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Abstract
The human visual system has efficient architecture for information reception and inte-
gration for effectively performing visual tasks like detecting contours. Physiological
evidence has shown that most neuronal responses in the classical receptive field (CRF)
of the primary visual cortex are modulated, generally suppressed by the non-CRF
surround. These center-surround interactions are thought to inhibit or facilitate responses
to edges according to other similar edges in the surroundings, which is useful for
suppressing textures and enhancing contours. A biologically motivated model with
subfield-based inhibition is proposed in this paper to improve the performance of
perceptually salient contour detection relative to the existing single-neuron based inhibi-
tion model. A novel subfield based inhibition framework is presented, where the inhibi-
tion terms are combined with center-surround and surround-surround differences using
multiple cues, including orientation based energy distribution and directional saliency
within regions. Extensive experimental evaluation demonstrates that the proposed method
outperforms most of competing methods, especially biological motivated ones.

Keywords Contour detection . Subfield . Non-classical receptive field . Surround inhibition .

Surround-surround interaction

1 Introduction

Contour detection plays a fundamental role in the field of computer vision applications such as
image segmentation and recognition [40] . In these applications, a contour normally represents
a change in pixel ownership from one object or surface to another, which can be differentiated

https://doi.org/10.1007/s11042-022-12356-7

* Chuan Lin
chuanlin@gxust.edu.cn

1 College of Electric and Information Engineering, Guangxi University of Science and Technology,
Liuzhou 545006, China

2 Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, China

Multimedia Tools and Applications (2022) 81:11027–11048

Published online: 17 February 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12356-7&domain=pdf
http://orcid.org/0000-0003-1779-1753
mailto:chuanlin@gxust.edu.cn


from edges that are most often defined as abrupt changes in low-level image features. One
method of increasing the performance of contour detection involves integrating the local
texture information into the context features. However, many researchers are involved in
extensive efforts to combine a wider range of visual cues such as brightness, color, and texture
information in pursuit of a contour detection model that provides human-level performance.

The study shows that human visual system evolved so as to be able to extract contour
feature rapidly and effectively, such as, Landy et al. [32] studied the visual perception of
texture and proposed Current Models of Texture Segregation. In order to address the
question of how the brain integrates individual elements to construct the visual experi-
ence. Bar et al. [6] proposed a testable model for the rapid use of contextual associations
in recognition. Albright et al. [1] summarized some information about use of contextual
information to recover visual scene properties lost owing to the superimposition of
causes in the visual image.

1.1 Related work

1.1.1 Non-biologically based models

Early contour detection approaches focused on finding local discontinuities, normally bright-
ness, in image features. The Prewitt [43] and Sobel [21] operators detect edges by convolving
a grayscale image with local derivative filters. Marr and Hildreth [37] used zero crossings of
the Laplacian of Gaussian operator to detect edges. The Canny detector [10] also computes the
gradient magnitude in the brightness channel, adding post-processing steps including non-
maximum suppression and hysteresis thresholding. These methods can be improved by
considering the combination of quadrature pairs of even and odd symmetric filters stabilized
in a selected scale and orientation, such as the Gabor, log-Gabor and Gaussian derivatives [8] .

More recent approaches account for multiple image features, such as color and texture
information, and use statistical and learning techniques [3, 39], active contours [30] and graph
theory [27] (for a review of additional methods, see [40]). Martin et al. [39] built a statistical
framework for difference of brightness (BG), color (CG), and texture (TG) channels, and used
these local cues as inputs for a logistic regression classifier to predict the probability of
boundary (Pb). Dollar et al. [20] proposed a Boosted Edge Learning (BEL) algorithm which,
unlike the Pb method’s reliance on such hand-crafted cues, aimed to learn and create a
probabilistic boosting tree classifier to detect contours by using thousands of simple features
computed on image patches. In order to make full use of global visual information, Arbelaez
et al. [3] proposed a global Pb (gPb) algorithm designed to extract contours from global
information by using the eigenvectors obtained from spectral partitioning. Salient contours
were also extracted by building the Oriented Watershed Transform general post-processing
method and Ultrametric Contour Maps.

In recent years, convolutional neural networks (CNNs) have become widely used in the
field of computer vision and machine learning for applications such as classification [31],
object detection [23], and contour detection [7, 36, 46] . Instead of the low-level image cues
extracted in previous methods, CNNs can efficiently extract high-level features to improve
contour detection performance. Shen et al. [46] customized a CNNs training strategy by
partitioning contour (positive) data into subclasses and delineating each subclass using
different model parameters. Bertasius el al. [7] exploited CNN based, object related features
as high-level cues for contour detection, and built a Top-Down framework for detecting salient
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boundaries. Xie and Tu [53] proposed a novel holistically nested architecture and used a deep
supervision method to train the network.

1.1.2 Biological inspired model

Following another line of inquiry, there is a long history behind employing early visual
mechanisms for image analysis. Some researchers focused on local statistics patterns [14]
involving contrast dependence, orientation tuning and spatial asymmetry, and additionally
employed other concepts used in visual applications, such as contour [55, 57], color constancy
[58] and saliency [59] detection.

In recent decades, many biologically motivated contour detection models have been
proposed and showed good performance for gray-scale natural images [5, 24, 35, 41, 47–49,
51, 56, 60, 61] . Grigorescu et al. [24] exploited a novel framework of center-surround
interactions, in which simple and complex cells were stimulated by Gabor filters to mimic
the center region response. Furthermore, a linear surround inhibition approach was used to
model the responses of the surround region, creating texture suppression with a distance cue.
Following this framework, several improved models have been proposed. Some of them
modified the inhibition region architecture by developing a butterfly-shape rather than ring-
shape inhibition region [41, 48, 60, 61], dividing the inhibition region into four parts: two side
and two end regions along an optimal orientation using both end regions for facilitation [60]
and either unilateral [61] or both side regions [41, 48, 60] for suppression. Others have aimed
to exploit valuable and efficient cues in combination, including orientation [35, 48], energy
distribution and luminance contrast [56], multi-scales [51], luminance [49, 56], sparseness
[47], and color [55, 57] .

1.2 Center-surround interactions in the primary visual cortex (V1)

Orientation significance based edge perception is one of the fundamental functions of the
human visual system (HVS). The groundbreaking work of Hubel and Wiesel [25] reveals that
the majority of neurons in the V1 do not respond to diffuse light, whereas they are extremely
sensitive to oriented bars placed in a limited area of view, named the classical receptive field
(CRF). Later, extensive neurophysiological evidence [13, 50] showed that a surrounding
region beyond the CRF, called the non-CRF or surround, is able to modulate and in most
cases suppress the reaction of the CRF to stimulation, although unrelated stimulus of the non-
CRF region does not activate these neurons.

The non-CRF modulation, called center-surround interaction, allows neurons to integrate
information from relatively large parts of the visual field. Many neurophysiological findings
indicate that the degree of non-CRF inhibition depends on contrasts in the center-surround
texture pattern, such as orientation [18], luminance [45], spatial frequency [9], spatial phase
[54] and relative moving speed [34] . From a computational modeling viewpoint, the center-
surround mechanism integrates spatial contextual information and helps to improve the
performance of many visual tasks, such as contour detection [5, 24, 35, 41, 47–49, 51, 56,
60, 61], visual attention [28], image segmentation [52], and color constancy [22] .

Figure 1a shows the structure of a previous bio-motivated contour detection model. Models
such as this one compute center region responses and make use of the suppressed modulation
of neurons (pixels) in the surround region. However, most neurons in the V1 exhibit different
functions and spatial structures, especially the non-CRF region. Li et al. [33] found that the
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different surround structures may be adapted to analyze different texture patterns in visual
images. Moreover, signals from the surround have been reported both to suppress and facilitate
responses, selectively and unselectively [12] . Additional studies on the non-CRF [12, 50]
found that suppression may originate from any specific localized region of the surround. This
implies the inhibitory interactions can take different forms, such as a subfield distributed in the
surround region. As shown in Fig. 1b, the center region is modulated by a subfield distributed
in the surround.

As for the possible biological mechanisms underlying the neural interactions, most studies
suggest that these interactions are primarily mediated by the network of long-range horizontal
intracortical connections that originate from excitatory cortical pyramidal cells of V1 [44] . In
addition, physiological and psychophysical results indicate that feedback projections from
higher cortical areas (e.g., V2, V4) and subcortical mechanisms [2], also provide clear
substrate for neural interactions in V1. However, in this paper, we focus only on the
functionalities of neural interactions rather than on the detailed connection method in
neuroscience.

1.3 Contributions of the proposed model

Most previous bio-motivated contour detection models use a family of Gabor filters [19, 29] to
obtain the preliminary responses of contours, then subtract pixels based on surround inhibition
terms with a distance weight simulated using a Difference of Gaussian (DoG) function. This
work aims to utilize novel subfields, rather than pixels, in the surround region. The remainder
of this section briefly describes the main contributions of this paper.

First, a subfield-based inhibition framework is proposed. These subfields can receive more
information from neighboring areas than previous pixel-based methods. A linear combination
of subfields was used to compute the new inhibition term.

Second, subfield inhibition cues were utilized, including energy distribution in different
orientations and directional saliency. Two approaches were used to compute inhibition
responses: (1) distribution differences between the center and subfield regions multiplied by
the central directional saliency, named the center-surround interaction; (2) distribution differ-
ences between multiple subfields, named the surround-surround interaction.

Fig. 1 The non-CRF structure of the previous and proposed subfield-based model. a Traditional pixels-based
surround suppression model. Each neurons (pixels) in surround region (yellow region) will inhibit center neurons
(pixels). b Proposed subfield-based surround suppression model. Subfield (green regions) instead of individual
pixels to take part in suppression computation. Dotted and solid line indicates surround-surround and center-
surround interaction, respectively
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The remainder of this paper is organized as follows: Section II describes the proposed
contour detection model in detail, Section III presents a performance evaluation of the
proposed model using RuG and BSDS300/500 datasets, and Section IV contains the discus-
sion and conclusion of this work.

2 Contour detection

2.1 Overview

The HVS is an efficient code/decoder machine for visual information processing. From retina
photoreceptors to the V1, early visual neurons aim to extract salient local structure information
such as extreme points and edges. The neurons in the retina perceive local information from
external scenes by transforming optical signals into neural responses, then transmit this
information to different neurons though feed forward or feedback connections. Most connec-
tions can be calculated as a set of neural filters to extract specific local features in limited
spatial regions, such as the DoG function for lateral geniculate nucleus cells [17] and Gabor
function for V1 neurons [19, 29] .

Fig. 2 Networking structures of proposed models. Each point in the CRF responses map is suppressed by its
subfield region (green circle). The left or right receptive field in the CRF responses map indicates center-surround
inhibition method and surround-surround inhibition method, respectively
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In this work, a new framework is proposed based on combined subfield inhibition with
center-surround and surround-surround interactions for the specific task of contour detection.
The general networking structures of the proposed model are shown in Fig. 2. The gradient
magnitude is first computed along multiple orientations; these are then combined as the
responses of the CRF in the V1 region. Subsequently, the surrounding subfield in the non-
CRF region is built to participate in the computation of non-CRF responses. In this step, two
inhibition cues are extracted from the responses of CRF (energy distribution and directional
saliency), and then the corresponding inhibition weights of each subfield are computed based
upon the differences of center-surround and surround-surround interactions. In the concluding
step, non-CRF responses Inh(x, y) are subtracted from CRF responses CRF(x, y; σ) at each
location to obtain the final responses:

R x; yð Þ ¼ H CRF x; y;σð Þ � �Inh x; yð Þð Þ; ð1Þ
where H(x) = max (0, x) is used to guarantee that neuronal responses will not be negative.
The factor α denotes the inhibition strength between the neurons within the CRF and its
surrounding non-CRF, and we set α = 0.5.

The detailed CRF responses will be descripted in Section II.B. Section II.C to Section II.E
will, respectively, describe the division of subfields, the subfields features and how to compute
the final inhibition terms with center- and surround-surround methods.

2.2 Responses of CRF in V1

The derivative of the 2D Gaussian function may be used to describe the spatial summation
properties of neurons in the CRF. The derivative of the 2D Gaussian function can be expressed
as follows:

GD x; y; θ;σð Þ ¼ �x̂

σ3
ffiffiffiffiffiffi
2�

p exp � x̂2 þ �2ŷ2

2σ2

� �
; ð2Þ

where x̂ ¼ xcos θð Þ þ ysin θð Þ , ŷ ¼ �xsin θð Þ þ ycos θð Þ , θ is the preferred orientation of a
neuron, the spatial aspect ratio γ determines the elliptical nature of the CRF, and σ presents the
size of the derivative of the Gaussian kernel. In this paper, γ = 0.5 on the basis of
physiological findings [29] .

For an input image I(x, y), the neural responses of the CRF with preferred orientation θi are
defined by a convolutional operator:

ei x; y; θi;σð Þ ¼ I x; yð Þ ? GD x; y; θ;σð Þj j; ð3Þ
At each location, the neural responses ei can be calculated using a different orientation θi with a
number Nθ:

θi ¼ i� 1ð Þ�
Nθ

; i ¼ 1; 2; ;N θ; ð4Þ

in this model, Nθ = 8.
Then, at each location, a winner-take-all strategy is performed such that the maximum CRF

response over all Nθ along different orientations is selected as the final CRF response, written
as
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CRF x; y;σð Þ ¼ max ei x; y; θi;σð Þj; i ¼ 1; 2; ;N θf g: ð5Þ

2.3 Subfield properties

The proposed subfield based inhibition model was inspired by multiple physiological findings
[13, 50] on neural connections creating intracortical inhibition. The suppressing connections
between neurons in V1 are composed of many individual subfields, some of these which
transmit effects to other regions. The main difficulties for modelling distribution and subfield
properties are listed below:

& Spatial distribution of subfields in the non-CRF region.
& Complexity of proposed computational model for contour detection.
& Local cues in each subfield and combining approaches between them.

The non-CRF region was built as a series of feature-receptive units, named subfields, to obtain
local low-level cues. In this model, each included subfield is represented in parametric form by
a tuple (r, d, ϕ) where the parameter r represents the scale (radius) of a subfield while d and ϕ
indicate the distance and the bias angle between the CRF and subfield centers, respectively.

The set of 3-tuples that represent the configured subfield above are denoted as Si ¼
ris; d

i
s; �

i
s

� �ji ¼ 1; ;NS
� �

.

The spatial distribution of the subfields must maintain flexibility and integrity for
extracting local features, as well as lowering the complexity as much as possible. To
balance the complexity and performance, subfields were set only within a circle around

Fig. 3 The specific architecture of subfield in non-CRF

11033Multimedia Tools and Applications (2022) 81:11027–11048



CRF region, and NS was experimentally set to 12. In this model, the pixel radius of the
CRF and non-CRF regions were set to rcrf = 2.5σ and rncrf = 7.5σ, respectively. The

parameters of a set S were specified as ris ¼ 2σ , dis ¼ 4σ , and �i
s ¼ 2� i�1ð Þ

NS
(the

counterclockwise angle starting from the positive y-axis axis) for i = 1, …, NS. As
shown in Fig. 3, the subfields approximately cover the entire non-CRF region without
excessive overlap.

2.4 Inhibition feature of subfield and center region

In this subsection we will focus on constructing a feature cue that can represent the charac-
teristics of the subfield and center region.

Orientation selectivity is one of the most fundamental properties in V1 cells. Some
neurophysiology studies [26] discovered that many cortical cells are spatially arranged within
the visual cortex according to similar orientation characteristics, and this functional architec-
ture is refer to as an orientation column. At the cellular level, all possible directions in the
certain CRF can be characterized and fused in an orientation column. In computation, we can
see the orientation column as a vector which represents energy distribution with all of the
orientations.

The energy distribution E
!

x; yð Þ is defined as [56]:

E
!

x; yð Þ ¼ e1; e2; ; eNθ½ � x; yð Þ; ð6Þ
where ei denotes the CRF responses ei after Gaussian blurring with scale σ.

This vector involves local energy of orientations Nθ from a point (x, y) which will be used
to construct regional distributions and compute the difference in stimuli between the CRF and
subfield. For an individual region, the energy distribution is computed as the pointwise sum in

the region before normalization. Let E
!

c x; yð Þ and E
!

s x; yð Þ denote, respectively, the energy
distributions of the CRF center and the Sith subfield. These are computed as

E
!

c x; yð Þ ¼
X

x;yð Þ2Acrf
E
!

x; yð Þ=NAcrf ; ð7Þ

E
!

si x; yð Þ ¼
X

x;yð Þ2Asfi

E
!

x; yð Þ=NAsfi
; ð8Þ

where Acrf and NAcrf represent the CRF (center) region and the number of points in Acrf,
respectively; andAsfi andNAsfi

represent the i-th subfield region and the number of points inAsfi,
respectively. As shown in Fig. 3, Acrf is the region surrounded by red solid lines and Asfi is the
region surrounded by green dotted lines.

2.5 Non-CRF responses using center-surround and surround-surround inhibition

In this subsection, the proposed models are described in detail by using cues from the local
regions of each subfield, including adopted subfield to subfield (surround-surround) and
subfield to center (center-surround) interactions.
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2.5.1 Center-surround inhibition

The strength of surround inhibition decreases with increasing feature differences between the
CRF and non-CRF [56] . To effectively represent the energy distribution between the texture
patterns within CRF and subfield, these differences between the center and subfields are
described as:

ΔE x; yð Þ ¼
XNS

i¼1

E
!

c x; yð Þ � E
!

si

	
x; y


���
���
1
; ð9Þ

where ‖∙‖1 denotes the L1-norm. Equation (9) describes the summation of differences between
the center and all subfields of energy distribution in the non-CRF. Each difference can be

defined as E
!

c x; yð Þ minus E
!

si x; yð Þ, following a L1-norm operator.
Center-surround interactions in the proposed model are defined as the summation differ-

ence, ΔE(x, y), modulated by the directional saliency, Dc(x, y):

CS x; yð Þ ¼ ΔE x; yð Þ � Dc x; yð Þ; ð10Þ

Dc x; yð Þ ¼ 1

Nθ

XNθ

i¼1

E
!

c x; yð Þ � μEc

	 
2
; ð11Þ

where μEc
is the average value of the distribution E

!
c x; yð Þ. The term E

!
c x; yð Þ � μEc

represent
each element in E

!
c x; yð Þ minus μEc

.
Dc(x, y) is an important visual feature for understanding natural scenes. Early physiology

and neurophysiology studies [25, 26] have shown that most cortical cells in cats or monkeys
do not respond to diffuse light, but have a strong response to specific azimuthal light
stimulation. Subsequent research [12] revealed additionally evidence of orientation-selective
cells existent in the CRF and non-CRF. It is reasonable that if the directionality of a region
around a point is not significant, meaning bars in different directions exist in the region and
cause lower directional saliency, the possibility of becoming a contour would be low. This is
shown in Fig. 4b by the red and green solid line circles. Conversely, the probability of
becoming a contour is high if higher directional saliency exists around a point, as shown in
Fig. 4a by the red and green circles, and in Fig. 4b by the green dotted circle.

In Fig. 4, eight blue bars of a plot indicate energy distribution E
!

x; yð Þ while the red bar is
the degree of directional saliency Dc(x, y). Both are clearly described in the properties of the
local region, and prove helpful in textural suppression.

2.5.2 Surround-surround inhibition

In some cases, isolated edges are surrounded by cluttered backgrounds, and these edges tend to
exhibit intensive responses. In such cases, the general center-surround inhibition term CS(x, y)
is insufficient for completely suppressing the edge response. Hence, the proposed model
makes use of the surround-surround inhibition term SS(x, y) for further texture suppression.
The difference among all of subfields is used to compute SS(x, y), from which the difference of
multiple distributions can be decompose into two simple steps. First, the energy distribution of

each subfield E
!

si x; yð Þ is combined into a variable using L1-norm; then, STD is used to
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combine the variables. The process is performed as below:

SS x; yð Þ ¼ 1

NS

XNS

i¼1
E
!

si x; yð Þ
���

���
1
� μEs

	 
2
; ð12Þ

whereμEs
is the average of a set Esi x; yð Þk k1 for i = 1,…, NS. Higher Esi x; yð Þk k1 values mean

the summation CRF responses in ith subfield are higher, and vice versa.
Examples of computing the center-surround and surround-surround inhibition on four and

two types of texture patterns, respectively, are shown above in Fig. 4. ΔE is high when the
stimuli within the CRF and subfield have different energy distributions, and low when the
stimuli within the CRF and subfield have similar energy distributions. However, as seen
in Fig. 4b, an existing disorder measurement CS that is lower than ΔE, implies larger
inhibition strength. Furthermore, SS is high when the CRF responses among subfields
have large differences, and SS is low when the CRF responses among subfields have a
low difference pattern.

2.5.3 The final non-CRF responses

The final non-CRF response (inhibition term) is obtained by combining traditional distance

weight and linear integration of CS and SS. Their formation is shown as:

Inh x; yð Þ ¼ Wd � CS x; yð Þ þ SS x; yð Þ� �
; ð13Þ

whereCS x; yð Þ and SS x; yð Þ, respectively, indicate the final inhibition terms of center-surround
and surround-surround suppression, which are listed below:

Fig. 4 Examples of computing the energy distribution and directional saliency for two typical texture patterns. In
this paper, we define the horizontally leftward orientation as 0° and the vertically upward orientation as 90°. In
the right panels of the figures, the blue bars represent the component of the energy distribution vector in center or

subfield (i.e., E
!

c x; yð Þ or E!si x; yð Þ); the red bars represent the directional saliency in center region (i.e., Dc(x, y))
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CS x; yð Þ ¼ exp �N CS x; yð Þð Þ
2σcs

2

� �
; ð14Þ

SS x; yð Þ ¼ exp � SS x; yð Þ
2σSS

2

� �
; ð15Þ

whereNðxÞ ¼ min 1;max 0; xð Þð Þ is a compound operator that ensures the output fits into [0,
1]. In this work, σcs = 0.25 and σSS = 0.9 were set to ensure the output value is as meaningful
as possible.

The distance weight [24] is obtained by convolution operator with CRF responses CRF(x,
y; σ) and normalized different of Gaussian (DoG) function:

Wd ¼ CRF x; y;σð Þ ? DoG x; y;σð Þ; ð16Þ

DoG ¼ max 0;DoG x; y;σð Þð Þ
max 0;DoG x; y;σð Þð Þk k1

; ð17Þ

DoG x; y;σð Þ ¼ 1

2� 4σð Þ2 e
�x2þy2

2 4σð Þ2 � 1

2�σ2
e�

x2þy2

2σ2 ; ð18Þ

3 Results

First in this section, the qualitative experiments of a natural image from a dataset (BSDS300)
[38] and a synthetic image are given to intuitively exhibit the inhibition properties of the
model. Next, results from model tests using the whole RuG40 [24], BSDS300 [38], and
BSDS500 [3] datasets are shown alongside a comparison of the quantitative performance.
Some parameters in our model are fixed (σcs = 0.25, σSS = 0.9), and the others are variable,
such as scale of CRF kernel σ ∈ {2.0, 2.5,3.0,3.5} and subfield configuration rs ∈ {2, 3, 4,
5}σ, ds ∈ {4, 6, 8}σ, and Ns ∈ {2, 4, 8, 12}.

3.1 Qualitative analysis

3.1.1 Basic properties of inhibitory effects

For a clear and detailed demonstration of the intuitive performance of the proposed
model the inhibition terms and responses of the model were generated with individual
center-surround and surround-surround inhibition effects as shown in Fig. 5. In this
experiment, we set σ = 2.0, rs = 6σ, ds = 6σ, and Ns = 12. When computing the
gradient magnitude map, it was found that many unwanted texture edges existed in the
CRF response map (Fig. 5e). In order to obtain a better contour map without textures,

the center-surround inhibition term CS (Fig. 5c), surround-surround inhibition term SS
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(Fig. 5b) and combination Inh (Fig. 5d) were used. The CS term (Fig. 5c) is seen to
efficiently suppress texture, but poorly inhibits some dense textures (corn kernels in
the image center) and salient useless edges embedded in the cluttered background.

Conversely, the SS term (Fig. 5b) shows good inhibition in these respects. Conse-
quently, the final inhibition term in Fig. Subfield- and pixel-based suppression models

on synthetic image and CS for more efficient texture suppression and contour
protection.

3.1.2 Subfield- and pixel-based suppression models on synthetic image

In this part, we will do a qualitative experiment of the difference between subfield- and pixel-
based suppression models on a synthetic image, and intuitively explain where the subfield-
model performs well and where it is not as good as the pixel-based model. In this experiment,
we set σ = 2.0, rs = 6σ, ds = 6σ, and Ns = 12 for our method and the parameter combination
in [56] for OI.

Figure 6a, b exhibit the synthetic image and corresponding hand-painted possible contour,
respectively. The synthetic image consists of eight rectangular patterns with different widths
and orientation stripes. Two of the patterns divide the image into two parts: (1) upper part with
horizontal small width stripes; (2) lower part with vertical large width stripes. Six squares are
embedded in the two-part image with stripes of gradually changing width. Figure 6c shows the
CRF responses output from (5). Figure 6d, e exhibit center-surround inhibition responses with
pixel-based models, named orientation inhibition (OI) [56], and subfield based, named center-

surround inhibition (CS), which only uses the term CS x; yð Þ in Eq. (13) for final responses
computation. Figure 6f exhibits the surround-surround inhibition response — using the term

SS x; yð Þ instead ofCS x; yð Þ þ SS x; yð Þ in Eq. (13), with the subfield-based model. Figure 6h–k
show the final contour responses by subtracting corresponding inhibition terms (Fig. 6d–g)
from CRF responses (Fig. 6c), respectively.

Fig. 5 Examples of inhibition term and contour responses maps. a input image, b-d the inhibition term
modulated by surround-surround, center-surround and the combination methods, respectively, e the CRF
responses, f-h the final responses to salient contours with such of the individual term Fig. 5b-d inhibition by
replacing Inh(x, y) in (1)
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In order to fairly compare the advantages and disadvantages of pixel and subfield based
model, we set the experiments under two conditions. First, we just used non-orientation

selectively method and energy distribution feature E
!

x; yð Þ to obtain inhibition term and the
corresponding final response. Then, we used the same scale parameter σ = 2 and independent
optimized suppression parameters.

Compared with the pixel-based OI model, the subfield-based CS model has an obvious
advantage: robust textures suppression at different scales, such as the lower part with large
scale textures and the leftmost two rectangles. However, the CS model is worse than the OI
model in slight contour protection, such as the corner part of the rectangles. This is because the
subfields can capture a wide range of region information in contrast to the pixel-based fine
information.

From Fig. 6f, j, we can see that the SS model shows a good performance in contour
protection at corners or in parts where the stripe widths differ greatly, such as the top left and
bottom right rectangles. This is because (1) the SS model is only concerned with the contrast of
the surrounding region; (2) the larger difference of stripe widths will result in a larger
difference of energy density, and thus, according to (12) and (15), the inhibition magnitude

of SS x; yð Þ will be decreased.

3.2 Quantitative experiment

3.2.1 RuG dataset

Model performance was measured using an available contour detection dataset, the RuG40
dataset [24], which includes 40 natural images and an associated ground truth drawn by hand.

Fig. 6 Examples of inhibition and contour responses on a synthetic image. a synthetic image; b hand-painted
possible contour; c CRF responses obtained from (5); d, e pixels based, subfield based center-surround inhibition
responses, respectively; f subfield based surround-surround inhibition responses; g the inhibition term modulated
by the combination methods; h-k the final contour responses by subtracting corresponding inhibition terms (d-g)
from CRF responses (c), respectively
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This dataset has been widely used to evaluate the performance of biologically motivated
contour detectors [5, 24, 35, 41, 47–49, 51, 56, 60, 61] . In order to quantitatively evaluate the
performance of this method, binary contour maps were constructed using the standard
procedure of non-maxima suppression followed by hysteresis thresholding. The similarity
between the binary contour map detected by a model and the corresponding ground truth were
measured, as defined in [24].

P ¼ cardðEÞ
cardðEÞ þ card EFPð Þ þ card EFNð Þ ; ð19Þ

where card(X) denotes the number of elements of the set X, E denotes the set of correctly
detected contour pixels, and EFP and EFN are the sets of false positives (spurious contours) and
false negatives (ground-truth contours missed by the contour detector), respectively. The
performance measure P is a scalar able to take values in the interval [0, 1], where a higher
measure P reflects better precision in contour detection. As performed in previous works [5,
24, 35, 41, 47–49, 51, 56, 60, 61], a contour pixel was considered to be correctly detected if a
corresponding ground tru th contour pixel was present in a 5 × 5 square neighborhood
centered at the respective pixel coordinates.

In this experiment, series of parameter combinations were selected for statistical analysis on
the number Ns, radius rs and distance ds of subfield. We set σ = 2.0 and rs = [2, 3, 4, 5]σ =
[4, 6, 8, 10], ds = [4, 6, 8]σ = [8,12,16], and Ns = [2, 4, 8, 12] for combinations. In Fig. 7,
the heights of the bars reflect the optimal dataset scale (ODS) of P over all 40 images in the
RuG dataset with different parameter combinations. One parameter was fixed while the
remaining two parameters were measured. The optimal performance P and the corresponding
parameters over all images are listed at the top of each. As we see from the left two subplots,
the model performance increases as the number of subfields increases, while from the right
subplot the lower ds makes rs a monotonous decreasing whereas the larger ds makes rs a
monotonous increasing. According to the results from the left two subplots, we choose Ns =
12. In addition, the result from the right subplot reveals that subfields should be close to the
center CRF, if not, it should cover the non-CRF as far as possible. Based on this experiment,
the subfield configuration in below measurements are used rs = 2σ, ds = 4σ , and Ns = 12.

We test our subfield based center-surround and surround-surround inhibition (SCSI) model
at different noise levels to verify the capacity to extract contours in noised images. Figure 8
clearly shows that our model has ability of suppressing noises with increasing σ. When the

Fig. 7 Optimal dataset scale (ODS) of SCSI over all images of the RuG dataset with various parameter
combinations and we fixed σ = 2.0. Each bar in the figure represents the ODS over all the images for a given
parameter combination. The text above each panel highlights the best ODS, which is obtained using the given
parameter values. Symbol ‘*’ indicates the fixed parameters
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scale σ is increased to proper values, the target contour can pop-out clearly from the noised
background.

We evaluate and compare proposed SCSI with two other biologically inspired models, i.e.,
ISO-gd [56], OI [56] . Figure 9 shows three images, corresponding contour maps, and
performances with measurement precision P. Note that the ISO-gd contour detection model
mentioned in this paper presents the optimized version of the isotropic inhibition model [24]
proposed in [56] . As shown, the surround inhibition mechanism in the ISO-gd and OImethod
can efficiently suppress the textures, though there remains room for improvement in its
capacity for removing texture edges. In contrast, the SCSI is better than the others at texture
suppression (e.g. stones on the river bank and dense groves around the bear and rhino), where
it retains and enhances remarkable contours. The precision, P, clearly shows the performances
of the three detectors on the best threshold.

In order to represent richer performance on the RuG database, multiple thresholds were
used to generate a series of assistant measurement false positives (eFP) and false negatives
(eFN) as defined in [24], and produce an eFP − eFN curve. These were calculated as follows:

eFP ¼ card EFPð Þ=cardðEÞ; ð20Þ

Fig. 8 The capacity of SCSI in suppressing noise. From left to right: natural images with noise, corresponding
Ground Truth, and the responses of our model with different filter scales σ. Each response is constructed using
the standard procedure of non-maxima suppression followed by hysteresis thresholding

Fig. 9 Results of various models on three example images from the RuG40 dataset. The columns from left to
right represent the original image, corresponding ground truth, ISO-gd, OI and SCSI detectors, the performance
(P value) obtained from its right contour map (i.e., ISO-gd, OI and SCSI) using the optimal parameter setting,
respectively
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eFN ¼ card EFNð Þ=card EGTð Þ; ð21Þ
where EGT denotes the set of contour pixels in the ground truth contour image, the indicator
eFN is a scalar taking values in the interval [0, 1], and eFP is in the interval [0, +∞]. Lower
values for both of these reflect better performance regarding false positives and false negatives,
respectively. Each point on the curve is computed independently first by hysteresis
thresholding the final contour map after non-maxima suppression to produce a binary bound-
ary map, and then by matching this machine boundary map against each of the human
boundary maps in the ground truth dataset.

Figure 10 shows the eFP − eFN curve of the SCSI contour detection models. Note that lower
eFP and eFN values indicate better performance of textures suppression and contour protection,
respectively. In this figure, the lower eFP, the better textures inhibition performance, while the
lower eFN, the better ability of contour protection. We can see that as the receptive field scale σ
increases, the texture suppression ability of the model is stronger, whereas the protection
ability of the contour is weaker. Additionally, it can be seen that SCSI show good performance
with a scale parameter σ = 2.0. The proposed eFP − eFN curve enriches the quantitative
performance on the RuG data set. It can intuitively describe the degree of false positives and
false negatives instead of relying on the single precision P proposed in [24] .

Table 1 shows a quantitative comparison of the P-measures of various models on the RuG
images, including the ISO-gd, Butterfly-shaped [61], MCI [56], CSLCM [11] and proposed
model (σ = 2.0). The optimal threshold is 0.06. Although the overall evaluation of our model
in this dataset is lower than CSLCM model, but the contour detection effect of some images is
better CSLCM model. Since the proposed algorithm produces soft contour maps, a choice of
scale is required for R(x, y) that need obtain a single segmentation output. Similar to the
performance measurement of the gPb algorithm, one possibility for scale choice is to use a
fixed threshold (calibrated on a training set to provide optimal performance) for all images in
the dataset. This is defined as the optimal dataset scale (ODS). The performance was also
evaluated for an optimal threshold selected by an oracle on a per-image basis. It is possible to
obtain better segmentations using this optimal image scale (OIS). We can see that some
machine-learning based models, e.g., the Probability of Boundary (Pb) [39] and Global Pb

Fig. 10 The eFP − eFN curve of proposed model with parameter σ = [2.0, 2.5, 3.0, 3.5], respectively
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(gPb) [3] did not perform well across different dataset, because the biologically-motivated
model simulates the information processes mechanism of human visual system, and usually
uses low-level image features, which is not dataset-dependant.

3.2.2 BSDS dataset

The performance of the proposed model was further evaluated using a publicly available
dataset, the Berkeley Segmentation Data Set (BSDS300 and BSDS500). Each image in the
dataset has multiple human-labeled segmentations as the ground truth data. The so-called F-
measure [39] was also computed, as below:

F ¼ 2*Precision*Recall
Precisionþ Recall

; ð22Þ

Table 1 Quantitative comparison of various models on the RuG grayscale images with P-Measure

Model RuG40
ODS OIS Best P-scores

Biologically -motivated
SCSI 0.47 0.52 0.54
CSLCM [11] 0.49 0.51 0.56
MCI [56] 0.47 0.49 0.52
Butterfly-shaped [61] 0.45 0.48 0.49
ISO-gd [56] 0.41 0.44 0.47
Computational / Machine-learning
Pb (BG+TG) [39] 0.46 0.50 0.50
GPb [3] 0.48 0.56 0.56

Fig. 11 Results of various models on four example images from the BSDS300 dataset. The columns from left to
right represent the original image, corresponding ground truth, gPb, Pb detector using BG and TG cues, SCSI and
corresponding performance (F- Score) obtained from its right contour map using the optimal parameter setting,
respectively
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where Recall denotes the recall ratio reflective of the probability that the detected edge is valid
and Precision denotes the precision ratio reflective of the probability that the ground truth edge
was detected.

Figure 11 shows four images and the binary boundaries detected by the SCSI model and
two machine learning based algorithms: the Pb and gPb (gray). As shown, the proposed non-
learning methods have similar or even better F-Scores than these supervised learning contour
detection methods. It can also be observed that the proposed model is better than Pb and gPb at
some aspect of texture suppression in the four test images.

Quantitative performance measurement was also carried out using a test set of 100 and 200
images from BSDS300 and BSDS500, respectively. Figure 12 show the Precision-Recall
curve [42] of the SCSI contour detection model on the BSDS300 and 500 datasets,

Fig. 12 The Precision-Recall curves of the SCSI contour detection models on the BSDS300 (left) and 500 (right)
dataset

Fig. 13 Quantitative comparison of various models on the whole BSDS300 and BSDS500 dataset using the
Precision-Recall curve. The legend shows the best ODS, OIS and AP on different contour detection algorithms
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respectively. It can be seen that SCSImodel show good performance when the scale parameter
σ = 2.5.

In Fig. 13, the Precision-Recall curve [42] based comparison is given for our SCSI model
(σ = 2.5) relative to the MCI, OI, Pb (BG), Pb (BG + GT), Butterfly-shaped and ISO-gd on
the BSDS300 and 500 dataset. These graph shows that the proposed model outperforms the
OI, Pb (BG), Butterfly-shaped and ISO-gd, similar to MCI but remains inferior to the Pb (BG
+ GT). However, the Pb method need extra supervised and unsupervised learning processing
with additional cues, such as textures; the MCI model uses not only orientation but also
luminance and luminance contrast. Even with that, the proposed model has the same perfor-
mance as the MCI and slightly lower than Pb (BG + GT) contour detectors.

Table 2 show quantitative comparisons from the BSDS300 and BSDS500, the optimal
thresholds for both of them are 0.03. In this dataset our model is better than CSLCMmodel. As
can be observed, the proposed SCSI operator receives a score of 0.62 on the BSDS300, higher
than most of the other biologically-motivated methods. The scores of these methods remain
below those of most learning-based algorithms; however, the proposed non-learning method
still outperforms the Pb (BG) (F = 0.60).

4 Discussion and conclusion

It is widely believed that the primary visual cortex is involved in edge detection. In this work, a
novel contour detection model inspired by the information processing mechanisms of the
neural CRF and non-CRF responses in V1 was proposed. A subfield combination framework
was utilized in place of the traditional pixel based surround inhibition structure. Two inhibition
cues were employed on the basis of this framework: directional saliency and energy distribu-
tion. The proposed framework also makes use of two combination methods, center-surround
and surround-surround inhibition.

Table 2 Quantitative comparison of various models on the BSDS300 and BSDS500

Method BSDS300 BSDS500
ODS OIS AP1 ODS OIS AP

Computational / Machine-learning
MCG [4] 0.72 0.74 0.73 0.75 0.78 0.76
gPb [3] 0.69 0.70 0.73 0.70 0.74 0.71
BEL [20] 0.64 – – – – –
Mean Shift [15] 0.63 0.66 0.54 0.64 0.68 0.56
N-cuts [16] 0.62 0.66 0.43 0.64 0.68 0.45
Pb (BG+TG) [39] 0.63 0.66 0.62 – – –
Pb (BG) [39] 0.61 0.64 0.60 – – –
Canny [10] 0.58 0.62 0.58 0.60 0.63 0.58
Biologically -motivated
SCSI 0.62 0.64 0.61 0.63 0.66 0.61
CSLCM [11] 0.61 0.64 0.60 0.62 0.66 0.61
MCI [56] 0.62 0.64 0.54 0.64 0.66 0.56
OI [56] 0.59 0.63 0.60 0.60 0.63 0.59
CO [55] 0.60 0.63 0.60 0.61 0.64 0.61
PC/BC-V1+lateral+texture [47] 0.61 0.63 0.40 0.64 0.65 0.41
ISO-gd [56] 0.60 0.63 0.59 – – –
Butterfly-shaped [61] 0.59 0.61 0.49 – – –

11045Multimedia Tools and Applications (2022) 81:11027–11048



Some drawbacks to the architecture of surrounding region, such as main problem requiring
consideration was the size of the subfield. One limitation of the proposed strategy is the reliance
it has on heuristics rather than general principles. For example, the simple tests performed in this
study showed that the contour detection performance will be better if the framework uses a
greater number of subfields of smaller size. However, excessively increasing the number of
subfields not only increases the required computational power significantly, but also reduces the
performance of salient contour extraction. Overlapping subfields also extract numerous useless
features that cause imprecision in the degree of inhibition. However, too small a quantity and
size of subfield is selected (such that the subfield-based method is degraded as in pixel-based
frameworks), the performance degrades even from versions using excessive subfields. There-
fore, balancing the number and size of subfields is something of an empirical decision. The
choice made in this manuscript was primarily motivated by conceptual and experimental
simplicity, while the theoretical study of optimal solutions was left for future research.

Aside from the structure of the subfield, performance also relied upon on efficient feature or
cue extraction. In the proposed model, energy distribution cues were first employed as inspired by
[56], in which the local energy distribution computation is sensitive to noise, and incorrect
orientation estimates will result in ineffective surround inhibition. However, this experiment
found that the disorder of the region itself also can be obtained as a useful clue for texture
inhibition. Furthermore, surround-surround interactions were creatively employed to compute the
inhibition term. Given this, the inhibition term does not accept information from the central region,
but is able to efficiently suppress some isolated edges surrounded by cluttered backgrounds.

Finally, it is necessary to comment on some possible future improvements of the proposed
models. Considering the importance of color information in visual pathways, one possible
improvement direction is to introduce color features to our gray-scale-basedmodel in twoways:
(1) coding color features into one channel as pre-processing; (2) using color instead of gray

features in subfield coding, i.e., transferring E
!

x; yð Þ mentioned in (6) to a higher dimension
vector. In addition, the color information could be exploited by using either individual R-G-B
information or the features after single- and double-opponency processing [22, 55] or both.

In summary, this study proposed a subfield based model by combining center-surround and
surround-surround inhibition effects to improve contour detection in cluttered scenes. With the
displayed competitive performance in comparison to current state-of-the-art algorithms, the
proposed subfield based framework is expected to facilitate efficient computational models in
the field of machine vision.
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