognizing this news’s correctness has become a challenge
in online social media. This misinformation may have been inadvertently propagated. Some
individuals and organizations may deliberately spread fake news in the media for purposes
such as profiteering, unhealthy competition, or even entertainment. Fake news is usually
more interesting than real ones; hence they will be shared and spread more quickly through-
out society [62]. They may cause irreparable damage to individuals, organizations, and
governments, which can have devastating effects, such as increased social anxiety, reduced
productivity, and crippling of the economic cycle. News experts and volunteer individu-
als are trying to reduce the destructive effects of fake news by identifying and reporting
them. Websites such as PolitiFact1, Snopes2, and FactCheck3 are well-known examples
in this field that identify and publish fake news daily in various fields. The identification
mechanism in these websites is manually based on individual reports or approaches such
as crowdsensing [40]. However, this mechanism is not suitable for the high volume of fake
news published on online social media. Therefore, to detect fake news and deal with its
excessive publishing, there is a desperate need to automate this process.

Various methods have already been proposed to identify fake news. The main approach
in these methods is to use machine learning. In the mainstream of this work, having a labeled
data set of correct and fake news, a classification model is trained on news features and
then used to predict a news item’s correctness. The features used in these methods may
fall into two categories: 1) content-based features, and 2) context-based features. Content-
based features refer to those features that are extracted from the text or the content of the
news itself [1, 14, 46]. In contrast, context-based features are based on news context such
as the publisher, the stance of other individuals in the network, and propagation structure
to indicate whether the news is fake or not. These methods have been able to achieve good
results [52, 65], but they often need information that is hard to gather in the moment of
receiving a fake news item. They only work when fake news has affected the community.

1www.politifact.com
2www.snopes.com
3www.factcheck.org
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For example, stance detection in news comments, which is one important method in fake
news detection, is only applicable when the network users take a stance against news and
write their idea about it [41]. In fact, these methods exploit the knowledge of the other users
in the network, which means that they have to wait for at least a part of the network members
to investigate the correctness of a news item.

In the the previous works, all has been looking for some patterns to detect fake news.
The features used in these works were all based on the context or content of the news. In
this paper, we propose a novel method for fake news detection based on Natural Language
Inference (NLI) approach. The main idea is to imitate the way news experts follow to detect
fake news. If the new news contradicts the confirmed news, it is labeled fake. However, if it
corresponds to the confirmed news, it is labeled real. This method is innovative in two ways.
The first is that a data source outside the content and context of the news has been used, and
the second is that inference approach has been used for the first time for fake news detection.
In the NLI task, which is one of the most important subfields of natural language process-
ing (NLP), a received claim (hypothesis) is classified in one of the classes true (entailment),
false (contradiction), or undetermined (neutral) based on initial knowledge (premise). The
approach we used in this study is also similar. Considering the existing confirmed news as
a “premise”, we infer the new news as a “hypothesis” and predict whether it is fake or
real. The most important effect of this method in the process of detecting fake news is that
we can check the a piece of received news through the previously confirmed news, even in
the first moments of publishing, and determine whether it is true or false. This allows us to
prevent the spread of fake news in the community and its destructive effects very quickly.
Another advantage of this method is the automation of the news review and analysis pro-
cess, which eliminates the manual process of this process, reduces costs and speeds up the
news review process. We use this approach to boost a couple of classical and deep models
including Decision Tree [47], Naı̈ve Bayes [26], Random Forest [7], Logistic Regression
[15], k-Nearest Neighbors [29], Support Vector Machine [45], BiGRU [12], and BiLSTM
[21] along with different word embedding methods including Word2vec [38], GloVe [44],
FastText [5], and BERT [13]. The results show considerable improvements in the accuracy
of fake news detection using the auxiliary knowledge based on the NLI approach. We also
introduce a new NLI-based dataset according to the FakeNewsNet (Politifact) [50] and LIAR
[57] datasets, which has been made freely available 4. In summary the contribution of the
paper is as follows:

– Propose an Natural Language Inference approach for fake news detection for the first
time.

– Utilize previously verified news as a source outside the social network to identify fake
news.

– Outperform state of the are methods and reached a maximum accuracy of 90.19% and
39.65% in the two-classes and five-classes fake news classification respectively.

– Introduce a new dataset named FNID by extending LIAR and FakeNewsNet (Politifact)
datasets.

The paper continues as follows. In the next section, related research and datasets on
fake news detection are discussed. Section 3 reviews the NLI task and its methods. The
proposed method and the collected dataset are described in Sections 4 and 5, respectively.

4https://ieee-dataport.org/open-access/fnid-fake-news-inference-dataset
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The experimental results are presented and discussed in Sections 6; and finally, the paper
concludes in Section 7.

2 Related work

Many research papers have been published in the field of fake news and rumors, which
can be divided into four categories: fake news detection (e.g. [27, 35]), fake news spreaders
detection (e.g. [3, 39]), fake news propagation modelling (e.g. [4, 64]), and fake news miti-
gation (e.g. [16, 19, 31]). Although these works are related and all of them are common in
the field of fake news, but they are different in terms of methods and goals. For instance, in
identifying a rumor spreader, the goal is to identify the person who spreads the rumor. As
an example work, Bakhteev et al. [3] proposed a ensemble method which take the whole
set of published tweets by a user to decide whether the user can spread fake news. Identi-
fying the fake news spreader may later be used as a feature to identify the fake news, but
the main purpose of this method is not to identify the fake news itself. In this study, we
have just focused on fake news detecting. The state of the art methods in this category are
mainly based on deep learning methods, in which fake news detection has been seen as a
binary classification problem (e.g. Real & Fake classes) or multi-class problem (e.g. False,
Half-True & True classes). In this section, considering the importance of datasets in the
machine learning methods the most important works and available fake news datasets will
review. The available machine learning-based methods in fake news detection use either the
content-based or context-based features or both of them.

Content-based features these features are extracted from the textual or visual content of
news items or social media messages. These features may include lexical, textual, syntactic,
semantic, visual, emotional, or link ones. For example, one study introduced a method called
Event Adversarial Neural Network (EANN) that extracts features from multi-modal data
and used both textual and visual features to detect fake news [58]. In another work, used
sentiment analysis in twitter posts for rumor and fake news detection [1], or in the other
work used combined stylometric features with word vector representations to predict fake
news [46]. In a study used a BERT-based deep learning approach by combining different
parallel deep Convolutional Neural Networks for fake news detection [27].In another study,
labeled and unlabeled data were used to detect fake news. In this study, a model based on
self-learning semi-supervised deep learning network is proposed for fake news detection
[35]. In another study, researchers first extracted important features from fake news datasets,
then classified the news using the ensemble learning method. They achieved high accuracy
in fake news detection [20].

Context-based features these features are mainly based on social communication and
interaction in the network. They may include the users’ profile, the news propagation net-
work features, or spreading structure. For example, in a research used the propagation
network between news publishers and subscribers based on the assumption that fake news
have a different propagation pattern than other types of news [65]. User profiles are also
used in fake news detection methods. In one study, the ability to detect fake news increased
by separating fake news publishers from other publishers [52].

Several studies have used both types of these features. For example, one study has used a
threshold on the number of user interactions in a post to decide which type of feature should
be used. Content features are used if the number of interactions is less than the threshold,
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while context features are used if the number of user interactions exceeds the threshold [11].
In another study, researchers proposed a new method using both publishing and friendship
networks and combined them with content features to more accurately detect fake news
[25]. Table 1 shows a summary of the reviewed research, based on the type of features used.

From another point of view, the lack of sufficient labeled data in supervised learning
is an important challenge. To solve this problem, some researchers propose methods other
than supervised learning. For instance, in one study presented a semi-supervised method
with a two-path deep model, one path for supervised learning to learn from a limited labeled
dataset and another for unsupervised learning to learn from an abundant amount of unla-
beled [14]. Despite some efforts in this line, most of the proposed methods in this field are
still classification-based.

To enable the supervised learning, there are several famous datasets in this field which are
reviewed in the following. Vlachos and Riedel published a dataset in 2014 from Politifact
and Channel4 websites; this dataset is a collection of 221 samples that are labeled in five
classes: true, mostly true, half true, mostly false, and false [59]. In 2016, BuzzFeedNews
dataset collected and published by a group of journalists of the BuzzFeed website. The
dataset includes 2,282 news items published on Facebook which are classified into four
classes: mostly true, mixture, mostly false, and no factual content [53].

In 2017, Horne and Adali introduced three new datasets of satire, fake, and real news
articles from different political and non-political news sources. The datasets include 120,
225, and 4233 labeled samples in two, three, and four classes, respectively [23]. In another
study in the same year, published a dataset called LIAR which includes 12,800 statements
and related metadata. Statements in this dataset are labeled in six classes: pants-fire, false,
barely true, half true, mostly true, and true, collected from the Politifact website [57]. In
2018, Fake News vs. Satire dataset was introduced in which 486 political news items have
been collected [17]. In the same year, FakeNewsNet dataset was introduced to conduct fake
news detection research through the analysis of news texts and social networks. In this
dataset, 1,056 and 22,856 samples are collected from Politifact and Gossip Cop websites,
respectively. These samples are labeled in two classes fake and true [50].

The features used in most works on fake news detection are based on the content of fake
news and the profile of the spreader. These features often indicate some statistical patterns
that are more common in fake news. These patterns may change over time or in different
datasets, so the output obtained usually only works well in the training dataset. On the other

Table 1 A summary of some previous research in the field of fake news detection

Refrence Year Content-based features Context-based features

Wang et al. [58] 2018 �

Vedova et al. [11] 2018 � �
Ajao et al. [1] 2019 �
Zhou & Zafarani [65] 2019 �
Shu et al. [52] 2019 �
Jiang et al. [25] 2019 � �
Reddy et al. [46] 2020 �
Kaliyar et al. [27] 2021 �
Li et al. [35] 2021 �
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Table 2 An example of natural language inference

premise Permanent members of the UN Security Council are the five
governments of China, France, Russia, Britain and the United
States.

hypothesis The United States is a permanent member of the United Nations
Security Council.

Entailment

One of the five permanent members of the UN Security Council is the
German government.

Contradiction

The permanent members of the Security Council are all allies who won
World War II.

Neutral

hand, in some works, contextual features such as propagation speed have been addressed.
These features are very hard to find. Access to them requires access to the general state of
the network, and even at the beginning of the fake news release they are not yet usable. For
example, the propagation speed can be calculated and used after a period of the news release.
This causes them to waste golden time to prevent the spread of fake news and rumors. All of
the current works focused only on the content or context information of the social network
and what has been neglected is the knowledge source outside the social network. Reliable
news sources are one the most important knowledge sources. They publish a significant
source of confirmed news which can be used to distinguish the fake news from the truth.
In this study, for the first time, we presented a method based on natural language inference,
which can be used to distinguish between true and false news using the set of published and
confirmed news.

One of our challenges in this research is the lack of a suitable data set to detect fake news
by inferring new news from previously confirmed news. For this purpose, we prepared this
data set called FNID and used it in the current research, which led to improving the accu-
racy of detecting fake news. We have developed the FNID dataset based on two datasets,
FakeNewsNet and LIAR. This dataset is available to researchers for free.

3 Natural language inference

Natural Language Inference (NLI) is one of the tasks in natural language processing which
is also known as “Recognizing Textual Entailment” (RTE). It is believed to be close to
the ultimate goal of natural language processing, namely “Natural Language Understand-
ing” [37]. The task is to determine the inference relationship between two given phrases
called premise (p) and hypothesis (h). A hypothesis may be inferable from a given premise
(entailment), contradicts with premise (contradiction), or indeterminate (neutral). In Table 2,
an example is presented for each of these classes.

The state-of-the-art methods in NLI are deep learning-based which learn to automatically
extract features from vast amount of data. For this aim, large datasets in English language
have been developed and introduced, including “SNLI” [6] “MultiNLI” [60], and “SciTail”
[30], as well as datasets in non-English languages like “FarsTail” [2] and “OCNLI” [24].

Figure 1 shows the scheme of a typical NLI model [10]. The input premise and hypoth-
esis are encoded to fixed-length numeric vectors using a neural encoder like a bidirectional
LSTM. The obtained vectors u and v are then concatenated along with their element-wise
product and absolute difference, resulting in a representation which captures information
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Fig. 1 The scheme of a typical NLI model

from both premise and hypothesis. This vector is then passed to a 3-class classifier con-
sisting of multiple fully-connected layers. Along with this typical architecture, researchers
have also come up with a variety of more sophisticated models to get better performance in
this task [8, 33, 34, 36, 42, 54, 61].

The significant advances of NLI have led researchers in many fields to use this task
to solve various problems and apply it to applications that require inference between two
expressions. These include question answering [56], fact extraction [55], generating video
captions [43], and judging textual quality [22] and etc.

In this work, we use NLI to detect fake news in a similar way to humans. The detection
of fake news by humans is mainly based on inferring the veracity using a set of reliable
news rather than by merely statistical features within the news content or context. In the
proposed approach, the news item that we intend to verify is considered as a hypothesis, and
the available set of reliable news plays the role of the premise. The inference relationship
between this premise set and the intended hypothesis reveals the reliability of the news item.

4 Proposedmethod

Suppose that h is the news item whose veracity is under investigation, and p is the set of
related confirmed news received from trusted sources. Based on the standard definition of
NLI problem mentioned in Section 3, three situations can be considered. The news item h

can be assumed true if p � h, that is, p entails h. On the other hand, this news item is proved
to be fake if p � h, i.e., h contradicts the previously verified news. In neutral case that
neither entailment nor contradiction of h is distinguishable from p, we can not definitively
accept or reject that news item.

33807Multimedia Tools and Applications (2022) 81:33801–33821



Fig. 2 Phrase representation by word embedding and tf-idf

We consider two versions of this problem. In the first version, we have a two-class prob-
lem with fake and real as labels which is compatible with the FakeNewsNet dataset [50].
In the second version, a six-class problem is considered with pants-fire, false, barely-true,
half-true, mostly-true, and true as fine-grained labels. This is compatible with the LIAR
dataset [57]. The details are presented in Section 5.

We use the proposed approach along with classical machine learning models as well as
neural network models, which are described below.

4.1 Classical machine learningmodels

In these models, the feature extraction phase is performed before model training. These two
steps are detailed below:

– Feature extraction: To represent the premise and hypothesis, we use the bag-of-words
approach, which delivers an average of the constituting words’ representations as the
sentence representation. To reduce the effect of stop words in long premises, we weight
each word based on its tf-idf. This increases the impact of more important words on
the final representation. The weighted sum of the word vectors is then normalized by
the sum of tf-idf values. The used word embedding methods in our experiments are
Word2vec [38], GloVe [44], FastText [5], and BERT [13]. The normalized, weighted
average of word vectors for the premise and hypothesis are then concatenated to deliver
the final sample representation. Figure 2 shows an overview of the mentioned phrase
representation process.

– Model training: In many past content-based studies, only the claims have been used to
detect the fake news, ignoring the previous relevant news as the auxiliary knowledge.
We bridge this gap by the NLI approach. To measure the effectiveness of using the NLI
approach in detecting fake news, we first train the models only using the generated
vectors for the claims (hypotheses). These models are called simple in our experi-
ments. Then, by concatenating the premise and hypothesis vectors, we train a so-called
NLI model, which is designed to infer the claim’s correctness based on the previous
knowledge (premises). Figure 3 illustrates the aforementioned process.

4.2 Neural networkmodels

In recent years, deep neural network models have shown excellent performance in super-
vised learning tasks [32]. They benefit from feature learning for the input representation,
reducing the needs of feature engineering.
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Fig. 3 Simple and NLI models based on classical machine learning models

In this section, a NLI-based model is designed using Bidirectional LSTM [21] and Bidi-
rectional GRU [9] neural networks to investigate the correctness of a given claim based on
the previously confirmed related news. Similar to the previous section, firstly, we use only
the claims (hypotheses) to train a simple neural network model. Then, the NLI-based model
is trained to infer the claim’s correctness from previous knowledge (premises). By compar-
ing the results of these two models, we evaluate the effectiveness of the proposed NLI-based
approach in detecting fake news. Figure 4 shows a schematic view of this process.

5 Data acquisition and preprocessing

Since there is not a complete dataset available including premises to be used in the NLI
setting, we have collected a new appropriate dataset. It has been gathered in a way that is
compatible with FakeNewsNet and LIAR datasets as two well-known and frequently used
datasets in this field. The required data for training an NLI system should include premise,

Fig. 4 Simple and NLI models based on neural network models

33809Multimedia Tools and Applications (2022) 81:33801–33821



Fig. 5 The overview of our dataset construction

hypothesis, and label fields. We consider the news as hypothesis, the confirmed related news
as premise, and the veracity of the news item as the label.

The overall steps of data acquisition and preprocessing are illustrated in Fig. 5.

Table 3 Fields of PolitiFact published articles

No. Field Description

1 Statement A claim published in the media by a person or
an organization which has been investigated in
PolitiFact.

2 Title The title of the article published by PolitiFact
about the claim.

3 Time The publication time of this article on the Politi-
Fact website.

4 Speaker The person or organization to whom the State-
ment relates.

5 Content The text of the Politifact article including parts of
the past and present news related to the statement
which is selected by Politifact’s experts and can
be used to investigate the accuracy of the state-
ment. Also, at the end of this section, the experts’
final opinions on the statement are given accord-
ing to the sources mentioned as Our Ruling... and
We Rate....

6 Sources The news’ URL related to the Statement as well
as the sources’ URL used in the Content section.

7 Label The Statement’s tag suggested by the expert team
among nine labels: Mostly-True, True, Half-
True, False, Mostly-False, Pants on Fire, No Flip,
Half Flip, and Full Flop.

33810 Multimedia Tools and Applications (2022) 81:33801–33821



5.1 Data collection

The dataset is collected using PolitiFact website API5. This website is a reputable source of
fact-finding in which a team of experts evaluate political news articles published in various
sources (including CNN, BBC, and Facebook). Each published article on this website con-
sists of seven sections listed in Table 3. All the articles published until April 26, 2020 are
crawled and collected in our dataset.

Since LIAR and FakeNewsNet datasets use also the PolitiFact website to collect their
data records, we establish a mapping between the items in our dataset and those datasets.
This eases the comparison between the proposed approach and previous methods. To this
aim, we use as the test set the part of our data that is also available in FakeNewsNet or LIAR
datasets. As the development set, a random subset of the remaining samples is selected
whose size is proportional to the size of the test set. The remaining samples are considered
as the train set.

In the FakeNewsNet dataset, there are two different labels: fake and real, while in the
LIAR dataset, the number of classes is six: pants-fire, false, barely-true, half-true, mostly-
true, and true. On the other hand, the total number of unique labels in the PolitiFact
articles is 9 (last row of Table 3). We publish our dataset as two different folders which are
compatible with FakeNewsNet and LIAR datasets, respectively.

Based on the FakeNewsNet article, we consider the label real instead of true, mostly-
true, and half-true labels. We also consider fake instead of pants-fire, false, and barely-true
labels. We ignore no-flip, half-flip, and full-flop which do not have a corresponding label
in FakeNewsNet dataset. For LIAR dataset, along with the six labels which are common
between LIAR and PolitiFact, we replace the no-flip, half-flip, and full-flop labels with true,
half-true, and false labels, respectively. This labeling is the same as presented in the LIAR
article.

5.2 Preprocessing

To clean the collected articles from PolitiFact website, HTML and CSS tags as well as extra
spaces and characters were removed from the text. The last sections of each article that were
about the rules of the website (i.e. Our ruling...) and the final opinion of the experts about
the veracity of news (i.e. we rate ...) were also removed. The remaining content is the text
of the news collection that has been reviewed by experts to get the veracity of the intended
news. This data is stored in two modes: sequences of paragraphs and a single text (joint
paragraphs) in columns Paragraph-based-content and FullText-based-content, respectively.
In this work, FullText-based-content is used, but Paragraph-based-content can be exploited
in paragraph-based NLI in future research.

The NLI task requires dataset to include three distinct fields: premise, hypothesis, and
label. Accordingly, we select following fields for this aim:

– Premise: We use FullText-based-content field as the premise which contains the text of
news related to the news under investigation.

– Hypothesis: The Statement field is considered as hypothesis (see Table 3). It is a claim
published in the news media, and now its integrity is under investigation.

– Label: Label-FNN and Label-LIAR are used as the label of data.

5https://www.politifact.com/api/factchecks
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Table 4 FNID data statistics

Total number of news 17583

Average number of statement characters 111.083

Average number of statement words 22.564

Average number of content characters 4670.107

Average number of content words 903.791

Average number of content paragraphs 21.602

Number of labels based on FNN (PolitiFact) fake 8557

real 8767

Number of labels based on LIAR pants-fire 2012

false 3809

barely-true 2897

half-true 3339

mostly-true 3096

true 2430

The final dataset, called Fake News Inference Dataset (FNID) [48], is publicly available
for future research6. Some statistics of this dataset are presented in Table 4.

6 Experiments and results

6.1 Setup

In this section, we evaluate our proposed method on the FNID-FakeNewsNet and FNID-
LIAR datasets. As mentioned in Section 4, two models are compared to evaluate the
effectiveness of the NLI-based approach in fake news detection. The first one, called
simple model, uses only statements (hypotheses); while the other one, called NLI model,
exploits fullText-based-contents (premises) along with statements (hypotheses). As classical
machine learning models, we use Decision Tree (DT), Naı̈ve Bayes (NB), Random Forest
(RF), Logistic Regression (LR), k-Nearest Neighbors (KNN), and Support Vector Machine
(SVM) algorithms; while as neural networks, we use BiLSTM and BiGRU models. For
representing the words, Word2vec, GloVe, fastText, and BERT are used.

The used evaluation measures are accuracy and F1-score, along with the confusion
matrices for more detailed investigations. In the following, we review the definition of the
used evaluation measures.

Accuracy: It measures the percentage of correctly classified samples:

Accuracy =
∑n

i=1 T Pi

N
(1)

where n is the number of classes, T Pi indicates the number of true positives in class i, and
N is the total number of samples.

6https://ieee-dataport.org/open-access/fnid-fake-news-inference-dataset
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F1-score: To better evaluate the performance of a classifier in imbalanced problems, it is
better to use the F1-score, since accuracy may be misleading. Particularly, in the fake news
context, the number of fake news is often significantly less than real news. F1-score is
defined as the harmonic mean of Precision and Recall:

Recalli = T Pi

T Pi + FNi

(2)

Precisioni = T Pi

T Pi + FPi

(3)

F1-scorei = 2 × Precisioni × Recalli

P recisioni + Recalli
(4)

where T Pi , FPi , and FNi are, respectively, True Positive, False Positive, and False
Negative samples in class i.

Macro-F1 : This metric gives an overview of the model performance in all classes, which
is obtained by averaging the F1-scores of the classes:

Macro-F1 =
∑n

i=1 F1-scorei

n
(5)

6.2 Results

The results of simple and NLI models on the FNID-FakeNewsNet dataset are given in
Table 5. The best obtained accuracies by different models are also depicted in Fig. 6. As can
be seen, the best obtained results for all models, except Naı̈ve Bayes, have been improved
by the NLI model. The best results in both the simple and NLI models have been obtained
by BiLSTM neural network using BERT embedding. By the way, comparing the best sim-
ple and NLI models shows that using the NLI approach has made 10.44 and 10.34 absolute
improvements in terms of accuracy and Macro-F1 scores, respectively. Figure 7 shows the
confusion matrices of the best simple and NLI models on FNID-FakeNewsNet dataset.

Figure 7 shows the prediction improvement in both fake and real classes. By considering
“fake class” as Positive (P) class and “real class” as Negative (N) class, we find that the
inference model was able to reduce 14 samples from False Negative (FN) part and add this
number to the True Positive (TP) part, Which has led to an increase in the TP part from 394
to 408 samples. Also, this inference model has been able to increase the number of True
Negative (TN) samples from 398 samples to 494 samples by subtracting 96 samples from
the False Positive (FP) part and adding this value to the True Negative (TN) part. These
changes in the confusion matrix, in addition to improving Accuracy, have led to improved
F1-score in both classes, as a result, the Macro-F1 score has also increased.

Table 6 shows the evaluation results of simple and NLI models on the FNID-LIAR
dataset. The best obtained accuracies are also depicted in Fig. 8. These results show that the
best results for all classifiers are obtained by the NLI approach. Also, the best overall result
in both simple and NLI models is obtained by the BiLSTM neural network using BERT
embedding. Using the NLI approach has made 13.19 and 14.33 absolute improvements in
terms of the best obtained accuracy and Macro F1 scores, respectively. Figure 9 shows the
confusion matrices of the best simple and NLI models on FNID-LIAR dataset.

Figure 9 shows the prediction improvement in all classes. Considering each of the classes
as a Positive (P) class and the other classes as a Negative (N) class, we find that the inference
model was able to the inference model has been able to improve the Accuracy and Macro-
F1 evaluation metrics by reducing the samples of False Negative (FN) parts and adding this
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Fig. 6 The best obtained accuracies by different models on the FNID-FakeNewsNet dataset

samples to the True Positive (TP) part. This reduction of FN and addition to TP in classes
pants-fire, false, barely-true, half-true, mostly-true, and true is equal to 24, 17, 10, 33, 36
and 47 samples, respectively.

To compare the proposed approach with the baseline methods reported by Shu et al. [50]
and the SAF/S [51] method on FakeNewsNet (PolitiFact) data, we performed an experiment
under a similar condition. Since the reported results by these works are based on 1,054
samples, we also trained our best model, which is BiLSTM (BERT) according to Table 5, on
the same data. The samples were divided into 80%, 10%, and 10% for training, validating,
and testing, respectively. The last row of Table 7 shows the average accuracy of our approach
over five experiments. The other results were extracted from the references.

Similarly, we compared our approach with the baseline models reported by Wang
et al. [57] and the method proposed by Karimi et al. [28] on LIAR dataset. Note that the
work of Karimi et al. [28] combines information from multiple sources beyond the news
content. The last row of Table 8 shows the accuracy of our best achieved model, i.e., BiL-
STM (BERT), with the same number of data samples as the baseline models, which is
10,268 samples for training, 1,284 samples for validation, and 1,266 samples for testing.
According to Tables 7 and 8, our proposed method, which exploits the verified news using
a NLI approach, outperforms the baselines by a considerable margin. This improvement
is specially noticeable for the FakeNewsNet (PolitiFact) dataset which has less training
data, showing the effectiveness of the auxiliary knowledge specially in the low-resource
situations.

Fig. 7 Confusion matrices of the best simple and NLI models on the FNID-FakeNewsNet dataset
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Fig. 8 The best obtained accuracies by different models on the FNID-LIAR dataset

Fig. 9 Confusion matrices of the best simple and NLI models on the FNID-LIAR dataset

Table 7 The accuracy of baseline methods on FakeNewsNet (PolitiFact) dataset as well as the accuracy of
the proposed method on FakeNewsNet-compatible version of FNID dataset

Method Accuracy

SVM [50] 0.580

Logistic Regression [50] 0.642

Naı̈ve Bayes [50] 0.617

CNN [50] 0.629

SAF/S [51] 0.633

Our method (BiLSTM (BERT)) 0.9019

The best result is marked with bold
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Table 8 The accuracy of baseline methods on LIAR dataset as well as the accuracy of the proposed method
on LIAR-compatible version of FNID dataset

Method Accuracy

Majority [57] 0.208

SVM [57] 0.255

Logistic Regression [57] 0.247

Bi-LSTMs [57] 0.233

CNN [57] 0.270

MMFD[28] 0.3881

Our method (BiLSTM (BERT)) 0.3965

The best result is marked with bold

7 Conclusion and future works

Most methods for detecting fake news use post-publication effects on the community to
determine whether the news is true or false. In other words, these methods cannot work in
the early stages of the publication of news and can only be used when the news has spread in
the community and has left its harmful effects. In this study, we present a method that uses
previously verified news to detect fake news instead of using only the content or context
of the news. We have designed this method based on the natural language inference task,
in which to verify a new news item as a hypothesis, previous similar verified news is used
as a premise. The proposed method enables us to detect fake news in the early moments of
publication. One of the most critical challenges in this study was the need for verified news
similar to the news item under review, but there was no suitable dataset for this purpose.
Therefore, we created the first Fake News Inference Dataset (FNID) in a rigorous process
and published it for free. The results of this study show an increase in the accuracy of
detecting fake news using the proposed approach.

Although the proposed method has been able to overcome other previous methods, but it
has its own weaknesses and limitations. These limitations fall into two general categories:
the retrieving the set of confirmed and related news, and the limitations of the inference
method. From the first limitation point of view, the proposed method requires a set of veri-
fied news related to fake news. In this work, it is assumed that this set is already available
and no mechanism is provided to automate the extraction process of this set. From the sec-
ond limitation point of view, NLI methods which have been employed here for inferring
the correctness of the news, have weakness for understanding long texts. In the future, we
intend to work on these limitation to further improve the proposed method. We also want to
make an online tool that finds similar news items to the given news from reputable sources
and uses them as the premise input to the NLI model trained to detect fake news. Investi-
gating other more complex and specialized NLI models for use in the approach presented
in this research is another of our future plans.
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42. Parikh AP, Täckström O, Das D, Uszkoreit J (2016) A decomposable attention model for natural
language inference. arXiv:1606.01933

43. Pasunuru R, Bansal M (2017) Reinforced video captioning with entailment rewards. CoRR,
arXiv:1708.02300

44. Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. Proceedings
of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543

45. Pradhan A (2012) Support vector machine-a survey, vol 2
46. Reddy H, Raj N, Gala M, Basava A (2020) Text-mining-based Fake News Detection Using Ensemble

Methods. International journal of automation and computing, pp 1–12 Springer
47. Ross QJ. (1986) Induction of decision trees. Mach Learn 1:81–106. Springer
48. Sadeghi F, Bidgoly AJ, Amirkhani H (2020) FNID: Fake News Inference Dataset. IEEE Dataport.

https://doi.org/10.21227/fbzd-sw81
49. Shabani S, Sokhn M (2018) Hybrid machine-crowd approach for fake news detection. 2018 IEEE 4th

International Conference on Collaboration and Internet Computing (CIC), pp 299–306. IEEE
50. Shu K, Mahudeswaran D, Wang S, Lee D, Liu H (2018) FakeNewsNet: A data repository with

news content, social context and dynamic information for studying fake news on social media,
arXiv:1809.01286

51. Shu K, Mahudeswaran D, Liu H (2019) Fakenewstracker: a tool for fake news collection, detection, and
visualization. Comput Math Organ Theory 25:60–71. Springer

52. Shu K, Zhou X, Wang S, Zafarani R, Liu H (2019) The role of user profiles for fake news detection.
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, pp 436–439

53. Silverman C, Strapagiel L, Shaban H, Hall E, Singer-Vine J (2016) Hyperpartisan Facebook pages are
publishing false and misleading information at an alarming rate. Buzzfeed News 20
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