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Abstract
Recently, sparse representation in face recognition has been widely studied in computer
vision. For face identification under complex conditions, many robust variants of sparse
methods are proposed and achieved good results. However, the occlusion problem is still a
challenging problem. Most of the state-of-the-art methods merely use pixel-wise error cod-
ing or structural error coding, which ignore the structural correlations between pixels. One
can observe that occlusion has local spatial continuity. To make use of this local spatial con-
tinuity, this paper proposes a novel method, namely local spatial continuity steered sparse
representation (LSCSR) for face recognition. The LSCSR uses a two-step strategy to cal-
culate the occlusion support map. In the first step, we make use of information on residual
to construct a matching mark image, and in the second step, we utilize the prior knowledge
of the local spatial continuity and obtain the occlusion support map based on the match-
ing mark image. Then, the weighted sparse coding framework is used to execute the face
representation and classification. Extensive experiments on several public face databases
demonstrate the effectiveness and robustness of the LSCSR in the face recognition against
occlusion and other variations. Especially in AR dataset, we achieve the 4.00% performance
gain in accuracy(96.50% vs. 92.50%) in Scarf occlusion.

Keywords Sparse representation · Face recognition · Robustness · Contiguous occlusion ·
Support map

1 Introduction

In the past two decades, pattern recognition and computer vision have been well studied [9,
22, 25, 31, 32, 38, 40–42, 46]. Face recognition (FR) is especially active in this field, while
it is widely used in many applications. Some classical classifiers are applied to FR, such as
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support vector machine (SVM) [13] and the nearest neighbor (NN). NN is one of the most
popular classifiers in FR because of its easiness and efficiency. However, NN only uses one
training sample to represent the test sample, which might affect its accuracy. To overcome
the limitation of NN, more training samples were proposed to represent the test sample in
many FR models [7, 17–20, 24, 28, 31]. Although the subsequent methods improve the
performance, FR is still challenging because of the illumination changes, occlusion, and
variations with age. Effected by these factors, partial features in the face cannot be collected
and the complete features might be contaminated. Thus the difference of feature within
samples of a same subject can be even larger than that between different individuals, and
the face recognition methods that rely too much on such features could lead to the failure
in classification. Therefore, the construction of robust feature is significant. Some previous
studies attempted to deal with the issue. For example, the face anthropometrics theory is
utilized to alleviate the effect by age [1, 2], and the linear representation is used to deal with
occlusions [3, 37].

In theory, the NN-based methods mentioned above can be regarded as particular cases
under the linear representation framework. Methods developed under the framework try to
find the appropriate representation to express a test sample y ∈ Rm with a dictionary com-
posed of training samples A = [A1, A2, ..., AK ] ∈ Rm×N , plus an error e due to occlusion
or corruption: y = Ax + e, and then classify the test sample according to which category of
training samples can better represent it. By observing the relationship between the test sam-
ple and the training sample, Wright et al. found that the representation of the test sample is
sparse. In other words, a small number of training samples can well express a test sample.
In the theory of compressed sensing, sparsity can be obtained by introducing l0-norm con-
strain, but l0-norm minimization is an NP-hard problem. Instead, l1-norm is widely used in
sparse coding because it is the closest convex function to l0-norm. Based on the l1-norm,
Wright et al. [36] proposed a sparse representation-based classification (SRC). To further
enhance the robustness of the algorithm, they assumed that the noise caused by occlusion or
corruption is also sparse and presented the robust version of SRC. The robust SRC shows
good tolerance to sparse random pixel corruption and block occlusion. However, real-world
occlusions are more complicated, which makes robust SRC is hard to handle many practical
recognition tasks.

As SRC has shown good performance in FR, the sparse coding model has been widely
studied in the community. Its extended works can be classified into two categories: the
first category is the study on the regularization term of the structural risk, and the second
one is to study the fidelity term of the reconstruction risk. For the first one, researchers
doubt that whether the l1-norm constraint regularization could well stand for the sparsity
and improve the robustness. By solving the non-negative matrix factorization problem, Liu
et al. [19] imposed a non-negative constraint on the regularization term, which can produce
a new sparse and nonnegative representation. Gao et al. [11] proposed a Laplace sparse
coding method that utilizes the correlation between local features. Zhang et al. [45] dug
the working mechanism of SRC, and they believed that the collaborative representation
is the key to improve the recognition accuracy. Instead, they utilized l2-norm to replace
l1-norm as the sparsity constraint and proposed the collaborative representation classifier
(CRC), which reaches about the same result as SRC but in a faster speed. Huang et al. [15]
introduced supervised label information and believed that the coding should be sparse in the
category level, so they used group sparsity as regularization items. Zeng et al. [43] combined
the two coefficients solved by l1 and l2 regularizations to obtain a more discriminative
representation, they proposed the method named as DW-SCRC.
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For the second one, researchers pay attention to whether the coding residual based on the
l2-norm can truly preserve the fidelity of the linear representation. From the point of maxi-
mum likelihood estimation (MLE), the l2-norm-based fidelity term assumes that the coding
residual follows Gaussian distribution, and Wright et al. [35] used l1-norm to define the
fidelity term which assumes that residual follows a Laplacian distribution. More and more
research has been studied on the fidelity term in recent years because it describes how well
a coding can reconstruct the original image and even get a more robust result. Deng et al.
[8] proposed the extended sparse representation-based classifier (ESRC), which applies an
auxiliary intraclass variant dictionary to represent the possible variation between the train-
ing and testing images. Mi et al. [27] proposed sparse representation based classification
on k-nearest subspace. Fan et al. [10] proposed a weighted sparse representation classifica-
tion (WSRC), which uses the similarity between each test sample and all training samples
as the weight, and this sample-wised weight vector can obtain more sparse and discrimi-
nate representation. Yang et al. [41] considered an adaptive distribution of the error image
and proposed the so-called robust sparse coding (RSC), which uses the pixel-wise weight
to determine the corrupt probability of each pixel of the image. Coincidentally, He et al.
[12] used the correntropy criterion to calculate the correlation between test samples and
reconstructed images and obtained a similar pixel-wise weight by maximizing the objective
function. The above methods did not take the structural information into account, so they
are not robust enough against occlusion in some real FR tasks especially. Later, Yang et al.
[40] put forward the opinion on the structural information of reconstruction errors. They
used the nuclear norm l∗-norm constraints as the fidelity term. Considered that the large sin-
gular values would play a dominant role in the nuclear norm which might lead to the failure
in classification, Xie et al. [38] then proposed a robust version of the NMR by using the
robust nuclear norm as the convex relaxation of the rank of the matrix. To avoid imposing a
strong assumption of the distribution of the residual, Mi et al. [29, 30] made use of spatial
structure information by replacing l2-norm by l2,1-norm.

When it comes to the robustness of the algorithm for occlusion, we mainly focus on the
performance improvement on the fidelity term. Since it is hard to decide whether the pixel
is noise or not when only paying attention to the regularization term, the robustness of linear
representation can be improved by designing a particular fidelity function. For example, the
M-estimator can be used to avoid the influence of pixel corruption on the representation
[16]. While many methods directly use residual to define the fidelity of the object function,
which characterizes the representation error individually, it might not be robust enough for
contiguous noise. Under the assumption of the local spatial continuity of occlusion and
inspired by human vision [26], we no longer recognize the occlusions of the face. Instead,
we directly ignore these parts using a weight vector and propose the local spatial continuity
steered sparse representation (LSCSR) for FR in this paper. To learn a more precise weight
vector, the proposed LSCSR adopts a two-step strategy to obtain a binary support map based
on the residual, which can improve the robustness of the sparse representation. In the first
step, we make the use of information on residual to construct a matching mark image. In the
second step, we use the prior of the local continuity and obtain the occlusion support map
based on the matching mark image. The motivation of the proposed method is inspired by
the Ising model [5], which describes the relationship among the adjacent spins in physics.
Nevertheless, our method can reach an approximate stable state in an easy but efficient way.

The main contributions of this article are summarized as follows:

– A binary occlusion support map is proposed, which can effectively eliminate the
harmful effects of occlusion pixels and improve the robustness of sparse representation.
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– A novel two-step strategy is proposed to utilize the prior knowledge of local spa-
tial continuity. This strategy can well deal with the contiguous occlusion in the FR
problems.

– Besides, we put forward a new optimization strategy of “coarse-to-fine” to search
the solution of our method. This strategy can not only improve the efficiency of our
algorithm but also improve the recognition rate of our algorithm.

The rest of this paper is organized as follows. Section 2 introduces the related works.
Section 3 gives the detail of the proposed LSCSR and some analyses. Section 4 further
discusses two critical problems in FR with occlusion. In Section 5, we conduct experi-
ments on four public face databases to compare our method with the state-of-the-art robust
representation methods. Finally, we make the conclusion of this paper in Section 6.

2 Related work

Since the SRC algorithm put forward in 2009 [36], FR with occlusions and illuminations
has entered a rapid development stage. The SRC is one of the subspace regression methods,
and so do the CRC and their extension methods. They base on a simple assumption that
a certain category of samples is from the same subspace. Thus, the FR problem becomes
how to correctly identify a test sample’s its own subspace, i.e., training samples of their
category can linearly represent test samples belong to the same category. Given N training
images from K individuals. A = [A1, A2, ..., AK ] ∈ Rm×N is a dictionary consisting of
N training images where Ak = [ak

1 , a
k
2 , . . . , a

k
nk

] ∈ Rm×nk and nk represent the number of

face images of the kth individual (N = ∑K
i=1 ni). Each sample a ∈ Rm is an atom of the

dictionary. So nk samples from the kth person Ak span a low-dimensional subspace of this
person. The core idea of SRC is that we can sparsely represent the test samples of the kth
class linearly only in the low-dimensional subspace of the kth person. In other words, a test
sample yk ∈ Rm can be represented very well only by atoms of the kth class. The sparse
representation of SRC can be obtained by optimizing the following formula:

min
x

‖x‖1 s.t . y = Ax (1)

where ‖·‖1 is l1-norm. It is worth noting that the test sample is collaboratively represented
by the entire training samples. So, as the assumption of the subspace regression, the sparsest
representation is also the most compact when y is to belong to a certain category, which
means the sparse representation is discriminative.

The original SRC above shows robustness for small random noise, but it is difficult
to deal with the error caused by occlusions and illuminations. To achieve more robust
performance, Wright et al. [36] further proposed the robust version of SRC:

min
ω

‖ω‖1 s.t . y = Bω (2)

where ω = [x, e], B = [A, I ] ∈ Rm×(n+m), and I is an identity matrix. More generally,
I can be treated as the occlusion dictionary, which can also be replaced by other bases,
e.g., Fourier basis or Haar wavelet basis. Because of the need to consider the orthogonal
occlusion dictionary, the dimension of the dictionary usually grows exponentially with the
dimension of the sample, leading to high storage and computational cost.
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In recent years, many researchers focus on studying the fidelity term. Many models use
l2-norm to measure the residual, however as described in Section 1, which assumes that
the error image is of a Gaussian distribution (the l1-norm indicates the Laplace distribution
of the error image). However, in real life, the empirical distribution of the error does not
comply with the above two presumptions. Figure 1 shows the example of the error image
caused by a scarf, where Fig. 1(a) is the original image that can be reconstructed by the
training samples (In practice, we cannot predict what and where a contingency occlusion
is, which means no prior information is available in the training set for any occlusion).
Furthermore, Fig. 1(b) is a real-world image that is occluded by a scarf. The error image
as shown in Fig. 1(c) is the difference between Fig. 1(a) and (b). Figure 1(d) shows the
distribution of Fig. 1(c) which indicates that the histogram is far from neither Gaussian nor

Fig. 1 Examples of the error images caused by scarf occlusion and the distribution of the error image. (a)
The original clear face image, which can be reconstructed by the training samples. (b) The real-world image
occluded by a scarf. (c) The error image which shows the difference between (a) and (b). (d) The pixel
distribution of (c)
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Laplacian distribution. Because of the lack of prior knowledge of the occlusive area, it is
hard for us to find a perfect distribution to describe the practical situation. There are two
directions to improve robustness by modifying the fidelity term.

The first direction is structural error coding. Different from the general error caused
by Gaussian noise, the error caused by occlusion usually has a certain spatial structure.
Therefore, the coding of occlusion error needs to consider the structure of occlusion. The
residual of the face has a low-rank structure, but the noise or occlusion will destroy this low-
rank structure in some cases. Therefore, the low-rank structure of face images can be used
to eliminate noise or occlusion. Robust principal component analysis (RPCA) [6] uses the
low-rank information to remove shadows and specularities in faces. Yang et al. [40] found
that occlusion and illumination can also generate an error image with a low-rank structure.
To utilize this low-rank structure information, the authors proposed an NMR model based
on the error image in the 2D matrix form, which means. NMR extends the linear regression
model to a matrix regression. Given N training images matrixes A1, A2, ..., AN ∈ Rp×q

and a test image B ∈ Rp×q , B can be represented linearly by A1, A2, ..., AN :

B = A (x) + E (3)

where A(x) = x1A1 + ...xNAN . NMR mines low-rank structural information of residuals
by optimizing the following objective with ADMM [4], and obtains the coding coefficient
x by optimizing:

min
x

‖A (x) − B‖∗ + 1

2
λ ‖x‖22 (4)

where ‖·‖∗ is l∗-norm. Similar to SRC, NMR uses discriminant coding x to construct a
classifier by finding the minimum residual image of the corresponding category.

Although methods in the first direction make use of the low-rank information of the
global structure of the error image, it ignores the local structural characteristics.

The second direction is to model the occlusion so as to separate it from a face image.
Representative studies such as subspace regression and structural error coding try to use
existing dictionary or distribution before representing the occlusion on a face image. How-
ever, in our daily life, when we try to recognize the identity of a person, our attention is
paid to the recognizable part of a face at first glance, not the occlusion. Hence, to real-
ize robust FR against occlusion by understanding and modeling the detailed content of the
occlusion is not efficient. Nevertheless, some early studies have tried several ways to sup-
press or eliminate the effect of the occlusion by learning a weight vector w iteratively based
on the assumed characteristic of occlusions.

CESR [12] and RSC [41] analyzed the relationship between reconstructed error e and
weight vectorw from the different perspectives. The CESR used correntropy induced metric
(CIM) [23] to describe weight w while the RSC designed a logistic function, similar to the
logic function, for the weight w to describe the matching degree or probability of the pixel:

w (ei |μ, δ) = exp
(
μ

(
δ − e2i

))

1 + exp
(
μ

(
δ − e2i

)) (5)

where μ and δ are two control parameters. Both CESR and RSC can get greater weight
while the residual pixels are larger, once the weight w is computed, sparse coding can be
obtained by solving:

min
x

‖w � (y − Ax)‖22 + λ ‖x‖1 (6)

where � is the Hadamard product, i.e., the product of the corresponding elements of two
vectors or matrices. If w = 1, (6) comes back to the classical sparse representation prob-
lem. CESR and RSC suppress the bad noise in an image by using weight w, but they are
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based on the pixel-wise calculation, which calculates all pixels independently. And CESR
and RSC adopted the information of error images only from a statistical distribution, rather
than in the spatial distribution, which completely lost the spatial information. CESR and the
RSC assume that the pixels distribute independently and uniformly, which is reasonable for
random noise point corruption but not for contiguous occlusion. Table 1 shows the classi-
cal methods to improve robustness in the fidelity term as described above, and they either
consider local structure or global information.

3 Two fundamental issues in face recognition with occlusion

In this section, we discuss two critical problems in FR with occlusion: the processing of the
occlusion information and the detection of the occlusion area. Furthermore, we offer the
implications of how to solve both issues in the proposed method.

3.1 The processing of the occlusion information

When dealing with the occlusion problem in FR, some methods of robust error coding
consider that the image with occlusion y is composed of the original image y0 and the error
e caused by occlusion: y = y0 + e. According to Wring et al. [36], it is believed that linear
feature extraction for the robustness of the sparse classifiers is no longer critical, and they
pointed out that no bases or features are more spatially localized, robust, and redundant than
the original image pixels themselves. For the issue of FR with occlusion, local contaminated
pixels could affect the whole feature extracted by linear feature learning. So to use the
original images as the bases is more advisable in robust error coding.

According to coding theory, redundant information is critical in detecting and correcting
errors. Even if a fraction of the pixels are completely blocked or corrupted, SRC based
methods still work well by taking advantage of the rest pixels. To even improve the SRC,
there are two ways to deal with occlusion problems in structured error coding: the first is to
construct an occlusion dictionary to describe the occlusions, such as robust SRC introduced
in Section 2. Once the sparse coding w = [x, e] is computed, the original image y0 can be
recovered by splitting the error: y0 = y − e. However, it makes the combined dictionary
extremely large by adding the orthonormal basis, i.e., occlusion dictionary. The second way
is to represent the probe face by describing the inherent structure to separate the occlusion,

Table 1 Methods to improve robustness in the fidelity term

Methodology Method Local structure Global information Theory

Structural error coding NMR [40],

WMNR [46],

RMR [38],

BS-MRC [29] × √
Low rank

Occlusion modeling SEC-MRF [47],

SSEC [21],

RSC [41],

CESR [12],

R2NRS [44]
√ × Error distribution
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such as the NMR method. These methods are based on the fact that the residual of the
face has a low-rank structure, but many occlusion types do not accord with the low-rank
structure.

The above methods, which belong to generative modeling, attempt to model the noises.
However, it is computationally expensive and might impose bias while representing the
noises. It is more advisable to use a discriminative approach to deal with occlusion. Based
on theWSRC framework described in the next section, our proposed method tries to directly
eliminate the influence of occlusion by using the occlusion support map, which can make
good use of the redundant information of the remaining pixels of the image to learn the real
representation coding of the face.

3.2 The detection of an occlusion area

As the analysis above, many robust FR methods make use of redundant information
by removing the occlusion. However, due to the randomness and unpredictability of the
occlusion, it is hard to accurately locate the position and distribution of the occlusion.
Thus distinguishing occlusion from redundant information is essential. Therefore, how to
accurately and automatically locate occlusion is crucial.

Human beings can match the detected object with the visual pattern stored in the brain,
and then it is easy to determine the occlusion by regarding the pixel area with large errors.
Based on this experience, an easy but effective method is to use the average face of the
training sample as a pattern image, ŷini = 1

N

∑N
i=1 ai , where ai is the ith training sample.

A reasonable initial pattern image ŷini is set to the average face of all the training samples,
as shown in Fig. 2(b). The average face could be considered as a simple pattern stored in
memory. However, the average face might wrongly judge the special features (such as the
beard) as occlusion, resulting in losing the discriminant features of the test samples.

Another method is to project the occluded face into a face feature space and then use
the projection coefficients to reconstruct the face and use the reconstructed face as a pattern
image. Since the low-dimensional subspace of the training sample contains the principal
features of the face, an occluded test sample can be projected into such a subspace to
extract the face features. Figure 2(c) shows the reconstructed image by using the eigenface
of the training samples. As mentioned above, although feature extraction is not so cru-
cial for classification, it is beneficial to approximately identify the location and the size of
occlusions.

Fig. 2 Two reasonable pattern images. (a) The test image is randomly occluded by a baboon image. (b)
Formed by averaging all training samples. (c) The reconstructed image by using the eigenface of the training
samples

25154 Multimedia Tools and Applications (2022) 81:25147–25170



Although the above strategies can preliminarily identify the occluded areas, it does not
make full use of the image information and only discriminates each pixel independently.
In addition to modeling with the difference of pixels, the prior information of local spa-
tial continuity of occlusion needs to be considered. In this sense, we need to introduce
local spatial continuity, which can help us to identify occlusion more accurately. Zhou et al.
[47] explained why spatial continuity could work well by studying the restricted isometry
property (RIP).

It is worth noting that the proposed method can well reduce local aliasing effects, which
means that the local features of occlusion in the image may match the local features in other
categories of images in the training set, as shown in Fig. 3. Since the classical SRC and
CRC are both have a large response in the incorrect person who has a beard, our method has
a small response on them while having a large response on the right category. Therefore,
the sparse coding obtained by our method LSCSR is more discriminant than the state-of-art
methods.

4 Ourmethod

In this section, we present the detail of the proposed LSCSR. We first summarize the
weighted sparse representation framework and then introduce the relevant concepts pro-
posed in this paper, i.e., the binary marching mark image and occlusion support map. After
that, the sparse coding method based on the occlusion support map is presented. Finally, we
propose the algorithm of LSCSR and give the analysis of its convergence.

4.1 Weighted representation framework

From experience with human vision, it is known that human vision can easily perform FR
with occlusion. Based on the existing face model in the brain, human beings ignore the
influence of the occluded part and directly identify the unoccluded part of the face [26].
Sparse representation is a generative model that reconstructs all parts of the probe image
even if it contains some occluded parts, which might affect the recognition of the model.

Under the sparse representation classification (SRC) framework, the fundamental idea is
to use the robust estimation method to find a vector to weight each pixel, which provides
larger weights for smaller errors and smaller weights for larger errors, and then to compute
the corresponding sparse representation based on this weight vector. We call this model as
the weighted sparse representation classification (WSRC).

min
x

‖w � e‖22 + λθ(x) (7)

where w is the weight vector, e = y − Ax is the residual, and θ(x) is the regularization of
the coding x with the balance of λ. Face recognition with weighted error coding can reduce
or ignore the influence of occlusion information, which is more consistent with the human
visual experience. The weighted error coding can suppress or eliminate the influence of
occlusion and noise by learning the weight vector, and use the weight vector to modify the
reconstruction risk to obtain a more accurate distribution of reconstruction error.

Many previous robust methods can be reformulated by (7). For example, the fidelity
term based on l1-norm [34] can be regarded as the weight with 1

|residual| , which reduces the
influence of the non-zero residual handicap. That is the reason why the fidelity with l1-norm
shows some robustness to the noises. The same idea can also be applied to the fidelity term
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Fig. 3 Local aliasing effects in different methods and the histogram represents the coding values of a
particular method

based on l2,1-norm and l∗-norm. Moreover, other methods [12, 41] specifically learn such
a weight vector to represent the probability that a pixel is unoccluded. For the popularity of
the WSRC framework, our work is presented under it as well.

4.2 Occlusion support map based on the local spatial structure

Under the WSRC framework, the proposed method studies the spatial relationship among
the pixels to guide us in learning a more robust weight vector. Our method uses a two-step
scheme to compute a binary occlusion support map.

In the first step, we use the information on the residual image to construct a matching
mark image, which is denoted by M ∈ Rp×q and has the same size as the original image. A
matching mark image serves as the preliminary pre-judgment of the contaminated pixels in a
probe image. The definition ofM is related to a residual image formulated byE = Y−A(x),
where A(x) is a reconstructed image of the probe counterpart. For most residual values of
occluded pixels are larger than a fixed value and for better utilizing the local spatial structure
to fix the occluded pixels, we use a simple but effective hard threshold way to prepare the
matching mark image by:

Mi,j =
{
1 if

∣
∣Mi,j

∣
∣ ≤ τ

0 if
∣
∣Mi,j

∣
∣ > τ

(8)
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whereEi,j is the residual value of the i-th row, j-th column of the residual image reshaped by
E.Mi,j = 1 means that the pixel of the reconstructed image matches the original image, i.e.,
it is not an occluded image pixel and vise versa. Unlike the probability value, the matching
mark image is more in line with the human vision. That is to say, we ignore the effect of
occlusion by setting the weight of the noise pixels to “0”. Moreover, τ is a positive scalar
value, which plays a significant role in calculating the value of the matching mark image.
It describes global information, i.e., the proportion of matched pixels in the image. If τ

is set too large, all pixels are considered to be matched, and then our model degenerates
to the classical SRC method. That is because the M is a matrix with all elements equals
to “1” and the local spatial information cannot be further utilized. However, if the value
of τ is too small, it makes that most pixels are marked as unmatched, which results in
only a few pixels are available for the model. It is tricky to choose an appropriate τ since
the initial reconstruction of the probe is tentative and variances on the probe exist. Zhou
et al. [47] proposed to set a larger initial value, and then gradually shrink the value in the
process of iteration. This proposal assumes that with the increase of the number of iterations,
the reconstructed image is more accurate. However, this assumption does not always hold.
Instead, we use a fixed threshold (see the detail in Section 5.1).

In the second step, the occlusion support map is calculated based on the matching mark
image obtained in the first step. It is reasonable to assume that the occlusion on a face
image is of local spatial continuity. For example, sunglasses and scarves locally contaminate
a portion of contiguous pixels of a face image. Once a pixel is occluded, the surrounding
pixels are more likely to be disturbed. To take advantage of the property, we propose an idea
inspired by the Ising model that describes the magnetism of adjacent spins in physics. To
determine the stable state of every spin, the Ising model seeks the lowest energy [5].

For the occlusion detection problem in FR, the energy equation can also be constructed
with the matching mark image, and the goal is to reduce this energy. Li et al. [21] and Zhou
et al. [47] tried to construct such an energy equation as the Ising model and use a complex
probabilistic model that takes many iterations of sampling to reach a stable state. Based on
the local spatial continuity, we put forward a simplified approach to mimic the Ising model
but with different interpretations.

In our method, we alternatively conduct representation and discover the occlusion in
each iteration. Within an iteration, we consider that an unmatched pixel does not change its
state, and meanwhile, a matched pixel may change its state to be unmatched depending on a
certain number of unmatched pixels surrounding it. In other words, to determine whether a
pixel is occluded or not only depends on its reconstruction error but also counts on the state
of neighbor pixels directly surrounding it. To formulate this idea, occlusion support map S

is defined as:
Si,j = H

(
ci,j − ε

)
(9)

where H (·) is a unit step function, and ε ∈ [1, 9] is a positive integer value parameter which
indicates the influence of neighbor points on the probe point, and ci,j counts the number of
matched points in the field of 3× 3 around a pixel according to matching mark image at the
first step:

ci,j =
∑

k=−1,0,1

∑

l=−1,0,1

Mi+k,j+l (10)

That is, if ai,j < ε, we change the state of the pixel from “1” to “0”, otherwise we do
not change the state. Notice that we never change the state of “0”, which helps avoid the
negative effect that is made by incorrectly identifying the occlusion area as a matched state.
Because once an unmatched point changes into a matched point, the model might wrongly
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focus on the occlusion area, leading to classification error. However, even if a normal pixel
is mistakenly judged to be “0” in this iteration, it could be rectified in the next iteration due
to the reconstruction gradually became more accurate in the unoccluded area. To make the
occlusion support map reach a stable state, we repeat the above operation on the previous
occlusion support map:

ci,j =
∑

k=−1,0,1

∑

l=−1,0,1

Si+k,j+l (11)

which means this process continually discovers all occluded pixels. Inspired by the energy
function of the Ising model, we proposed an energy function to measure the convergence of
iteration as follows:

Energy(S) =
p∑

i=1

q∑

j=1

(
∑

k=−1,0,1

∑

l=−1,0,1

Wi,jWi+k,j+l − W 2
i,j ) (12)

where Wi,j =
{
1, Si,j = 1
−1, Si,j = 0

. When Energy(S) converges to a stable scope, it indicates

the iteration converged. According to our experiments, this process usually takes about ten
iterations to reach a stable state.

Different from other methods under the WSRC framework, the proposed method com-
bines global information and local spatial information. Besides, our method directly adopts
a binary value rather than the probability value to judge whether the pixels are occluded
or not. Since assigning a probability value as the weight to an occluded pixel still has a
bias effect on the object function, our method attempts to avoid the adverse effect. Figure 4
illustrates the flowchart to calculate the occlusion support map by a two-step produce. We
can see that the learned occlusion support map clearly identifies the occlusion caused by
sunglasses and avoid the mismatch of the eyes or light spots.

Fig. 4 Illustration of the two-step procedure to learn an occlusion support map. (a) is the occluded face
image. (b) is the reconstructed image. The matching mark image shown in (d) is a binary image produced
based on the residual image (c). The occlusion support map (e) is computed by the proposed method
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4.3 Algorithm of LSCSR

As discussed in Section 4.2, to get a more robust result, the implementation of LSCSR can
be an iterative process of a 2-level nested loop, and the inner loop includes a WSRC mini-
mization problem. To start with, a reasonable matching mark image is essential, because if
the matching mark image of the first step focuses on the blocked area (especially under the
condition of a large block), it could have a severe adverse effect on the algorithm. To initial
the matching mark image, we should first approximately estimate an initial residual image
E = Y − Yini , where Yini is the initial face of the real face based on the coming observa-
tion Y , which is also known as the initial pattern image. We give two feasible initialization
strategies in Section 4.2, which both ensure that the algorithm focuses on the clean part of
a face rather than the occluded area. Next, we propose the LSCSR algorithm to calculate
the optimal sparse coding through the alternating iterative optimization of occlusion support
map S∗ and sparse representation x∗, as shown in Algorithm 1.
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Once we obtain the final sparse coding x∗ and optimal occlusion support map s∗, the
classification can be performed by minimizes the residual between y and ŷi = Aδi (x∗):

identity (y) = argmin
i

∥
∥s∗ � (

y − Aδi

(
x∗))∥∥2

2 (14)

where δi (x∗) is a new vector that only sets the coefficients associated with the ith class in
x∗, and meanwhile, other entries are set as zero.

4.4 The complexity and convergence of LSCSR

The complexity of each step of the proposed LSCSR is analyzed below. The major time
consumption of LSCSR is to get the optimal solution of S∗, which needs to update the
occlusion support map S and sparse representation x alternatively. Furthermore, we assume
that the above process needs k1 times to converge. Computing the occlusion support map
S in an iterative way which needs k2 times to converge, and complexity is O(k2(m)). Then
the sparse representation x is solved by the ADMM framework which needs k3 iterations.
The main time-consuming in an iteration is the matrix inversion, equal to O(N3). Thus the
complexity of updating sparse representation x is O(k3N

3). To sum up, the complexity of
Algorithm 1 is O(k1(k2(m) + k3N

3)).
As mentioned, the proposed LSCSR algorithm has a 2-level nested loop. The inner loop

iteratively updates the occlusion support map S to reach a stable state. Assuming a reason-
able parameter ε is set, we expect a smooth occlusion support map is learned and meanwhile
unmatched points should not spread to the entire image area. The convergence is achieved
when the matching mark image M does not change anymore. Moreover, while the inner
loop converges, we also hope that it reaches lower energy described by the Ising model.
Figure 5(a) depicts the energy curve of the convergence process of an occlusion support
map in which the stable state is reached within ten iterations.

The outer loop is to update sparse coding x and the occlusion support map S alternatively.
As shown in Fig. 5(b), the algorithm will converge no more than ten iterations.

Fig. 5 The curves of the two-level nested loop. (a) The energy curve of the occlusion support map. (b) The
loss of the object function
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5 Experimental results

In this section, to evaluate the proposed LSCSR algorithm, we compared the proposed
method with state-of-the-art methods including nearest neighbor (NN), support vector
machine (SVM) [13], SRC [36], RSC [41], CESR [12], NMR [40], US-MRC [29], BS-
MRC [29], and DWSCRC [43]. Four public face databases including the Extended Yale B
database [18], the AR database [17], the ORL database [33], and the LFW database [14],
were used in our experiments. In (8), as mentioned in Section 4.1, τ plays an important role
in calculating the occlusion support map. This parameter depends on the error image E. We
spanned the error image E into a vector and sort this vector to get ψ = [e1, e2, ..., ep×q ],
and let k = �ρ × p × q	, where ρ ∈ (0, 1]. In this way, τ can be calculated as follows

τ = ψ (k) . (15)

ρ is generally chosen from (0.4, 0.5, 0.6, 0.7, 0.8) in our method. Moreover, in our
experiments, the value of ρ is not sensitive to classification in this empirical scope.

It is known that the regularization factor λ is an important parameter, which is a trade-off
between the fidelity term and a regularization term. Because our method contains a two-step
calculation, it is not easy to directly determine the reasonable range of parameter values. On
the other hand, if we set a small value, it will not only make the calculation more expensive
but also lead to a denser the coding of a test sample. Therefore, a coarse-to-fine strategy [39]
is utilized in LSCSR. That is, we use a larger regularization factor λ1 in calculating optimal
occlusion support map W ∗, and used a smaller regularization factor λ2 (usually 1/10 of the
λ1) in calculating the sparse coding x∗.

5.1 Recognition with random pixel corruption

In the first subsection, we validated the performance of LSCSR using face images with
random pixel corruption, which is usually generated during the transmission. The Extended
Yale B database was used in this section, which consists of face images under different
lighting conditions. We used the lossless face images of 31 individuals in the database to
implement the experiment and cropped the images into the size of 96 × 84. All pixels are
normalized in the range of [0, 1]. We selected Subset 1 and 2 (589 images) that were less
affected by light as the training set, and Subset 3 (372 images) with the more extreme light
condition for testing. We randomly corrupted the images by using random noise points with
the values of [0, 1]. The percentage of corrupted pixels is from 0% to 90%. Figure 6(a)
shows some test images with various levels of corruption. When the corruption rate reaches
about 50%, it is even hard for humans to recognize the face image, but the methods based on
the sparse representation perform very well with about 100% recognition rate, as shown in
Fig. 6(b). We can see that the performance of the methods based on low rank based methods
(NMR and, RMRL2) and classical classifier (NN and, SVM) did not perform well, and
the recognition of them drop fast with the increase of the corruption level. Because these
methods only use global information of the image, which loss perception of the random
pixel noise resulting in fragility against the increase of random pixel corruption. However,
the methods, including CESR, RSC, SRC, and LSCSR, have exhibit stronger robustness
that the recognition rates only drop obviously when the level of noise is higher than 80%.
Although corruption does not spatially continue, our method detected most of them, which
ensures good performance in this experiment.
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Fig. 6 Results for random pixel corruption. (a) Test images with different levels of random pixel corruption.
(b) The recognition rates of different algorithms

5.2 Recognition with contiguous pixel corruption

In this subsection, we tested the performance of the methods under contiguous pixel cor-
ruption. In this experiment, we used a similar experimental setting of Section 5.1. However,
instead of spreading the noise pixels uniformly and randomly through the entire image, each
test sample was corrupted by a block of contiguous pixels with a corrupted area ranging
from 10% to 80%. Figure 7(a) illustrates several test images and Fig. 7(b) plots the recogni-
tion rate curves of different methods. It can be seen that LSCSR outperforms the other seven
methods for all levels of contiguous noise. Since the noise pixels are clustered in a contigu-
ous space covering some crucial facial features, methods drop faster than when noise pixels
were spread to the whole image. From 0% up to 30%, LSCSR, RSC, NMR, and RMRL2
achieved very close results that they correctly classified all the test samples. Nevertheless,
with the increase of the corruption level, LSCSR shows more robust to the contiguous pixel
noise. The RSC and the CESR compute the weight of pixels independently; their recogni-
tion rates are lower than LSCSR when the corruption level is higher than 50%. Furthermore,
RMRL2, a method using structural error coding, has a better performance in the previous
experiment, which indicates that structural information also helps to deal with the block
occlusion. With the benefit of considering the contiguous information of the occlusion,
LSCSR has the best performance and exhibits a more stable result.

For further evaluation, we compared the above two experiments. As shown in Fig. 8,
the block occlusion can be treated as the aggregation of the random pixel noise. Since the
proposed LSCSR exploits the local continuity more efficiently, it performs well in both
situations. Moreover, the proposed LSCSR shows a more obvious advantage when the con-
tinuity corruption rate is beyond 60%. LSCSR outperformed the second-best method by
about 2%, 9.95%, and 21.23% corresponding to corruption rates of 60%, 78%, and 80%,
respectively.
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Fig. 7 Results for contiguous pixel corruption. (a) Test images with different levels of contiguous pixel
corruption. (b) The curve of recognition rates of different algorithms

Here, we further tested the recognition performance of these methods on the ORL
database. The ORL database contains 400 images with 40 individuals, and each subject has
10 frontal face images from different angles. We chose the first 6 images for training and the
rest for testing. Each image was cropped into 50 × 40. This time, we used more extremely
black and white noise pixels instead of the contiguous values, and the occlusion area varied
from 0% to 40%. We added two new methods, namely US-MRC and BS-MRC respectively.
Because of the vast difference between the implementation and the result of the original
paper [29], we directly used the results from the paper in the same experimental setting.
Figure 9 shows the test images with a block filled with black and white noisy pixels. From
Table 2, we observe that most methods performed well when there is no occlusion. As the
occlusion level increases, the proposed LSCSR achieves the best recognition in all the con-
ditions. Moreover, the ORL database is not perfectly aligned, which means LSCSR shows
robustness to the variation of the pose changing as well.

5.3 Recognition with block occlusion

Since an occlusion caused by natural pictures is more tricky for FR methods, we evaluated
the robustness of our method in dealing with block occlusion made by a “baboon” face
image. We conducted an experiment on the Extended Yale B database with a similar setting
as the previous experiment. Some test samples and the recognition curves are shown in
Fig. 10. According to the results, LSCSR achieved the highest recognition accuracy and
obtained the most stable performance in all occlusion rates again. Since the baboon face
is more similar to the human face, many other methods cannot deal with this occlusion
well. LSCSR imposes the knowledge of the continuity, which helps to detect the occlusive
area well. NMR also exhibits good robustness against the occlusion, which indicates that
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Fig. 8 The comparison results of random pixel noise and contiguous pixel noise

Fig. 9 Some samples from the ORL database. The first image is one of the training samples, and the remain-
ing four images are test samples occluded by block (filled with black and white pixels)with the size ranging
from 0% to 40%
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Table 2 Recognition rates (%) of different methods under different occlusion levels, including 10%, 20%,
30% and 40%

Method 0% 10% 20% 30% 40%

NN 92.50 90.00 82.50 69.38 61.88
SVM 82.50 78.13 66.25 58.13 45.00
SRC 93.13 91.88 93.13 85.63 86.25
RSC 93.13 91.25 81.25 53.75 40.00
NMR 86.88 86.25 82.50 83.75 79.38
CESR 95.63 95.63 93.75 88.75 67.50
RMRL2 91.88 91.25 89.38 86.88 83.75
US-MRC 90.63 89.38 89.38 85.00 83.13
BS-MRC 91.25 91.88 86.25 85.00 83.13
DWSCRC 88.75 85.00 76.88 65.00 59.38
LSCSR 95.00 96.25 93.75 91.25 88.13

The best result is highlighted in bold

to utilize the structural information of residuals still works fine in this case. Both methods
significantly outperform others once the occlusion covers more than 50% of the test face.

5.4 Recognition with real-world disguise

Next, we conducted the FR task for the real-world applications in which faces are usually
occluded by some common objects, such as facemasks, scarves, and sunglasses. We tested
LSCSR with real-world disguises on the AR database from which we picked 2,599 images

Fig. 10 Results for contiguous block occlution. (a) The occluded test images from Extended Yale B with
different levels of “baboon” occlusion. (b) The curve of recognition rates of different algorithms
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Fig. 11 Some samples of session 1 on the AR database, left 4 images are training samples, and the right 2
images are test samples with disguise

Table 3 Recognition rates (%)
on the AR database Method Sunglasses Scarf

NN 68.50 11.50

SVM 53.00 10.00

SRC 84.00 66.00

RSC 99.00 92.50

NMR 88.00 88.50

RMRL2 82.50 70.00

CESR 95.00 25.00

BS-MRC 97.17 68.00

US-MRC 96.50 68.00

DWSCRC 70.00 34.00

LSCSR 100.00 96.50The best result is highlighted in
bold

Fig. 12 Samples of the LFW database containing facial expressions, occlusions, illumination variations, and
different angles
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Table 4 The recognition rates (%) of the NN, SVM, NMR, RSC, SRC, CESR, RMRL2, US-MRC, BS-MRC,
DWSCRC, LSCSR on the LFW database

NN SVM SRC NMR RSC CESR RMRL2 US-MRC BS-MRC DWSCRC LSCSR

18.65 37.75 44.89 59.29 44.53 44.82 60.16 52.59 55.85 53.08 62.79

The best result is highlighted in bold

of 100 individuals (50 men, 50 women). The images were collected from two sessions, and
each included 13 images (one image was damaged). We took frontal images without illumi-
nation change and occlusion for training, i.e., the first four images of each session. Two test
sets were constructed from both sessions with the occlusion. The first test set included face
images occluded by sunglasses, and the second one contained occluded face images with a
scarf. The images were cropped and resized to 42×30 and converted to grayscale, as shown
in Fig. 11. Table 3 lists the results of the experiment, which indicates that LSCSR achieves
the best performance for both test sets. Intriguingly, LSCSR correctly recognized all the
test samples with sunglasses and outperformed all other methods. Moreover, when the test
face is occluded by a scarf, with more extensive coverage, the LSCSR shows a more obvi-
ous performance advantage over others. The recognition accuracy of other methods drops
sharply in the scarves test set, and in contrast, our method achieves 96.5%.

5.5 Recognition in wild complex condition

There are many complicated conditions in real life, such as misaligned, illumination
changes, and facial expressions. As discussed in Section 5.2, LSCSR showed robustness
to the variation of the angle. In this subsection, we evaluated the performance of LSCSR
in a more challenging database: the LFW. The LFW database collected more than 13,000
images from the web that were not properly aligned and contained variations in expression.
We selected those whose categories have more than 10 samples as a dataset (a total of 143
categories and 4,174 face images), and the images were cropped and resized to 50×40 pix-
els. Several samples were shown in Fig. 12. We took the first 10 images of each category as
the training set (1,403 images), and the remaining images as the test set (2,744 images). The
experimental results were shown in Table 4. The recognition accuracies of most methods
were from 40% to 60%, while our method achieved 62.79%. The occlusion support map
in our method can pay more attention to the human face, making our method less affected
by the mismatched area. This result further indicates that LSCSR has good robustness in a
complicated situation.

6 Conclusions

In this work, we propose a novel method to characterize the occlusion caused error image
with a local spatial contiguous structure, namely LSCSR. LSCSR uses a two-step strat-
egy to calculate the occlusion support map, which is served as the weight in the weighted
sparse coding framework. The exploitation of the local continuity of occlusion is efficient
in LSCSR algorithm where the energy of an Ising-like model is minimized in the inner
loop to discover the contiguous occlusion. Furthermore, the analysis of the two fundamental
issues in FR with occlusion has shown the rationality of our method. Extensive experimental
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results indicate that LSCSR is more robust than state-of-the-art methods with the occlusion
changes under different variations.

Although the proposed LSCSR is robust to the spatial contiguous noises, the LSCSR
is sensitive to the variations of poses and camera angle. In other words, the LSCSR has
a limitation in face alignment. In the future, it deserves to introduce the feature learning
produce to deal with this problem. In addition, the proposed LSCSR highly depends on
the iteration ways to produce the optimal solution. Thus it is still a challenge to handle the
spatial contiguous noises in a moew effective way.
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