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Abstract
Glioma is a type of brain tumor that is the most typical and most aggressive tumor.
Magnetic resonance imaging (MRI) has a widespread utilization as an imaging method
for assessing the tumor; however, a lot of information obtained from MRI would prevent
manual segmentation in an acceptable timeframe. Therefore, we need reliable and
automatic segmentation techniques. Nonetheless, broad structural and spatial variability
amongst the brain tumors made automatic segmentation a difficult issue. Capsule Net-
work (CapsNet) is an improved convolutional neural network, which involves responding
to challenges. Consequently, CapsNet has been considered to be a perfect candidate to
perform brain tumor segmentation. In this paper, a new model containing CapsNet, that
operates in the Del vector domain and works with inhomogeneous voxels, is presented.
Flair and T1 MR images are first transformed from the time domain to the vector domain
using the Del operator. MVGC (Mean Value Guided Contour) algorithm is then applied
on the Flair image to segment ROI (Region of Interest). Inhomogeneous voxels are then
extracted from ROI of Flair and T1 MR images. In the final phase, a new two-path
CapsNet architecture is applied to classify voxels. The introduced technique is verified
according to BRATS 2015 and BRATS 2013 datasets. The outputs show that this
technique achieves a competitive result with the average Dice similarity equal to 0.90
for the whole tumor in Brats2013 and 0.88 for the entire tumor in Brats2015. In addition,
this technique took just ~86.2 s for the segmentation of a patient case.
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1 Introduction

Precise detection and classification of brain tumors are necessary for performing an effective
treatment of tumors. The stage of the tumor when is diagnosed, the pathological type of it, and
the grade of the tumor are three factors that create the type and strategy of treatment [8, 38].
Gliomas have been introduced as the most occurred primary brain tumor, apparently from the
glial cells, which infiltrated the around tissues. According to the World Health Organization
(WHO) [3], brain tumors are classified into four grades with enhancing aggressiveness. The
grade III and IV tumors have been considered the high-grade gliomas (HGG), and the rest are
low-grade gliomas (LGG) [30].

Various sequences of Magnetic Resonance Imaging (MRI) would be specifically beneficial
for assessing gliomas and the treatment success in clinical practices [9, 22]. Figure 1 illustrates
a patient’s tumor case in a single layer with T1, T1c, T2, T2Flair MRIs.

The brain tumor segmentation task is the partitioning of a brain tumor into several
segments. In general, researchers divide the brain tumors into four sections such as edema,
necrosis, the enhancing tumor, and the non-enhancing tumor [ 1, 42].

Notably, the automatic or semi-automatic tumor segmentation would be a difficult issue, for
which several reasons have been presented. A problem in this area is the large variation of the
structure, location, and shape of the brain tumors [45]. Besides, the mass effect of the tumor
changes the surrounding normal tissue arrangement [35]. Other issues like the intensity in-
homogeneity [53], or various intensity ranges amongst similar sequences and acquisition
scanner [41], could affect segmentation accuracy. Moreover, similar tumorous cells could
finish very distinct gray-scale values pictured in various hospitals [14].

Regarding what we said before, the main problem is to segment MR Images which have
Glioma tumors. To perform this task, we present an automatic algorithm that benefits Del
vector space [23] characteristics, inhomogeneous voxel vise formulation, and a two-path
Capsule network model. For each of these features we have a major motivation:
& Using vector space let us extracting ROI with no more preprocess steps which reduce

complexity of model and make it more general.
& Using voxel vise approaches reduces complexity of model and let us solve the problem

with more simple patterns so final deep model can be also more simple.
& We choose CapsNet [48] as a core deep algorithm so we can handle affine transformation

in similar patterns.
& Also CapsNet based model benefits capsule layer which reduce vanishing gradient

problem. Our capsule model have two paths which take into account both local and global
information of decision area.

& Our model is a rapid system to segment an MRI taking to account more than one modality
of MRI and considering voxel based local and global information.

Fig. 1 Characteristics diagnostic MR scanning modality; left to right: T1, T1c, T2, T2FLAIR
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The rest of this paper is structured as follows. In Section 2 the related works are presented. In
Section 3, the proposed method is described. Section 4 demonstrates the experimental outputs
and Section 5 discusses the results, and limitations of the work. Finally, Section 6 concludes
the paper.

2 Related works

Modern studies on brain tumor segmentation could be classified into region level segmentation
(mostly unsupervised methods), pixel level segmentation (mostly supervised methods), and a
combination of both of them. However, as one of the unsupervised learning methods,
clustering has a widespread utilization for brain tumor segmentation due to its abilities for
grouping data with given similar criteria. In addition, researchers provided one of the well-
automated frameworks using the characteristics derived from the Gabor filter banks as the
similarity index [37]. Regarding the feature reduction, Kaya emphasized the clustering on T1-
weighted MRI images to segment the brain tumors using the Principle Component Analysis
(PCA) [19]. Authors in [17] introduced their technique for a proper segmentation that
combines the fuzzy c-mean algorithm with the region growing and utilizes the T1-weighted
and the T2-weighted MRI images. Authors in [50] selected a fuzzy c-means cascade algorithm
and applied the multimodal MR images to segment the tumor. Even though clustering has
been considered to be brief and efficient, the output accuracy has not been satisfactory [20]. In
paper [51], a model based on texture and kernel sparse coding from the Flair channel is
introduced. The introduced method in [12] utilizes different segmentation models for various
pulse sequences, fusing texture features, and an ensemble classifier to carry out three levels of
the classification.

Another approach to enhance the precision of segmentation is the fusion of different
modalities of medical images into one more transparent and informative image, which can
help machine learning models to diagnose problems more effectively. As an example of such
approaches a method is presented in [27], which uses sparse representation along with
histogram similarity to effectively perform the segmentation task. Also, in [29] the authors
presented a deep learning method that contains convolutional layers in order to create
decompositions of two different modalities of image (for example, MRI) and fuse them using
Deep Boltzmann Machine (DBM).

In [4] authors presented their newly developed strategy through Random-Forests model,
which combines the voxel-wise texture with the abnormality features on a Flair MRI and
contrast-enhanced T1. Authors in [44] proposed a framework in longitudinal multi-modal
MRIs, utilizing two steps; the fusion of features and joint labels. Step one fuses features from
stochastic multi-resolution texture, and step two mixes segmentation labels gained from the
texture features combined with a random forest ensemble algorithm.

The method in [34], which could be one of the discriminant models or generative models, is
a graphical model to segment the multidimensional images. In fact, context information has
been utilized for smooth segmentation via MRF. In addition, the other techniques considered
voxels as the independent and identical distribution and introduced Conditional Random Field
(CRF) for using the neighborhood information [3, 26, 32, 33]. Because of natural capabilities
in monitoring the multiclass problems and larger feature vectors, the Random Forests (RF)
based methods [11, 46, 49, 54] have been introduced in brain tumor segmentation.
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Nevertheless, features applied for the segmentation of the images in most of techniques like
gradients, brain symmetry, and first-order texture have been manually made.

Notably, significant development is observed in the deep learning, particularly in deep
convolutional neural networks (DCNN). DCNN could obtain the complicated function map-
ping and automatically learn the features. Such a condition helps to address the complicated
images. Different types of networks, including CNN and RNN have been introduced, and most
of them are utilized in machine vision problems [7]. Therefore, it has a widespread usage both
in natural image processing [15, 24, 31, 47] and in biological image processing [6]. Moreover,
it has an extensive utilization in segmenting brain tumors [10, 16, 21, 55–57].

As an instance, the DCNN adopts the multi-scale [13] or cross-modality convolution [52]
for extracting more plentiful features from the MRI images for tumor segmentation. The
authors in [2] proposed a patch-based automated segmentation of the brain tumors using
DCNN with little convolutional kernels and the leaky rectifier linear units (LReLU) as the
activation function. However, the presence of little convolutional kernels allowed greater
layers for forming a deeper architecture and a smaller number of kernel weights in all layers
in the course of training.

The authors of [43], offered brain tumor detection based on fuzzy C-means with the super-
resolution and the convolutional neural networks (CNNs) with the extreme learning machine
(ELM) algorithms (SR-FCM-CNN) strategy. In [39], authors aimed to segment and grade
glioma tumors using deep learning approach. They introduced a deep convolutional method
that combines CNN based on the U-net architecture to deal with brain tumor segmentation task
and transfer learning method on a pre-trained Vgg16 architecture and an FCN classifier for
tumor grading. They used the Flair channel as an input and reported results for segmentation
and classification on 110 LGG patients separately.

Paper [45] proposed an automatic segmentation method on the basis of the CNNs, which
uses the little 3 × 3 kernels. Therefore, a deeper architecture has been designed using little
kernels that positively affected the over-fitting concerning the fewer numbers of the weights in
the network. Authors in [14] proposed a CNN that exploits more global contextual features
and local features concurrently. In addition, this new network differs from a majority of the
conventional applications of CNNs. It uses a final layer that has been a convolutional
implementation of the fully connected layer allowing 40 fold acceleration. Furthermore, they
described a 2-phase training process allowing to resolve problems associated with the imbal-
ance of the tumor labels.

Researchers in [57] built a successful deep-learning technique via integration of the fully
CNNs (FCNNs) and Conditional Random Fields (CRFs) in a united framework for obtaining
segmentation outcomes with spatial consistency and appearance. They trained a deep learning-
based segmentation pattern with the use of the two-dimensional image patch as well as the
image slices. Another research in [18] proposes a new fabricated brain tumor segmentation
technique according to a multi-cascaded convolutional neural network (MCCNN) and FCRFs.
This segmentation procedure included two phases. Firstly, they designed a multi-cascaded
network architecture via a combination of the intermediate outputs of numerous connected
elements for considering the local dependency of the labels and utilizing the multi-scale
features for coarse segmentation. Secondly, they applied the CRFs for considering spatial
contextual information and eliminating some fake outcomes for segmentation. Researchers in
[5] proposed a new DCNN that combines symmetry to segment brain tumors automatically.
These neural networks that are also known as the Deep Convolutional Symmetric Neural
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Networks (DCSNN), extended the DCNN-based segmentation network via the addition of the
symmetric masks in numerous layers.

Using other DCNN in [40], authors devised their network architecture known as the
residual cyclic un-paired encoder-decoder network (RescueNet) using the mirroring and
residual principles. RescueNet uses the un-paired opposed training for segmenting the
whole-tumor and then core and enhanced areas in a brain MRI scan.

Another approach has been proposed based on the lightweight deep model in [58] called
One-pass Multi-task Network (OM-Net) for solving the class imbalance that requires just one-
pass calculation to segment the brain tumors. In [28], an innovative end-to-end segmentation
of brain tumors was proposed that is a new fully CNN by modifying the U-Net architecture. In
this model an up skip connection is applied between the encoding and decoding path. Also, an
inception structure is adopted in each block of the network to help the model learn richer
representations, and an efficient cascade training paradigm is used to segment brain tumor sub-
regions sequentially. In opposite to patch-wise approaches, this model can automatically
generate maps of segmentation for sequences of 2D slices. An automatic framework was
proposed in [59] that benefits a three-stepped model: first, a 3D dense connectivity architecture
is applied to create the backbone for feature extraction. Second, a novel feature pyramid
module using 3D convolutional layers is used to fuse multi-scale contexts. Third, a 3D deep
supervision procedure is equipped along this network to enhance the training phase.

For overcoming deficiencies and disadvantages of the CNN [7], a new machine learning
structural design called the Capsule network (known as CapsNet) and is appropriate for rapid
and deep learning of the data image, has been proposed in [48]. CapsNet has been considered
to be powerful in the access to data transformation and rotation, while it needs fewer data-sets
to train with a lower learning curve [25].

The most prominent characteristic of the Capsule Network has been known as the routing
by agreement. This implies the fact that lower-level capsules could anticipate outputs of the
higher level capsules. Hence, activating the capsules at higher levels corresponded to the
agreement of just these anticipations. Moreover, the CapsNet learns suitable weights for the
feature extraction and image categorization. In addition, it learns the way of inference of the
spatial pose parameters from the images. In this regard, a capsule network would learn the
determination if a plane is in the image, but also if the plane is situated to the right or left or if it
is rotated or not. Such a condition has been called Equi-Variance that has been considered as
one of the properties of the human 1-shot learning kind of vision [48]. Therefore, it creates a
visual pattern for the more acceptable explanation of the learned features.

Based on several automatic procedures, images are segmented according to the voxel’s
intensity and neighborhood data. Therefore, the mentioned methods have been flexible and
provided reliable outputs. However, another groups of methods that are based on the object
detection or local limits are viewed as less efficient than the earlier category of the procedures.
Moreover, they enjoy lower flexibility on diverse information and various kinds of tumors.

As mentioned earlier, the present research proposes a rapid automatic framework with
merits, including both groups of methods. Put differently, the proposed method utilizes
features such as direction and intensity of each pixel, neighborhood information, and voxel
along with the object detection approach. Therefore, for reducing space and time complexity of
final CapsNet phase and providing a distribution with the greater balance for the training data,
the research uses an active contour algorithm to detect the course region of the tumor. This
method uses Flair image, because tumor region is lighter than other regions; hence its vector
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form is more suitable for ROI detection. The ROI method is introduced as one of the rapid
algorithms that need no parameter adjustment.

3 Proposed method

The present research introduces an automatic procedure to detect brain tumors in three-
dimensional images. Figure 2 shows the block diagram of the segmentation procedure.

3.1 Preprocessing

The first step of the method prepares the MRI images for ROI extraction. The rawMRI images
generally contain the artifacts like un-even brightness and other tissues; for example, skulls,
eye, and so on, that diminish the precision of the outputs. Also, there are various methods to
remove noise and normalize the distribution of gray levels in MR images.

Here, we utilize the features of Del vector space [23] to omit unnecessary steps of
preprocessing. As we will explain in the next section, this new space has two important
properties. Firstly, it is a work with finite differentiation of the input image and will give us a
space, in which all values are relative and have direction, while removing the effect of different
distributions of values in different images. Secondly, the Del vector space is noise resistant due
to the nature of the space based on the research conducted by authors [23] who proposed this
space. In addition, segmentation can be performed using this space on the image containing a
high rate of noise, where our images do not have structural noise [23]. Hence, it allows us to
perform the course segmentation phase (extract ROI) efficiently.

3.1.1 Transform to vector space

It is well known that Del, as a vector differential operator, has a widespread utilization in
mathematics. Gradient and standard derivation have been considered two major issues in
calculus, which are described respectively in applying to a 1D function and a field. Finally,
with the use of the partial derivative operators in Rn with the coordinate (x1; ; xn ) Del’s
definition is as follow:

r ¼ @

@x1
; ;

@

@xn

� �
¼

Xn
i¼1

@

@xi
ei! ð1Þ

Fig. 2 Block diagram of the segmentation procedure
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If we suppose D as one of the rectangle territories, F ¼ F x; yð Þiþ Q x; yð Þ j could be the
gradient field on D. Also, ifr represents the gradient, a U x; yð Þwould be onD, andF would be
conservative [36]:

P ¼ @Uðx;yÞ
@x

� �
;Q ¼ @Uðx;yÞ

@y

� �
ð2Þ

Notably, the finite differences have been considered the reasonable estimation of the deriva-
tives in discrete cases. However, three kinds of finite differences have been introduced that
include forward, central, and backward directions. Considering its benefits, experts in the field
utilized the central one for transforming the images with the Del operator. Thus, as continuous
mode, the presence of U that DU ¼ PU iþ QUj could be confirmed in the discrete cases,
wherein PU and QU would be described as follows:

PU ¼ @U ðx;yÞ
@x

� �
¼ lim

h!0

U xþ h; yð Þ � Uðx� h; yÞ
2h

ð3Þ

QU ¼ @U ðx;yÞ
@y

� �
¼ lim

k!0

U x; yþ kð Þ � Uðx; y� kÞ
2k

ð4Þ

here h, k ! 0. As seen in the digital images, the nearest neighbor of a pixel is in a distance as
the same as the pixel width. On the other hand, the least possible values for h, k in the digital
images are equal to 1. Therefore, linear transformation conserved the homogeneous as well as
additive conditions. Therefore, these conditions have been met in the central direction. Thus, if
we assume h, k ¼ 1, the mentioned equations would be:

PU x; yð Þ ¼ U xþ h; yð Þ � U x� h; yð Þ
2

ð5Þ

QU x; yð Þ ¼ U x; yþ kð Þ � U x; y� kð Þ
2

ð6Þ

Therefore, the images could be converted into a vector space domain via running Eqs. (5) and
(6) for all pixels individually.

3.2 Region of interest

After transforming the image to the vector space, an active contour based algorithm is
employed for extracting the region of interest. It would possess no variables for adjustment,
and thus, would be one of the quick techniques for selecting the image ROI. Finally, for
achieving with higher accuracy, the algorithm is used on all slices of the three-dimensional
images from channel T1.

To perform tumor segmentation, we use the mean value guided contour (MVGC) model
that utilizes the mean value theorem for the exterior forces [23]. Then, the 3-phase repetitions
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are applied in methodology. Therefore, the first phase creates novel contour points based on
the mean value theorem. Moreover, the second phase uses the exterior forces for guiding the
points toward the object boundaries. In addition, the 3rd phase refines the contour points for
addressing more precise information. In fact, MVGC is differentiated from each earlier snake
formulation so that energy minimization is not formed, and it is determined immediately
through the mean value theorem.

Figure 3 demonstrates an example of the ROI extraction phase on a slice of the Flair
channel. Although the ROI result is not entirely match to expert’s annotation, we can see, the
extracted ROI by MVGC contains all annotated regions by the expert, so we can say this
method will not miss any sub-regions of the tumor.

3.3 Inhomogeneous voxels

In this step, we form the input of the proposed CapsNet as a prior knowledge. It has been
already known that the tumor pixels have relations only with the neighbors. Therefore, we use
this fact to define the different sizes of the voxels to give as input to the network, which is
normalized between 0 and 1. Hence, it is not necessary to add an extra step to normalize data
for CapsNet training and testing.

The output of the previous section is a 3D gray level image. Each pixel on the image has
neighbors in six different directions: above, behind, left, right, up, and down. For each pixel in
ROI, we extract 15 × 15 × 15 and 11 × 11 × 11 ordinary voxels. These voxels with the
corresponding pixel in the center of them would be extracted from Flair and T1c images in

Fig. 3 Example of the ROI extraction using MVGC (red: MVGC and cyan is expert annotation)
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the Del vector space. Then, the voxels, which did not appear in ROI, are removed. This causes
the voxels to become inhomogeneous, as some voxels are complete and the rest are not.
Moreover, inhomogeneous voxel architectures are chosen for two reasons. First, we aim only
input voxel values of the region, which contribute to shape the ROI of each case and remove
non-ROI voxels that may be noise or miss leading information. Second, we chose to size the
voxels in order to have global and local information, which led us to a better deep model of
classes.

3.4 Proposed capsule network

As shown in Fig. 4, the network’s inputs are 3D voxels extracted from Flair and T1 images. In
order to use them, we define a new network architecture based on the CapsNet standard
algorithm. Our approach uses two paths, one from local and the other from global voxels.

Concerning Fig. 4, the first path has two inputs: Flair and T1 global voxels. These 15 × 15 ×
15 voxels pass through a convolutional layer consisting of 64 filters (kernels) in 5 × 5 × 5
dimensions with no zero paddings and stride 1, so the results will be 11 × 11 × 11 × 64 for each
voxel. After the first convolutional layer of the global pathway, we will have 11 × 11 × 11 ×
128 tensors as a result of concatenation Flair and T1 voxels. For this layer, we use ReLu
activation function.

Tensors of size 11 × 11 × 11 × 128, which are produced by the first convolutional layer, will
pass through the second convolutional layer using 512, 5 × 5 × 5 filters. Hence, after a reshape,
we will have 7 × 7 × 7 × 1024 tensors.

In addition, the same procedure happens in the second path (named local pathway) where
we use our local voxels of size 11 × 11 × 11 to pass through a convolutional layer consisting of
64 filters (kernels) in 3 × 3 × 3 dimension with no zero paddings and stride 1; therefore, the
results would be 9 × 9 × 9 × 64 for each voxel. After the first convolutional layer of the local
pathway, we will have 9 × 9 × 9 × 128 tensors as a result of the concatenation of Flair and T1

voxels as the same as the global pathway. At this point, like the global pathway, we use tensors
from the first convolutional layer and pass them through the second convolutional layer using
512, 3 × 3 × 3 filters. Hence, after a reshape, we have a 7 × 7 × 7 × 1024 tensor as an output.

Fig. 4 The architecture of the proposed network
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Before going to the next layer, tensors, which are produced by two pathways, are merged
and become a single input for the next layer. At this point, we use the batch normalization for
the first normal tensors from different sources and creating a standard view as well as reducing
the risk the model overfitting.

The next level of the network is the Primary Caps layer. The layer possesses thirty-two
primary capsules responsible for taking the secondary features determined by the second
convolutional layer and generates a combination of the features. Notably, this layer possesses
32 primary capsules with great similarity with the convolutional layer in their nature. Hence,
every capsule will apply 16, 3 × 3 × 3 convolutional kernels of the stride 1 to the 7 × 7 × 7 ×
2048 input volume and consequently generates 5 × 5 × 5 × 16 output tensor. Finally, 32
capsules exist so that the shape of each output volume is 5 × 5 × 5 × 16 × 32.

The fourth layer of our CapsNet based architecture is named ClassCaps layer. This layer
has five class capsules so that every class of the tumors has one capsule. Therefore, every
capsule will take a 5 × 5 × 5 × 16 × 32 tensor as an input. Since each inner working of the
capsule of the input vectors achieve its own 16 × 32 (16 is the dimension of each capsule of the
previous section and 32 is the dimension of each ClassCaps layers capsules) of the weight
matrix, they map the 16-dimensional input space to 32-dimensional capsule output space. At
this level, we use dropout with the 0.25 drop rate to control overfitting.

Finally, the last layer of the proposed architecture transforms the ClassCaps layer of size
5 × 32 into a 5 × 1 layer of outputs. At this level, each row of nodes (1 × 32) associates with
one corresponding output node. To produce output, we use a simple average of one row.

3.4.1 Details of the proposed model

In this section, we describe some details of the proposed network, such as loss function,
training algorithm, and reconstruction of the output image.

3.4.2 Loss function

Here, the length of the instantiation vector is utilized for representing the probability of the
existence of a capsule’s entity. Therefore, it is expected that the top-level capsule, the four-
tumor segment class C, to had a long instantiation vector, if and only if that digit is existed on
the image. Hence, for allowing for numerous classes, a distinct margin loss, LC is utilized for
all class capsules C as in Eq. (7):

LC ¼ TCmaxð0;mþ � kVCk2 þ λ 1� TCð Þmaxð0; kVCk2 � m�Þ2 ð7Þ
Where the class capsule vc has the margin m� ¼ 0:1 and mþ ¼ 0:9. Moreover, λ down
weighting of the loss for the absent tumor segment classes avoids the initial learning from the
shrinkage of the length of the activity vectors of each class capsule. Thus, λ = 0:5 has been
used, and total loss is easily the sum of the losses of each class capsule [39].

For understanding the key notion of the way of working the loss function, it should be
remembered that the output of ClassCaps layer is 5 × 32 (or 5 × 64) dimensional vectors.
However, in the course of training, for all training examples, a loss value would be computed
for all five vectors based on Eq. (7), then the five values would be added for the calculation of
the resulting loss. As a result of the discussion of the supervised learning, all training examples
would possess the true label, and thus, it would be a five-dimensional 1-hot encoded vector
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with four zeros and one at the true positions. According to the loss function formula, the true
label determines TC value, and it will be one if the true label corresponds with the class of this
specific ClassCap and otherwise it will be zero.

3.4.3 Training process

In order to train the network, we use 20 epochs of the training process using standard Adam
optimizer. We also utilize the early stopping method to avoid over- and under-fitting. Based on
the model of input data, we apply the data augmentation phase, which contains two different
methods and hybrid usage of them; first, the method flips an image of the random axis and the
second one adds random noise of 10-20% to the image. The usage of the hybrid method allows
to have a dataset around four times larger than the original dataset. In addition, we generally set
the batch size equal to 75% of the training data (after holding out the validation set). It was
memory-consuming, but the results show excellent results in much smaller epochs. The
starting learning rate is 0.01 as it works almost excellent in lots of training processes. Figure 5
shows an example of the training process for the Brats2013 dataset based on the mentioned
setting.

4 Results

To evaluate the proposed method, we utilize two datasets, Brats2013 and Brats2015. In the
following sections the obtained results on these two datasets are presented and discussed.

Fig. 5 Training process for Brats2013 dataset. It shows Accuracy VS Loss for training and validation data. (a)
For complete tumor class, (b) For core tumor class and (c) For enhanced tumor class
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4.1 Results on Brats 2013

The first set of experimentations is performed on the real patients’ data in 2013 and the brain
tumor segmentation challenge (BRATS2013) as a part of the MICCAI meeting [35]. In fact,
BRATS2013 dataset contains three sub-datasets. Training dataset contains 30 patients with the
pixel-accurate ground truth (10 LG &20 HG tumors). In order to train the model, we use 75%
of images for training (voxels of images) and 25% for validation. After augmentation, we have
120 MR images (including original images).

Moreover, the test dataset contains 10 (all HG tumors), and the leaderboard dataset consists
of 25 patients (4 LG and 21 HG tumors). It should be mentioned that any ground truth is not
presented for leaderboard and test datasets. Each brain in the dataset had similar orientations.
Therefore, for all brains, four modalities of T1C, T1, Flair, and T2 are observed that are co-
registered. Consequently, the training brains comewith the ground truth, for which five labels of
segmentation are created, such as necrosis, non-tumor, non-enhancing and enhancing tumors,
and edema. Figure 6 displays instance data, ground truth, and segmentation results of the model.

It is possible to quantitatively evaluate the model functions on the test-set via uploading
segmentation outputs to the online BRATS evaluation system [50]. This system provides
quantitative outputs. For example, the structure of the tumors are classified into three distinct
tumor regions, which is fundamentally caused by functional clinical utilizations. Authors in
[35] defined the tumor regions as:

1. A complete tumor region such as each of the four tumor structures,
2. A core tumor region such as each tumor structure with the exception of edema, and.
3. An enhancing tumor region such as the structure of the enhanced tumor.

Therefore, for each tumor region, the Dice (equal to F measure), Sensitivity as well as Positive
Predictive Value (PPV) are computed as follows:

Dice P; Tð Þ ¼ Ppos ^ Tpos
�� ��

ð Ppos
�� ��þ Tpos

�� ��Þ=2 ð8Þ

Fig. 6 Flair channel of sample slice of MRI, (a) Demonstrate ROI (red indicated our method and cyan shows
expert annotation). (b) Ground truth, (c) Segmentation results of the proposed model

edema enhanced tumor necrosis non-enhanced tumor
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Sensitivity P; Tð Þ ¼ Ppos ^ Tpos
�� ��

Tpos
�� �� ð9Þ

PPV P; Tð Þ ¼ Ppos ^ Tpos
�� ��

Ppos ^ Tpos
�� ��þ Ppos ^ TNeg

�� �� ð10Þ

Here P stands for the model prediction. T refers to the ground truth label. In addition, Tpos and
TNeg stand for the sub-set of the voxels anticipated as positive and negative for tumor regions
under study. A similar definitions forPpos ,PNeg and P are used. Moreover, the Dice Coefficient
represents overlapping between the automatic, and manual segmentation. Sensitivity refers to
the rate of true positive (tumor regions, based on a, b, and c definition, which are mentioned
above) predictions compared to the exact number of the tumor pixels. Specificity measures the
rate of true negative compared to the exact number of the non-tumor pixels. Finally, PPV
indicates the rate of the true declaration of the tumor regions in comparison with the
declaration of the tumor regions (true or false). The above values equaled 0 to 1 and greater
value implied the segmentation with higher accuracy. Besides, we can say, that dice shows
how much we reach the results similar to the human expert segmentation, Sensitivity indicates
that how precise we detect positive classes (tumor classes). In addition to two previous metrics,
PPV shows the impact of miss classification of positive areas.

The online evaluation mechanism provides a rank for all methods introduced for assess-
ment, which includes the techniques from 2013 BRATS challenge reported by [35] and the
anonymized un-published techniques, for which any references are not provided.

The segmentation outputs obtained from a sample brain in an axial view are shown in Fig.
7. The results of the proposed model are visualized in Fig. 8 on the same subject as Fig. 7 from
BRATS-2013 (from different meaningful slices to clarify the issue further). Figure 8 depicts
the outputs in the axial views. The results show that the proposed model improves all four

Fig. 7 Sample image from the validation set
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measures on each tumor region. Based on the proposed architecture, this study could gain the
third rank on BRATS 2013 scoreboard.

Tables 1 and 2 present the numerical and detailed results of the proposed method. In order
to achieve this result, we evaluated our method on HG and LG images, separately. Both tables
show numerical evaluation results on average. The main reason behind this result would be the
feature extraction and learning phase of the CapsNet model, where the proposed model uses
two parallel convolutional layers that merge the first-order features and made a more suitable
one. In addition, the size of the convolutional layers helps the model to have a better insight
into the problem.

To train the proposed network, an Nvidia 2080ti GPU, 64GB of RAM and an Intel Xeon
E7-8860 CPU are used. The training phase takes 68 h for 20 epochs (each epoch contains
75%) of training data. The inference time in the testing phase is 21ms for each set of input

Fig. 8 Slice-wise segmentation of sample case which is produced by the proposed method

Table 1 Numerical outputs of two proposed models in real HG (Brats2013)

Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

0.90 0.85 0.82 0.89 0.86 0.76 0.92 0.83 0.82

Table 2 Numerical results of two proposed models in real LG (Brats2013)

Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

0.86 0.77 0.68 0.862 0.751 0.61 0.88 0.792 0.68
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voxels. Based on the training and inference details, the proposed model needs approximately
86.2 s to segment a 3D MR image. Results and the experiments on BRATS datasets indicate
that the proposed model needs 77.28 s to classify and reconstruct voxels (368 set of voxels in
average) and almost 9 s for ROI detection phase (in a 3D MR image).

The assessment outputs of the top-ranked participants of BRATS2013 and outputs of the
present research technique and the other six latest methods are summarized in Table 3. Based
on the testing datasets ranking, the presented method in [45] reaches the first rank and [57]
achieves the second rank. Finally, our procedure achieves the third rank. Therefore, any
approach cannot generate the optimum segmentation outputs for each sub-tumoral region.
Nevertheless, the proposed method achieves the most important and competitive performance
in comparison with the latest strategies.

As reported in Table 3, the outputs of the proposed method are considerably superior to the
proposed technique in [14], except for a partly lower PPV-value of the complete tumor
regions.

Additionally, in [57] the brain tumor segmentation technique of combining the CRFs and
FCNNs is presented. A distinct point in their research is that the present investigation employs
two-level segmentation procedure, hence it could obtain the competitive performance and
saves the time overhead. Therefore, they possess a training duration of approximately 12 days,
while our process lasts nearly three days on a typical GPU server. As seen in Table 3, our
method outputs are partially less than the results of the proposed method in [57] in a number of
indices because we just used segmentation without any extra post-processing unit and they
performed some complicated post processing operations.

Moreover, though their post processing technique had higher performance, it has mainly
been hand-made and could not be readily transported to other associated segmentation tasks.

Based on what is mentioned above, the proposed method in [18], inspired by [14] and [57],
also shows better results in some measures like the Dice of complete tumor. However, like
[57], this work also uses a complex post-processing phase, which may be challenging be
implemented on other tasks, and it has a time and space consuming process, including the
multi cascade training and fusion of different directions of the segmentation results. Moreover,

Table 3 Summarized comparison outputs on the BRATS 2013 testing dataset (the bolded values are the
maximum value in each column)

Methods Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

Meier et al. 2013
[33]

0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Tustison et al. 2015
[35]

0.87 0.78 0.74 0.86 0.74 0.69 0.89 0.88 0.83

Pereira et al. 2016
[45]

0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81

Havaei et al. 2017
[14]

0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80

Zhao 2018 [57] 0.88 0.84 0.77 0.90 0.87 0.76 0.86 0.82 0.80
Hu Kai 2019 [18] 0.89 0.82 0.77 0.87 0.83 0.71 0.90 0.84 0.86
Zhou 2020 [59] 0.87 0.72 0.70 - - - - - -
MVGC + two path

CapsNet (proposed)
0.90 0.85 0.78 0.89 0.85 0.76 0.91 0.82 0.80
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as the study conducted by Zhao et al. [57], their published research segmentation results has no
post processing on BRATS 2013 testing dataset for the core, complete, and the enhancing
tumor equal 0.81, 0.88, and 0.76 for Dice, 0.86, 0.81, and 0.69 for PPV as well as 0.90, 0.84,
and 0.86 for Sensitivity. However, this study outputs, as they are shown in Table 3, are better
than the presented method in [18] in most parameters.

Table 4 illustrates comparison results on the BRATS 2013 leaderboard dataset. Among the
most advanced techniques, which are presented in Table 3, three of them plus (Zhou et al.,
2020) [59] reported results for the leaderboard dataset. Results illustrate that our method has
around 0.86 for Dice score in the case of complete tumor, and it is almost equal to the results
reported in [57]. Moreover, for the sensitivity parameter, our method shows 0.78 as the best
answer among other works. In other cases, the performance of the proposed method is among
the top two in the mentioned results. Considering the time and space complexity of the other
methods, our work demonstrates acceptable performance.

Finally,
Table 5 shows the comparison between the detailed results of BRATS 2013. As we can see,

our method works better than [4] in all sub-classes.

Table 4 Comparison results on BRATS 2013 leaderboard dataset

Method Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

Pereira et al., 2016
[45]

0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68

Havaei et al., 2017
[14]

0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68

Zhao et al., 2018
[57]

0.86 0.73 0.62 0.89 0.77 0.60 0.85 0.77 0.69

Zhou et al., 2020
[59]

0.84 0.70 0.61 - - - - - -

MVGC + two path
CapsNet
(proposed)

0.87 0.73 0.62 0.90 0.80 0.60 0.87 0.78 0.70

Table 5 Comparison results on the BRATS 2013 leaderboard dataset

Methods Dice

Complete Core Enhanced
Meier et al., 2013 [33] HG tumor 0.802 0.691 0.698
Bonte et al., 2018 [4] 0.812 0.844 0.67
MVGC + two path CapsNet (proposed) 0.90 0.85 0.86

Complete Core Enhanced
Meier et al., 2013 [33] LG tumor 0.764 0.585 0.201
Bonte et al., 2018 [4] 0.784 0.666 0.67
MVGC + two path CapsNet (proposed) 0.86 0.77 0.68
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4.2 Results on Brats 2015

The second set of experiments are performed on the real patients’ data achieved by the brain tumor
segmentation challenge (BRATS2015), as a section of the MICCAI seminar [35]. BRATS2015
dataset contains two sub-datasets. This training dataset consists of 274 patients with the pixel-
accurate ground truth (220 HG and 54 LG tumors). Same as Brats 2013, we use data augmen-
tation to generate a larger dataset (4 times bigger) for the training process and use a similar portion
of the augmented training data (75% for training and 25% for validation) for the training process.

The test dataset contains 110 cases of the high grade and low grade, though the grade has
not been shown. For all brains, four co-registered modalities of T1C, T1, Flair, and T2. The
training brains come with the ground truth, for which five segmentation labels have been
developed that are necrosis, non-tumor, non-enhancing tumor, enhancing tumor, and edema.
For evaluation, four anticipated labels would be merged into diverse sets of the whole tumor
(each of the four classes of tumor), enhancing tumor (class 4), and core (classes 1,3,4). The
datasets were subsequently pre-processed by organizers, and presented as the skull-stripped,
recorded to a shared space and re-sampled to the isotropic one millimeter resolution. Finally,
each volume has the size 240 × 240 × 155.

The experimental outputs are presented for our distinct CapsNet architecture on BRATS 2015.
Table 6 demonstrates the numerical and detailed results of the proposed method. In order to achieve
this result, we evaluated our method on all images from the test dataset of BRATS 2015. Table 6
illustrates the numerical evaluation results on average. As we can see, like experiments on BRATS
2013, the first architecture outperformed the second one in all three sub-compartments. The results
are visualized in Fig. 9, which shows how our model works in 3D and 2D manners.

The proposed method has been compared with some other researches based on the
BRATS2015 test dataset. Concerning Table 7, assessment outputs of the top-ranked partici-
pants and outputs of the proposed method as well as other eight latest strategies, are provided.
According to the ranks for the testing dataset, the presented method in [28] ranked the first, [2]
ranked the second, [18] achieved the third rank, and our proposed method achieved the fourth
rank (Dice score). None of the approaches could generate optimum segmentation outputs for
each sub-tumoral region. Nevertheless, it is shown that our method achieves the most
important and competitive performance in comparison with the latest strategies. Finally, the
proposed method achieves the most reasonable values for Sensitivity of the complete tumor
region and DSC of the complete tumor.

5 Discussion

The present research assesses one of the newly designed CapsNet-based segmentation
methods to delineate various brain tumor compartments that have been started from extracting

Table 6 Numerical results of the proposed model in BRATS 2015 Test data

Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

0.88 0.79 0.77 0.89 0.78 0.77 0.90 0.80 0.78
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ROI in the vector space using the contrast-enhanced T1-weighted MRI followed by extracting
the inhomogeneous voxels from T1c and Flair channels. Finally, it uses two paths of the
CapsNet based deep neural network to segment the images. As far as we know, a few brain
tumor segmentation methods (like [4]) have been provided with just two MRI sequences. For
example, multiple investigations illustrated complementary of the T1- and T2-weighted scans
to segment the brain tumor. Deep convolutional neural network-based methods like [2, 14, 57]
use all four channels of MRI, and in the special case, [18] in addition to four channels, uses
super slices from three different orientations.

We use Del vector space to process MRI. In order to use vector space, we transform T1c

using transform formulation presented by [23]. MVGC, presented by [23], is then used to
perform the first segmentation on the slices of transformed T1c and extracted ROI. After this

Fig. 9 Example of results on validation Set Brats2015. a) Ground truth. b) Model output

Table 7 Summarized comparison outputs on the BRATS 2015 testing dataset

Methods Dice PPV Sensitivity

Complete Core Enhanced Complete Core Enhanced Complete Core Enhanced

Kamnitsas et al.,
2017 [21]

0.847 0.67 0.63 0.85 0.84 0.634 0.876 0.61 0.662

Chen et al., 2019 [5] 0.85 0.70 0.63 - - - - - -
Pereira et al., 2016

[45]
0.78 0.65 0.75 - - - - - -

Zhao 2018 [57] 0.84 0.73 0.62 0.89 0.76 0.79 0.89 0.79 0.73
Kai Hu 2019 [18] 0.87 0.76 0.75 0.88 0.83 0.75 0.87 0.74 0.80
Bal et al., 2020 [2] 0.87 0.79 0.77 - - - 0.86 0.78 0.71
Zhou et al., 2020

[59]
0.83 0.70 0.62 - - - - - -

Li et al. 2019 [28] 0.89 0.73 0.72 - - - - - -
MVGC + two path

CapsNet
(proposed)

0.88 0.79 0.77 0.89 0.78 0.77 0.90 0.80 0.78
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phase, we use this ROI and extracted inhomogeneous voxels to prepare the final data for the
final part of the method. Finally, we use two CapsNet based architectures to classify the voxels
and reconstruct input MRI.

According to the studies, the latest techniques on brain tumor segmentation fundamentally
use deep learning strategies like CNNs [14, 18, 32, 45, 54, 57]. Several investigations obtained
the Dice-scores estimating 90% with 4 MRI sequences (T1, T1c, Flair, T2). Mentioned
techniques require a lot of annotated data and robust hardware to train. The CNNs took one
image as the input and return a label or the segmentation mask as the output. Moreover, a
complicated network of the hidden layers exists between them, which could be pooling,
convolutional, activation, or the fully connected layers having numerous weights, and should
be adjusted in the course of training. In fact, deep learning for the segmentation could be
categorized into two distinct strategies. According to the first strategy, the features have been
extracted from a local patch for every voxel that used the convolutional layers. After that, the
features have been divided with a FCNN for obtaining a label for each voxel. The second
strategy uses the FCNs like the U-Net [10], in which local information has been combined
with the upsizing and downsizing step.

With respect to image fusion, our method can be considered in this category, unlike [27, 29]
which does image fusion explicitly, our method using deep architecture method fuse two
modalities of MRI implicitly and benefits new space which has suitable features of both input
images.

Our technique applies the same steps as the first strategy, where we use CapsNet as an
improvement for CNN, which could learn features better and result better in fewer depth
networks. Nonetheless, it is assumed that it is possible to improve accuracy with the deep
learning that has been investigated in the follow-up. Therefore, visual inspection of the current
outputs frequently shows over-segmentation, is a healthy tissue allocated a tumor label,
causing the lower Dice score. The reason behind over segmentation is the first MVGC phase,
we narrow the task down to ROI for declining the space and time complicatedness but our
method extracts the non-tumor regions as an ROI and left us with unbalanced data (ROIs
contain a few non-tumor pixels). Consequently, the reduced performances are seen on the test-
set in comparison with the training set, reflecting the model over-fitting, even though we
explored the methods for avoiding dropout layer as well as batch normalization. As a result, it
is possible to improve this new procedure via modeling the bigger spatial context of a single
voxel in a highly developed manner. Another limitation of our work came from the lack of
mathematical and computational sources to input vector space images directly to the network.
Due to the limitation of Keras and Tensorflow frameworks and large dimensionality of the
nature of our method, using direct vector space input would cause the input size to be four
times larger than what it is.

6 Conclusion and future work

A novel automated brain tumor segmentation algorithm has been introduced by the present
research and its validity has been confirmed. Brats 2013 and Brats2015, containing the Flair
MRI and contrast-enhanced T1, has been utilized to create and evaluate the method. In fact, the
CapsNet based method using the inhomogeneous voxels alongside preprocessing in the Del
vector space for ROI extraction has been utilized to perform the brain tumor segmentation.
Results showed a performance of 0.89 for Dice score in Brats 2013 and 0.87 for Dice score for
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Brats 2015 (whole tumor); thus, our method performance could compete with the latest deep
learning techniques.

The main reason behind this model is to examine three theories; First using vector space-
based active contour model can effectively segment ROI, which is achieved based on
visualized and numerical results. Second, using 3D inhomogeneous patches would help to
capture more information about a pixel. It will lead us to better segmentation considering
various places which each class of tumor cells is placed. In this case, results show our method
at least reach comparable results. Finally, we check that using two channels of MRI in a two-
path multilevel CapsNet based deep neural network can properly learn the pattern of tumor
cells, which is a success where our results outperform similar CNN-based architectures.

Respect to image fusion, unlike [12, 51] which do image fusion explicitly, our method uses
deep architecture method to fuse two modalities of MRI implicitly and benefits new space
which have suitable features of both input images.

The proposed method suffers from some limitations: although in standard tests ROI
detection phase demonstrates noticeable results, but if this phase causes error it will effect
final segmentation results. Also, as we mentioned in time complexity result, the network is
light and it is faster than most of state of the art models, but converting an MRI to voxels and
reconstruction causes some overheads in computation. Finally, do not explicitly taking whole
ROI or MR image into the account would cause information loss, while directly effects system
precision.

To continue the research, the fellow researchers are suggested to complete architecture by
adding post-processing modules for reducing the amount of the false positive rate. Moreover,
modification of the deep learning method, which could get an image from the vector space as
in input, could change the result dramatically because of the embedded information in the
vector space images.
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