
https://doi.org/10.1007/s11042-022-12331-2

Confusion matrix-basedmodularity induction
into pretrained CNN

Salman Ahmad1 · Shahab U. Ansari1 ·Usman Haider1 ·Kamran Javed2 ·
Jalees Ur Rahman1 · Sajid Anwar1

Received: 20 June 2021 / Revised: 5 January 2022 / Accepted: 18 January 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Structurally and functionally, the human brain’s visual cortex inspires convolutional neural
networks (CNN). The visual cortex consists of different connected cortical regions. When
a cortical area receives an input, it extracts meaningful information and forwards it to its
neighboring region. CNN imitates the hierarchical structure of the visual cortex by multiple
feature extraction layers. In neurosciences, it is believed that the modular structure of the
human brain is the source of its cognitive abilities. This work contributes to the problem of
domain decomposition, information routing control in the network, and module integration for
image classification by proposing a novel framework to induce modularity in a pretrained
CNN. We decompose the input domain of the CNN by employing novel Confusion Matrix
driven Centroid Based Clustering (CMCBC) to create functional modules comprised of dif-
ferent pathways. CMCBC is an unsupervised clustering technique that utilizes the k-Medoid
algorithm. This approach uses a confusion matrix to find similarities between each pair of
classes and medoid for every cluster instead of using a distance function. The proposed
framework is evaluated on two benchmark datasets, MNIST and CIFAR10, and the results
achieved are promising. On the MNIST dataset, we achieved 98.51% accuracy using our
proposed Modular CNN compared to the baseline accuracy of 99.39%. But at the same time,
we saved 53% multiplications in the network, which significantly reduced the complexity.
Similarly, on the CIFAR10 dataset, our model achieves 78.01% accuracy, 6% less than the
baseline accuracy (84%). But when we retrain the network to align the weights further, our
model outperformed the baseline model accuracy by 2.78% and achieved 86.78% accuracy.

Keywords CNN · Pruning · Confusion matrix · Modularity · Clustering

1 Introduction

Convolutional neural network (CNN) is state-of-the-art for a wide range of computer vision
problems such as object recognition, image classification, and semantic segmentation [28].

Sajid Anwar deceased

� Usman Haider
usman.haider@giki.edu.pk

Extended author information available on the last page of the article.

Published online: 18 March 2022

Multimedia Tools and Applications (2022) 81:23311–23337

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12331-2&domain=pdf
http://orcid.org/0000-0001-5221-6231
mailto: usman.haider@giki.edu.pk


Moreover, CNN has also been proven effective for natural language processing and fore-
casting problems [12, 18]. CNN is a subclass of representation learning techniques or
algorithms. The output of each hidden layer in the network is considered a representation of
the original data. CNN constantly changes the presentation of data by modifying its weights
throughout its learning process. In general, a system is said to be modular if it can be divided
into several independent subsystems, called modules. A modular convolutional neural net-
work (MCNN) is a CNN that incorporates the concepts and practices of modular design.
Although the modular design is achieved with an additional cost, it is still preferred over a
monolithic system. Each module in a modular system is designed to solve an isolated sub-
problem. This structure of loosely coupled modules coordinating with each other enhances
the system’s fault tolerance. The modular design also facilitates parallelism and scaling up
the system to add additional functionality with no interference to the existing functions. In
addition, to facilitate scaling up the system, modularity also assists in the reallocation of the
functional units to new tasks [41].

Major concerns in deep learning models are latency and resource consumption. In liter-
ature many techniques have proposed for deep model compression [6, 16, 17, 25]. Modhej
et al. [31] proposed a novel approach based on the computational function of the dentate
gyrus of the hippocampus for pattern separation. One of the prominent features of the pro-
posed network is the employment of two excitation steps and two inhibition steps to activate
or deactivate a node. The numerical simulation results indicate that the proposed network
requires fewer training iterations to achieve comparable accuracy because weak nodes are
silenced in different steps of the proposed network.

Practically, deep neural network-based solutions have a high computational cost and high
power consumption, making it challenging for real-time applications. Studies have shown
that a trained deep neural network (DNN) does not require all its weights to perform a task
[20]. It has been proved that removing unwanted weights can reduce the computation cost of
neural nets and improve their performance. The process of compressing neural networks by
removing one or more of their core structural elements is called pruning. Different pruning
algorithms imply other selection criteria that rank network elements intended to be pruned.
The pruning can be done at runtime or offline.

Runtime pruning allows temporarily pruning the network for a single iteration and
restoring it to its original state for the next iteration. In combination with proper domain
decomposition, it can induce modularity in a CNN. Modular CNN has more resemblance
with biological neural networks than monolithic CNN. Furthermore, the modular structure
of CNN helps in understanding the overall working of the network and can learn additional
tasks without damaging the already known information. This behavior encourages using a
pre-trained network for learning even a heterogeneous task while retaining the old data. Our
contributions in this paper are summarized as follow:

– We induced modularity in a pre-trained CNN model by utilizing the information learned
by the network during training.

– Based on learned knowledge, we decompose the input domain.
– The decomposed input domain is utilized to achieve modularity.

Based on the literature, we hypothesize that the learned knowledge of a network provides
us with enough information that can be used for input domain decomposition. Furthermore,
the domain decomposition can raise modularity in a neural network if supported by an
information routing control mechanism.

23312 Multimedia Tools and Applications (2022) 81:23311–23337



The rest of the paper is organized as follows: the literature review is discussed in
Section 2, in Section 3, we discuss the proposed methodology in detail, then in Section 4, we
discuss experimental setup and results, and finally, in Section 5, we conclude our findings.

2 Literature review

Modularity in ANN has been a center of interest for researchers since the 1980s [43]. The
next decade follows the trend, and several fundamental techniques for MNN have been
introduced for various machine learning problems [15, 21, 33]. A modularization tech-
nique can contribute to one or more of the mentioned categories. Domain refers to the input
domain of an MNN, which defines the problem addressed. Topology is the overall architec-
ture of an MNN where formation corresponds to path selection for input inside an MNN. It
is the process that helps to attain modularity in the network. However, integration algorithms
integrate the output of different modules that contribute to the network’s final decision.

The domain consists of all the data that a neural network process and learn from to gener-
alize unseen data. It defines the problem that needs to be addressed. Domain modularization
is based on the rationale that a problem can be divided into pieces, each acting on a sep-
arate subdomain. Consequently, a module in MNN that is constructed by other techniques
at different modularization levels can process one of the subspaces instead of the entire
domain.

Dimensional domain partitioning is another type that occurs per data sample. In this type
of partitioning, a data instance is decomposed based on its features. A different set of fea-
tures are assigned to various modules of an MNN. For example, in [11] dimensional domain
partitioning is used by applying additional filters and processing the output by other mod-
ules. Manual domain partitioning is done by partitioning the domain in multiple subspaces
based on some analytical solution or expert knowledge. Each subspace in the domain cor-
responds to different subproblems. Therefore, manual domain partitioning methods for one
problem do not necessarily work for another problem. Recently, the age recognition algo-
rithms based on facial features have been proposed [4, 5]. For example, a survey on feature
selection methods for face recognition problems in [8] concludes that feature wise manual
decomposition of a face dataset is analytically not feasible.

Learned domain partitioning used learning algorithms for data partitioning. It clusters
data based on complex representations usually invisible to experts due to complex math-
ematical structures or incomplete understanding of the problem. In literature, different
learning algorithms are used for clustering input domains. For example, [48] use a three-
factor selection method, [34] use fuzzy clustering and [46] utilize Divide and Conquer
Learning (DCL) to cluster input domain.

The network’s topology is the connectivity between different nodes and modules that
produce the overall structure of a network. Modularity in the topology of a network cre-
ates clusters of nodes called modules. Nodes inside a module are densely connected while
sparsely connected with nodes of other modules. The intra-module and inter-module con-
nectivity patterns define modularity in a modular structure. Structural modularity in deep
learning also provides a solution for the problems in monolithic neural network architec-
tures, such as overfitting and vanishing gradient problems, to name a few. In [45] authors
show that inducing structural modularity in a neural network improves the generalization
error of the network. Moreover, the work in [45] produces modularity in CNN by hierarchi-
cal clustering the feature vectors of the hidden layer and obtaining a short path for gradient

23313Multimedia Tools and Applications (2022) 81:23311–23337



flow in the backpropagation phase. Similarly, effects of modularity are also reported in [35]
where the flow of information in the network is controlled by specialized units called gat-
ing units. The authors refer to their proposed network architecture as a highway network.
Another widely used group of modularization techniques in neural networks is repeated
block. Recurrent neural networks (RNN) [30] is a well-known architecture that uses the
repeated blocks method. An RNN has several long short-term memory (LSTM) [26]. In
sequential topology, the structural units of architecture consist of whole modules. The very
famous Inception networks [37] and Xception networks [9] are multi-path topology-based
networks composed of sequentially arranged convolution modules. The Highway networks
described in [35] are also built around sequential composition principles.

Formation in modular neural networks refers to the process that generates modularity
by path selection for input inside a modular network. In a given set of available modules
in a network, the formation technique selects that will process the input. A formation can
either be manual or automatic. In manual formation, human experts utilize heuristics and
intuition to define modularity in a network. Automated techniques use evolutionary and
machine learning algorithms for formation. Authors in [24] effectively use connection cost
minimization as a formation technique to produce a modular network. It is concluded in the
mentioned work that adding connection cost to HyperNEAT network and its variations [42]
results in a significant improvement in its performance and its modular structure as well.
Moreover, evolutionary algorithms are used to combine networks for knowledge transfer
in [7]. Dropout [36], a widely used technique for regularization in neural networks, is an
implicit formation technique that randomly drops nodes during the learning process. Drop-
Circuit [32] is also a dropout technique used in parallel circuits, which is a multipath neural
network.

Integration defines how the final output from different modules is calculated. It could
be either cooperative or competitive. Only one out of all the modules’ output is selected to
contribute to the final output in competitive integration. However, cooperative integration
leads to the contribution of all the modules to the final output. To the best of our knowledge,
integration techniques combine modules output by arithmetic logic or learning algorithms.
[19] use competitive integration with a multi-network architecture. Similarly, in [44] the
output of two CNN networks is integrated logically for character recognition where one
CNN detects characters in an image, and the other recognizes the detected characters. Inte-
gration through learning algorithms provides an optimal combination of modules with the
best overall performance. For example, [29] utilizes fuzzy logic to integrate different neural
networks of the MNN trained for the image recognition task. Neural networks are evalu-
ated by a fuzzy inference system and integrated the output by Sugeno integral. Likewise, a
work proposed in [1] adds new modules to a pre-trained network to achieve transfer learn-
ing. A similar approach for integration is also adapted in [40] where the network is trained
for multi-task learning by adding a new module.

Researchers have proposed various ways to accelerate inference with deep convolutional
networks in the literature. These methods speed up convolutions without critical degradation
of the accuracy of the models, which are Factorization and Decomposition of convolution’s
kernels [39], Separable Convolutions [10], and Pruning [2]. Researchers are also proposing
different techniques and algorithms for accelerating the CNNs, which include [27, 50].

Zhao et al. [50] presented a technique that is based on the Strassen algorithm and Wino-
grad minimal algorithm for filtering. They showed a theoretically colossal reduction in
computational complexity and also, in practice, proposed algorithms providing optimal
performance. Still, the problem is that these are very expensive implementation-wise and

23314 Multimedia Tools and Applications (2022) 81:23311–23337



cannot run on embedded devices and in real-time systems. Also, it increased parallelizing
difficulty for an acceleration of hardware. New classes of fast techniques for CNN are intro-
duced by [27] which used minimal Winograd filtering algorithms. The method used small
tiles, which reduced computational complexity.

Spatial separable convolutions are also used later on in [23], MobileNets, followed by
[49], which introduced highly computationally efficient CNN architecture known as Shuf-
fleNet. It is specially designed for mobile devices and requires limited computing power
of 10–15 MFLOPs. Zhang et al. [49] used new operations of channel shuffle and point-
wise group convolutions. ShuffleNet achieved a speedup of 13× over AlexNet without
affecting the accuracy. They lowered top-1 error to 7.8% absolute than [23] on ImageNet
classification problem. Another slimmer model was introduced specially for mobile phones
and embedded systems [14], known as EffNet. The EffNet outperformed MobileNet and
ShuffleNet in accuracy and computational burden.

Pruning is another promising technique for highly efficient CNN keeping low complex-
ity. Pruning in CNN is a technique that removes less significant neurons, feature maps,
kernels, or possibly layers in large-sized networks. Random pruning can affect the accu-
racy of a network significantly. In pursuance of deep neural network acceleration, channel
pruning was firstly proposed by [47]. A channel pruning method has been introduced by
[22]. A two-step repetitive algorithm for pruning has been performed of some trained
models of the CNN. This technique accelerated networks like Xception [10] and ResNet
[38] up to 2× speedup but the model accuracy is reduced by 2%. Also, the training time
of the method is drastically high, and they have used the off-the-shelf libraries for the
networks.

3 Proposedmethodology

In this paper, a novel technique to induce modularity in convolution neural networks
for image classification problems. This work contributes to three categories, i.e., domain
decomposition, formation, and integration. We decompose the input domain to a CNN
into multiple groups or clusters using the information learned by the CNN. The topol-
ogy of modular neural networks remains the same; however, we utilize runtime prun-
ing for modular topology formation. The results of a module are integrated into other
modules.

3.1 Clustering input domain

Clustering the input domain (classes) is one of the main contributions of this work. It is a
crucial step that enables us to achieve modularity in neural networks. Modularity aims to
process input data in an organized way that similar input follows similar paths throughout
the network. A modular neural network needs to group similar data based on some sim-
ilarity index. Therefore, clustering input plays a crucial role in our proposed framework.
We also propose Confusion Matrix driven Centroid Based Clustering (CMCBC) for clus-
tering. CMCBC is an unsupervised clustering technique that utilizes k-Medoid algorithm.
However, there is no distance function involved in the proposed method. Instead, it uses
a confusion matrix to find similarities between each pair of classes and medoid for every
cluster.

23315Multimedia Tools and Applications (2022) 81:23311–23337



3.1.1 Confusionmatrix driven centroid based clustering (CMCBC)

Generally, clustering algorithms start by computing the distance between every pair of units
to be clustered. However, we use a confusion matrix obtained from a trained neural network
as a distance matrix in this work. Although any confusion matrix does not follow the sym-
metry rule, we present further in this section that how it can be used effectively as a distance
matrix in combination with k-Medoid clustering algorithm. The confusion matrix obtained
from the CNN model trained on the MNIST dataset is shown in Fig. 1. The confusion matrix
indicates the correlation between different dataset classes concerning the neural network. It
demonstrates that the CNN confuses three class 0 with class 6 and 2 samples with class 8.
It indicates some degree of correlation among different samples of different classes that can
be exploited to cluster the dataset. In order to use confusion matrix for clustering, it needs
to be preprocessed. Preprocessing confusion matrix in this work consists of two steps:

– Normalization
– Distance calculation

Normalization The confusion matrix is normalized just before using it for distance calcu-
lation. All the values in the matrix are transformed within the range of 0–1 using (1) where
cm is the confusion matrix, i is used for row and j for column. Sum function returns the
sum of the ith row of the confusion matrix obtained using cmi . Figure 2 is the normalized
version of the confusion matrix, shown in Fig. 1 calculated using (1).

cmi
j = cmi

j

sum(cmi)
(1)

Distance calculation The normalized confusion matrix can be viewed as a similarity matrix
where the highest values are at the diagonal. In order to convert it to a distance matrix, we

Fig. 1 MNIST dataset confusion matrix

23316 Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 2 MNIST model normalized matrix

have used (2) where xi
j is a placeholder for a value at row i and column j of normalized

confusion matrix.
yi
j = 1 − xi

j (2)

Figure 3 depicts a distance matrix for MNIST dataset calculated from the normalized confu-
sion matrix shown in Fig. 2. It can be seen that the MNIST distance matrix is asymmetrical.
The values in the lower triangle of the matrix do not match the corresponding values in the
upper triangle. In other words, the distance between x and y is not equal to the distance
between y and x. Furthermore, the diagonal values are not equal to 0. Even though our dis-
tance matrix does not comply with the given rules of a distance matrix, it still can be used
effectively in combination with k-Medoid for clustering. The pseudocode is presented as
Algorithm 1.

k-Medoid is a greedy algorithm that iteratively makes greedy choices. It compares the
distances between a data point and medoids and clusters it with the closest medoid. The
process repeats until an optimal state of the overall configuration is achieved. Provided the

23317Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 3 MNIST dataset distance matrix

distance matrix in Fig. 3, the k-Medoid selects the smallest distance between two competing
distances. The asymmetrical property of any distance matrix calculated from a confusion
matrix does not affect the performance of k-Medoid clustering algorithm.

3.2 Inhibitionmask based training

Runtime pruning is a type of network pruning in which the network is pruned dynamically.
Kernels, feature maps, layer nodes, and channels can be pruned at run time. Models pruned
with static pruning methods may permanently lose a significant amount of information.
Runtime pruning solves this problem by temporarily removing information. We believe
that this behavior of runtime pruning can be used effectively to attain modularity in neural
networks. In this method, we have used inhibition mask-based runtime feature map pruning.
It is a training process in which a pre-trained model is retrained to get a pruned model.
Feature map pruning is enforced during retraining by an inhibition mask at each target
layer. Target layers are those layers that are subject to pruning. The hit and trial method
decides an optimal number of target layers. We use the term modular layer interchangeably
also with the term target layer. The inhibition mask itself is a binary mask that works as
a filter. It allows only a certain number of feature maps to pass to the next layer in each
feedforward pass. Inhibition mask for each layer is designed based on intuition. Figure 4
shows a high-level design of the process.

3.2.1 Clusters

Clusters obtained using k-medoid algorithm in the previous step are given as input. It pro-
vides a base to select a mask for each input image so that all the input images that belong to
the same cluster pass through the same module in a layer. It means that the number of clus-
ters at a target layer equals the number of modules at that layer. Mathematically, suppose
there are LT target layers out of the network’s total LN layers. In that case, the number of
clusters C, for the entire neural network equals the sum of the number of clusters in each

23318 Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 4 High level diagram of inhibition mask based training process

target layer. The number of modules in the ith target layer of the network is denoted as Mi
T .

Similarly, the total number of modules in the network, represented by M , equals C. Thus,
the number of clusters per target layer equals the number of modules in that specific layer.

3.2.2 Mask

Mask is a 3D binary tensor that is used for pruning. It works as a filter that allows some
feature maps to move forward in feedforward pass while blocking the rest. The size of the
mask for an overall network is equal to the sum of total modules at each target layer, as
shown in (3). The sparsity degree and the pattern of the mask are decided empirically.

MN =
LT∑

i=0

Mi (3)

Equation (3) indicates a sub-mask with a 2D shape for each target layer in a network.
Each layer has a different number of modules and various units. Both of these terms define
the shape of the sub-mask. The shape of each sub mask at a specific target layer can be
calculated as the number of units in that layer times the total number of modules assigned
to the layer.

3.2.3 Trainedmodel

Weights of the trained model are used to initialize another identical model, which is then
trained with runtime pruning enabled. This initialization process makes the new model
retain the knowledge of the pre-trained model that we used to obtain clusters and gives a
good point for the new model to start training. Initializing a new model from a pre-trained
model is essential as we want to keep the old weights for further experiments.

3.2.4 Retraining and runtime pruning

The new model, initialized with old weights, is fine-tuned, taking all the above input param-
eters. The retraining phase enables the model to support pruning to achieve modularity. The
difference between this retraining process and the standard training is that this process also
utilizes our feature map pruning Algorithm 2. The algorithm receives feature maps from the

23319Multimedia Tools and Applications (2022) 81:23311–23337



target layer as input and clusters them to one of the predefined clusters provided as a param-
eter. Based on the clustering result, a sequence of predefined masks is generated. Mask is
a sequence of binary values with the same length as the number of modules in the layer.
Each sub mask corresponding to one module has a length equal to the number of filters in
the layer. We have implemented our framework so that the feature maps corresponding to
the true values of a sub mask are zeroed. We are not removing the entire feature map from
the list to maintain its shape for the next layer. The effect of pruning can be seen in the
backward pass when gradients are propagated backward. Gradients calculated for the fil-
ters corresponding to the pruned feature maps are zero. Figure 5 graphically represents this
whole idea.

3.3 Inhibitionmasked based prediction

Using the previous step, the modular CNN can outperform the non-modular CNN of the
same architecture. In non-modular convolutional neural networks, the prediction on the test

Fig. 5 Convolutional layer operations

23320 Multimedia Tools and Applications (2022) 81:23311–23337



dataset consists of only a feedforward pass. The forward pass of our modular CNN also
includes a runtime pruning algorithm. The pruning algorithm uses the true labels provided
with the training dataset to cluster input at each modular layer. A sub mask from a list
of predefined masks is selected based on this clustering result. Each layer has a different
number of units and additional modules, so the mask list for each modular layer is different.
The selected mask activates only one module in each modular layer while deactivating the
rest. In other words, all the modular layer units that do not belong to the active module
are pruned. Inhibition mask-based pruning is a soft pruning technique. The Algorithm 2
works fine for training, but it cannot be embedded as it is in the feedforward pass of the
testing phase. The problem that we have in the testing phase is that the system has no
prior knowledge about the actual labels of the test data. Of course, labels are provided
with test data, but that can only be used to evaluate the final performance of a trained
network. To solve this problem, we present Algorithm 3 which is an extended version of
Algorithm 2. The extended pruning algorithm utilizes neural networks to cluster inputs.
Since every cluster corresponds to the mask, we call these neural network mask prediction
models. One mask prediction model is trained for each modular layer. The model predicts
the mask index in the mask list for input feature maps.

Trainingmask predictionmodel Mask or cluster prediction for runtime feature map prun-
ing problem in the testing phase is solved by deploying additional neural networks. The
number of mask prediction models in the modular neural network equals the number of
modular layers. Each mask prediction model is deployed after its corresponding modular
layer. It accepts feature maps from its preceding layer and returns the index of a cluster.
Thus, additional computation for mask prediction models is the only overhead in our mod-
ular CNN. For training mask prediction models, we conducted two experiments. In one
experiment, we trained the models on pre-activation of the modular layer, while in the other
experiment, we used post-activations. Pre-activations are the output of the modular layer
before the activation function is applied, and post-activation is the output of the activation
function. The concept is depicted in Fig. 6.

Preparing dataset The datasets for training mask prediction models is prepared using
the trained modular neural network, its input dataset, and the clustering information. The

23321Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 6 Convolutional layer operations

trained modular CNN is used to save the layer activations for which the mask prediction
model is trained. For this purpose, all three sections (train, test, and validation) of the input
dataset are passed to the modular CNN. Activations of train data are used to train the mask
prediction models, validation activations are used for validation, and test data is used to eval-
uate model performance after training. Labels for activations are generated using clustering
information.

Training For the MNIST dataset, we have used fully connected neural networks (FCNN),
while CNN models are used for the CIFAR10 dataset. In order to reduce the computational
complexity of FCNN, a preprocessing step precedes the training. We have divided each
n × n feature map into an m × m grid. The sum of every cell in the grid is normalized and
fed to the input layer. This method reduces the computational complexity by (n/m)2 times.
Further details about the experiments are shared in the experiments section.

Deployingmask prediction models Each mask prediction model work as a subprocess of
our modular neural network. Each process is called in every iteration of data on a modular
neural network. The output of the mask prediction models is used for mask selection which
is then applied to feature maps for dynamic pruning. One of the disadvantages of using sub-
models is extra computation, while the other is that the loss of these sub-models is added to
the loss of MCNN. Thus, it potentially reduces the overall accuracy of the MNIST model
by less than 1%. However, it results in a 2% increase in the CIFAR10 model.

3.4 Single shot training for modular CNN

The framework presented in this section to induce modularity in CNN is a multi-step and
time-consuming process. Training all the models or networks individually and manually
integrating them is a tedious task. Another drawback is that feature maps that are used to
train mask prediction models often need a massive amount of memory storage. It occu-
pies ample space and consumes time to load into memory. We have experimented with
multi-output CNN with an additional custom layer to solve these problems. A multi-output
network is a neural network that consists of one or more sub-networks. Each network returns
its output. All the sub-nets can take input either directly from the input layer or any other
layer of any sub-network. All the models are trained simultaneously in a single training
loop. In the case of supervised learning, labels for every sub-model with output are provided
to the base model with a tag attached to it. The tag identifies which data is intended for
which model. All sub-models can share the basic configurations (loss function, optimizer
function, etc.) or can be configured independently. However, the loss of every sub-model
accumulates to the loss of the base model. We have integrated our framework into a single
training process using a multi-output model design concept. Also, all the data processing
has been moved outside the main training loop. With this approach, we need to prepare data

23322 Multimedia Tools and Applications (2022) 81:23311–23337



only before the training. The overall model structure seems like the mask prediction mod-
els trained separately are now embedded inside the base model. So we call it Embedded
Modular CNN (EMCNN) shown in Fig. 7.

3.4.1 Runtime pruning layer algorithm

The runtime pruning layer has no trainable parameters. It receives output from a mask pre-
diction model and input feature maps from its preceding layer indicated by mout and F

respectively in the Algorithm 4. The mask M in the input is a 3-dimensional binary mask
for the modular layer. If the mask’s shape is represented by w × h × t , then w and h are
equal to the width and height of feature maps F passed to the algorithm, and t is equal to the
number of modules in the layer. All the feature maps corresponding to the zero matrices in

Fig. 7 Embedded CNN for MNIST

23323Multimedia Tools and Applications (2022) 81:23311–23337



the mask get pruned by the layer. The argmax function decodes the one-hot encoded out-
put of the sub-network where the multiply function performs pointwise multiplication on
its arguments. The returned sparse feature maps represented by sparse f m are forwarded
to the next layer in the network.

4 Experiments and results

4.1 Preparing datasets

We tested our method on two benchmark datasets: MNIST and CIFAR10. The MNIST
dataset contains a total of 70,000 28×28 grayscale images of handwritten digits. The dataset
is divided into 60,000 training samples and 10,000 test samples which are categorized into
ten classes. CIFAR10 consists of 60,000 32 × 32 RGB images. All the samples are cate-
gorized into ten different classes. The dataset is divided into 50,000 training samples and
10,000 test samples. Furthermore, the proposed method is evaluated on the Facial Aging
database, IFDB. The IFDB contains around 1200 facial images along with age information.

4.2 TrainingMNIST and CIFAR10 networks

First, we discuss the experimental setup and network architecture for the MNIST dataset.
The network architecture is outlined in Table 1 as CNNMNIST . The network has three con-
volution layers followed by two fully connected layers. Each of the first two convolution
layers precedes a max-pooling layer with 2 × 2 filter size and 1 × 1 stride. CIFAR10 exper-
iment is conducted using CNNCIFAR10 architecture outlined in Table 1. We use the default
parameter settings as reported in coarse filter pruning. The network architecture is reported
by authors with an alphanumeric string [3]. The (2 × 128C3) depicts two consecutive con-
volution layers with 3 × 3 convolution kernels and 128 feature maps. MP 2 represents a
single overlapped max-pooling layer with a kernel size of 3 × 3 and stride size of 2 for both
x and y axes.

4.3 MNIST experiment

4.3.1 Clustering result for MNIST

In this step, we first cluster the input domain using k-Medoid and MNIST distance matrix
calculated in Section 3.1.1. Column 1 of the table shows the number of clusters. While
column 2, named “Clusters” represents items of each cluster. For example, the second row
shows that all the labels are grouped in two clusters such that 0, 5, 6, and 8 consists of one

Table 1 CNN architecture details

Network Architecture Baseline MCR (%)

CNNMNIST 6(C5) − MP − 16(C5) − MP − 120(C5) 0.61

−84FC − 10Sof tmax

CNNCIFAR10 2 × 128C3 − MP 2 − 2 × 128C3 − MP 2 − 2 × 256C3 16

−256FC − 10Sof tmax

23324 Multimedia Tools and Applications (2022) 81:23311–23337



Table 2 MNIST clusters

cluster and 2, 1, 3, 4, 7, and 9 consists of the other cluster. The first element of each cluster
in the table is used as the medoid of the cluster (Table 2).

4.3.2 Inducing modularity in MNIST network

CNNMNIST is extended to modular CNN (MCNNMNIST by marking 2 of its convolution
layers as modular layers. Configuration details for MCNNMNIST are given in Table 3. The
configuration table shows that there are seven layers in the MNIST model. Two layers at
index 2 and 4 are modular layers. The first modular layer has six convolution units and the
second layer has 120 convolution units. The clusters or modules are 2 and 3, respectively,
for both layers. Modularity has been induced in the second and third convolution layers for
the 2nd and 3rd modules. The feature maps of the second convolution layer are clustered
into 2 clusters, while feature maps of the third layer are clustered into 3 clusters according
to Table 2.

Inhibition mask for MCNNMNIST The binary inhibition mask for MCNNMNIST is
designed intuitively. The mask for L1

T has a shape of 2×16 since it has two modules and 16

feature maps, while the mask for L2
T has a shape of 3 × 120. The masks m

i=1,2
1 induce 50%

sparsity in the layer, and both masks are mutually exclusive. Similarly, the masks m
i=1,2,3
2

induce 50% sparsity in the layer but are mutually inclusive. m1
2 and m2

2 are mutually exclu-
sive to one another but 50% inclusive to m3

2. Table 4 makes the idea more clear by presenting
the structure of inhibition masks for MCNNMNIST . The table shows that the mask for the
first module (i = 1) in the first modular layer (t = 1), m1

1 prunes the first eight feature maps
from 1-8 (both 1 and 8 are inclusive) for the input images that belong to cluster C1

1 . The
mask m2

1 does the opposite. It prunes the last eight features of the layer from 9-16 for the
input images that belong to cluster C2

1 . Inhibition mask in the second modular layer where

Table 3 MCNNMNIST

configuration LN 7 LT 2

Li
T i = 1 i = 2

Li
N i = 3 i = 4

Li
FM 16 120

Mi 2 3

Ci 2 3

M 5 C 5

23325Multimedia Tools and Applications (2022) 81:23311–23337



Table 4 Inhibition mask
structure for MCNNMNIST

Mask Pruned feature maps Non-pruned feature maps

m1
1 1-8 9-16

m2
1 9-16 1-8

m1
2 1-60 61-120

m2
2 61-120 1-60

m3
2 1-30 and 91-120 31-90

t = 2, all the three masks induce 50% sparsity in the layer by pruning 60 out of 120 feature
maps.

Mask prediction models for MCNNMNIST The Mask prediction model is trained for each
modular layer in the network. For MNIST, we have trained fully connected networks with
different architectures. Feature maps of training, validation, and testing datasets obtained
from each modular layer feed FCN models. All the three datasets are preprocessed by divid-
ing each channel of feature maps into 2×2 sub-matrices followed by calculating the sum of
each sub-matrix. The preprocessed feature maps are normalized and flattened in row-major
order. Since each feature map has 16 channels, we get 784 values as input. For the second
modular layer, feature maps have a shape of 7 × 7 × 120, giving us 1080 values for input
after preprocessing. Table 5 show details about the experiment. It is evident in the table
that the first mask prediction model is performing well in both aspects, i.e., accuracy and
computational complexity.

Based on these results, we selected the first network as mask prediction models for their
corresponding modular layer. The first network architecture achieves the highest accuracy
and lowest computational complexity among the given networks for L1

T . However, it reaches
the third-highest accuracy for L2

T , but the difference between the top 3 accuracies, in this
case, is negligible.

4.3.3 Modular CNN for MNIST results

Using the CNNMNIST model specified at Table 1, we achieved 99.39% accuracy on test
dataset. We induced modularity for 2 clusters and 3 clusters in two consecutive convolution

Table 5 MNIST mask prediction models details

Input Relu layers Output (one-hot) Accuracy

L1
T L2

T L1
T L2

T L1
T L2

T

784 1080 64 - 64 2 3 99.3 99.47

64 - 64 - 128 98.01 99.41

64 - 32 - 64 - 64 98.97 99.37

64 - 16 - 32 - 64 - 64 98.9 99.18

64 - 64 - 64 - 64 - 120 98.86 99.53

64 - 64 - 64 - 64 - 64 - 64 98.89 99.47

64 - 64 - 32 - 64 - 64 - 64 - 120 98.9 99.18

23326 Multimedia Tools and Applications (2022) 81:23311–23337



layers. After retraining the model with runtime, pruning enabled, we calculated test accu-
racy in two ways, by simulating mask prediction models with 100% accuracy and deploying
actual mask prediction models. Furthermore, we evaluated the effect of pruning at each
layer by enabling pruning at each layer individually and performed test data iterations. For
simulating mask prediction models with 100% accuracy, we cluster input to a modular con-
volution layer by directly reading its label. The feature maps are not forwarded to any of the
mask prediction models.

In the Table 6, the column “Mask Prediction Model” indicates whether mask prediction
models are deployed or not. If a column value is unchecked at a specific row, the accuracy
is calculated by simulating mask prediction models. The test accuracy for all the cases in
the table shows that the loss of the mask prediction models contributes to the loss of the
modular base model.

Furthermore, the abrupt drop of accuracy mentioned in the last row of the table where the
pruned modular CNN is evaluated with runtime pruning disabled validate our hypothesis
that our framework enforces a set of specific convolution units to fit a particular input group.
It enables different kernels to specialize in different sub-domains of the input by allowing
only a subset of filters to training at a modular layer and precluding the others. We can call it
targeted training. The results in the table are also illustrated in the bar graph Fig. 8. The blue
bars represent our modular CNN accuracy on test data while simulating mask prediction
models. In contrast, the other bars represent test accuracy reported in the table with the mask
prediction model column set to enabled.

4.4 CIFAR10 experiment

4.4.1 Cluster result for CIFAR10

In this step, we first cluster the input domain based on the distance matrix using
the k-Medoid algorithm. First we take the normalized confusion matrix of our trained
CNNCIFAR10 model which has 84% accuracy, show in Fig. 9. It can be observed that
123 sample dogs are confused as a cat by the model, the truck is confused with the air-
plane, and deer are mostly confused with birds. As mentioned in Section 3, we calculated
the distance matrix as shown in Fig. 10, from the CIFAR10 normalized confusion matrix.
Next, we applied k-Medoid algorithm on the distance matrix to cluster the CIFAR10 dataset
(Table 7).

Table 6 Modular convolution neural network for MNIST results

23327Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 8 Modular CNN for MNIST results bar graph

4.4.2 Inducing modularity in CIFAR10 network

CNNCIFAR10 is extended to modular CNN (MCNNCIFAR10) by marking 3 of its con-
volution layers as modular layers. Configuration details for MCNNCIFAR10 are given in
Table 8. The configuration settings depicted by the table indicates that there is a total of 10
layers (LN) in CNNCIFAR10 3 of which are modular layer denoted by LT . The modular
layers lie at indexes 2, 4, and 7 of the MCNNCIFAR10 respectively (indexes start from 1).

Fig. 9 CIFAR10 normalized confusion matrix

23328 Multimedia Tools and Applications (2022) 81:23311–23337



Fig. 10 CIFAR10 distance matrix

Li
FM denotes the total number of feature maps produced by ith layer of the network. M and

C denote a total number of modules and clusters, respectively, in the entire modular CNN.

Inhibitionmask forMCNNCIFAR10 We have defined a binary inhibition mask for each mod-
ular layer of MCNNCIFAR10. As shown in Table 8, the 3 modular layers has 128, 128 and
256 ReLu units and 2, 3 and 4 modules respectively. These two factors define the shape of
the inhibition mask for its corresponding modular layer. The first mask (inhibition mask for
the first modular layer) has a shape of 2 × 128, the second mask has a shape of 3 × 128, and
the third mask has a shape of 4 × 256. Table 9 explains the structure of each of the masks.
All the masks induce 50% sparsity in their corresponding modular layer at runtime. Only
m

i=1,2
1 are mutually exclusive. The sparsity of the mask determines the mutual exclusion

property of the mask. One must be traded off for another. For example, to obtain a mutual
exclusive mask for M3

T the sparsity must be greater than or equal to 75%. We have used
masks with 50% sparsity in all our experiments for this work.

Mask prediction models for MCNNCIFAR10 Mask prediction models specified in Table 10
are convolution neural networks. The “ReLu Layers” column refers to the number of hidden
convolution layers and the number of convolution filters in each layer. All the layers have a
3×3 filter and ReLu as activation function. The model input comes from preceding modular

Table 7 CIFAR10 clusters

23329Multimedia Tools and Applications (2022) 81:23311–23337



Table 8 MCNNCIFAR10
configuration LN 10 LT 3

Li
T i = 1 i = 2 i = 3

L
j
N j = 2 j = 4 j = 7

Li
FM 128 128 256

Mi 2 3 4

Ci 2 3 4

M 9 C 9

layers, and the output of the models is used for mask selection for runtime pruning. Adam
optimizer is used with an initial learning rate of 0.001 besides with early stopping callback
to stop the training at a convergence point. The table specifies all the model architectures
we trained on the feature maps of their respective modular layers. The model in row 1 is
selected for L1

T and L2
T , and the model in row 2 is used the layer L3

T due to their high
accuracy on the corresponding layer feature maps and lower computation complexity.

4.4.3 Modular CNN for CIFAR10 results

The modular CNN for CIFAR10 results is compiled in Table 11. We have collected results
for different scenarios. MCNNCIFAR10 has been evaluated with both simulated mask pre-
diction models and actual mask prediction models. Simulated mask prediction models mean
that we have predicted masks for a set of feature maps based on its associated label even
during inference. It enables us to observe base model performance without any additional
loss due to the mask prediction model. The tests which incorporate “Pruning” and do not
incorporate the “Mask Prediction Model” uses this technique. The fourth row of the table
shows that our modular convolutional neural network has 88.86% accuracy. This is the max-
imum accuracy this model can achieve if mask prediction models are improved. The last
row of the table report 78.01% accuracy with the best trained model and is about 6% less
than the base model accuracy (84%). Based on our experiments, we hypothesized that the
weights of mask prediction models are not aligned with the base model weights, resulting in
a significant drop in accuracy. To make the alignments, we retrained our MCNNCIFAR10
with all the mask prediction models enabled in the entire training phase. After retraining,
our modular CNN outperforms the baseline model accuracy by 2.78% and achieves 86.78%
accuracy. We refer to this retraining as weight alignment training in Table 11. The results in

Table 9 Inhibition mask
structure for MCNNMNIST

Mask Pruned feature maps Non-pruned feature maps

m1
1 1-64 65-128

m2
1 65-128 1-64

m1
2 1-64 65-128

m2
2 65-128 1-64

m3
2 1-32 and 97-128 33-96

m1
3 1-128 129-256

m2
3 129-256 1-128

m3
3 1-64 and 193-256 65-192

m4
3 65-192 1-64 and 193-256

23330 Multimedia Tools and Applications (2022) 81:23311–23337



Ta
bl
e
10

C
IF

A
R

10
m

as
k

pr
ed

ic
tio

n
m

od
el

s
de

ta
ils

In
pu

t
R

el
u

la
ye

rs
O

ut
pu

t(
on

e-
ho

t)
A

cc
ur

ac
y

L
1 T

L
2 T

L
3 T

L
1 T

L
2 T

L
3 T

L
1 T

L
2 T

L
3 T

30
×

30
×

12
8

28
×

28
×

12
8

13
×

13
×

12
8

64
-

64
2

3
4

89
.5

0
94

.9
8

99
.4

9

64
-

64
-

12
8

89
.5

2
95

.0
4

99
.9

4

64
-

32
-

64
-

64
89

.6
0

94
.8

9
99

.1
0

64
-

16
-

32
-

64
-

64
89

.3
9

95
.0

6
99

.9
3

64
-

64
-

64
-

64
-

12
0

90
.4

0
95

.0
9

99
.9

1

64
-

64
-

64
-

64
-

64
-

64
90

.7
1

95
.3

5
99

.9
5

64
-

64
-

32
-

64
-

64
-

64
-

12
0

90
.2

3
95

.2
7

99
.7

9

23331Multimedia Tools and Applications (2022) 81:23311–23337



Table 11 Modular convolution neural network for CIFAR10 results

the table are also illustrated in Fig. 11. The blue bars represent our modular CNN accuracy
on test data while simulating mask prediction models. In contrast, the other bars represent
test accuracy reported in the table with the mask prediction model column set to enabled.

4.5 Modular CNN for MNIST: single shot training results

We trained our model represented in Fig. 7 using Keras functional API with Adam as an
optimizer and early stopping algorithm with 0.0001 minimum delta, six epochs patience,
and the restore best weights flag enabled. The base model layers are initialized with MNIST
base model (CNNMNIST ) weights while mask prediction sub-models are initialized with
the default algorithm used by Keras. Furthermore, the MNIST training data provided to the

Fig. 11 Modular CNN for CIFAR10 results bar graph

23332 Multimedia Tools and Applications (2022) 81:23311–23337



model has been split into 5,000 validation images and 45,000 training images. We have
achieved 98.69% test accuracy on the base model with all the above. The mask prediction
models embedded into the base model for L1

T and L2
T have 99.12% and 99.36% accuracy.

The loss of the overall mechanism is recorded to be 0.90, which is the Sum of MNIST base
model loss (0.45) and the two mask prediction models loss (0.25, 0.20). It can be concluded
from the results that the drop in the MNIST base model accuracy is due to the perfor-
mance of mask prediction models. Trained mask prediction models add a certain level of
overhead to the base model. We theoretically calculated the overhead and computational
complexity reduction by runtime pruning in terms of multiplications. Table 12 represents the
number of multiplications that can be avoided per sample iteration through the model. The
first column represents the layer’s name; the second column represents the total number of
multiplications performed. The third column shows the number of multiplications that can
potentially be avoided due to the sparsity added to feature maps. The 16Conv layer is the
first modular layer, and the 120Conv is the second modular layer. The amount of complex-
ity reduction is directly proportional to the sparsity of the pruning mask. The table further
indicates that pruning at one layer also affects its next layer. Although the inhibition mask
for the 120 Conv layer mentioned in Table 4 has a 50% sparsity ratio, we get 75% sparsity
in the layer. The additional 25% sparsity is added due to channel reduction in its preceding
layer, 16Conv. Similarly, pruning at 12Conv influences its succeeding fully connected layer
named 84FC in the table. Despite the sparsity added to the model, mask prediction models
add additional computations to the base model. The mask prediction models add 289,920
and 107,712 multiplications in total for L1

T and L2
T layers, respectively. Considering the

sparsity in modular and fully connected layers, we get a net overhead of 333,504 multipli-
cations. The mask prediction model architecture directly influences this overhead. Multiple
cost reduction techniques can use to reduce the overhead.

Our proposed model achieved accuracy near the baseline model for the MNIST dataset.
In the case of CIFAR10, our approach outperformed the baseline model when the weighted
alignment (i.e., retraining of the network) was performed. But without weight alignment, the
performance was almost 6% less than the baseline performance. In this work, at one end, we
compromised the performance of the models with a slight fraction, but at the same time, we
saved around 53% multiplications in the Convolution Layers. Keeping these multiplications
helped to achieve low computational complexity.

4.6 Experiments of IFDB dataset

In order to further validate our approach, we evaluated it on the IFDB database and com-
pared the results with the method proposed in [13]. The data was divided into four different
age groups as shown in Table 13. There is accuracy loss due to the samples per class. Since

Table 12 MCNNMNIST

Modular layers complexity
calculations

Layer Total multiplications Saved multiplications Percentage

16Conv 11,616 5,808 50%

120Conv 17,280 12,960 75%

84FC 90,720 45,360 50%

Total 119,616 64,128 53%

23333Multimedia Tools and Applications (2022) 81:23311–23337



Table 13 Results on IFDB
dataset 0-2 3-39 40-59 60-100

Dehshibi et al. 80 82.9 75.92 72.72

Horng et al. DB 92.24 83.21 78.13 64.72

Ours 68.76 69.21 66.36 62.21

we have used the same models, the models are not too generalized to adapt to every prob-
lem. The same models are used for fair comparison and observed accuracy loss. But at the
same time, the computational time was reduced.

5 Conclusion

CNN delivers state-of-the-art performance on various computer vision problems. Its early
success for image classification problems developed the interest of researchers in the field.
The hierarchical structure of CNN is inspired by the cortical region of the human brain.
The hidden convolution layers pull out useful information from input images and forward
it to succeeding layers. CNN has a monolithic structure and works as a black box despite
the hierarchical processing mechanism. In this work, we proposed a framework to instigate
modularity in a pre-trained convolution neural network for image classification. We exploit
the information available in the confusion matrix of the model. We hypothesized that the
confusion matrix of a trained or frozen CNN provides enough information to cluster the
input domain. After the initial composition of modules, we utilized the confusion matrix
as a distance matrix for domain clustering. The clustering divides the datasets into several
groups or clusters.

In module composition, we manually selected the layers to induce modularity and com-
posed the shape of the modules in each layer. We deactivate several modules by inhibiting
mask-based runtime feature map pruning using artificial neural networks to route a group
of input images through a specific path formed by modules. We call the routing networks to
mask prediction models. The mask prediction models accept feature maps from a modular
layer in the CNN and classify them to one of the available clusters. We select the inhibition
mask for the cluster and produce zero sparsity in the input feature maps based on the result.
To train the mask prediction models for modular layers, we prepared the train, validation,
and test datasets to save the corresponding layers’ feature maps and the available clustering
and module configuration information.

Moreover, we use arithmetic integration of the module’s output which operates in a com-
petitive environment. The proposed framework is evaluated on two benchmarks datasets,
MNIST and CIFAR10. On the MNIST dataset, we achieved 98.51% accuracy using our pro-
posed Modular CNN compared to the baseline accuracy of 99.39%. But at the same time,
we saved 53% multiplications in the network, which significantly reduced the complexity.
Similarly, on the CIFAR10 dataset, our model achieves 78.01% accuracy, 6% less than the
baseline accuracy (84%). But when we retrain the network to align the weights further, our
model outperformed the baseline model accuracy by 2.78% and achieved 86.78% accuracy.
Modularity produces sparsity in the network, but the computation overhead added to mask
prediction models exceeds the sparsity produced. Also, modularity adds additional hyper-
parameters to tune. However, we consider computational overhead reduction for future
work. In the future, we will explore methods to predict the optimal configuration for overall

23334 Multimedia Tools and Applications (2022) 81:23311–23337



modular network structure, such as the number of modules and composition of modules and
inhibition mask. We also consider adding modules to a pre-trained network for a heteroge-
neous task and profound hierarchical domain decomposition, and expanding modularity in
the entire network. Furthermore, we intend to evaluate the capability of our modular CNN
for knowledge distillation and transfer learning.

Author Contributions S.A.: Study design of neural network architecture and its implementation. SU.A.:
Supervision, writing article, article review. U.H.: Study design of neural network architecture, writing article.
K.J.: Helped in developing neural network architecture, article review. J.R.: Study design, article review.
S.A.: Supervision, writing article, article review.

Funding No funds or grants were received.

Data Availability The data used in this paper is publicly available. The link to the datasets is as follow:

– MNIST (http://yann.lecun.com/exdb/mnist/)
– CIFAR10 (https://www.cs.toronto.edu/∼kriz/CIFAR.html)

Declarations

Conflict of Interests The authors declare no conflict of interest.

References

1. Anderson A, Shaffer K, Yankov A, Corley CD, Hodas NO (2016) Beyond fine tuning: a modular
approach to learning on small data. arXiv:1611.01714

2. Anwar S, Hwang K, Sung W (2017) Structured pruning of deep convolutional neural networks. ACM J
Emerg Technol Comput Syst (JETC) 13(3):32

3. Anwar S, Hwang K, Sung W (2017) Structured pruning of deep convolutional neural networks. ACM J
Emerg Technol Comput Syst (JETC) 13(3):1–18

4. Bastanfard A, Bastanfard O, Takahashi H, Nakajima M (2004) Toward anthropometrics simulation of
face rejuvenation and skin cosmetic. Computer Animation and Virtual Worlds 15(3):347–352

5. Bastanfard A, Takahashi H, Nakajima M (2004) Toward e-appearance of human face and hair by age,
expression and rejuvenation. In: 2004 International conference on cyberworlds, pp 306–311

6. Blakeney C, Li X, Yan Y, Zong Z (2020) Parallel blockwise knowledge distillation for deep neural
network compression. IEEE Transactions on Parallel and Distributed Systems 32(7):1765–1776

7. Braylan A, Hollenbeck M, Meyerson E, Miikkulainen R (2015) Reuse of neural modules for general
video game playing. arXiv:1512.01537

8. Chihaoui M, Elkefi A, Bellil W, Ben Amar C (2016) A survey of 2d face recognition techniques.
Computers 5(4):21

9. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 1251–1258

10. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 1251–1258

11. Ciregan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification.
In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 3642–3649

12. Cui Z, Henrickson K, Ke R, Wang Y (2019) Traffic graph convolutional recurrent neural network: a deep
learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent
Transportation Systems

13. Dehshibi MM, Bastanfard A (2010) A new algorithm for age recognition from facial images. Signal
Process 90(8):2431–2444

14. Freeman I, Roese-Koerner L, Kummert A (2018) Effnet: an efficient structure for convolutional neural
networks. In: 2018 25th IEEE international conference on image processing (ICIP). IEEE, pp 6–10

15. Fritsch J (1996) Modular neural networks for speech recognition. CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT OF COMPUTER SCIENCE, Tech. Rep.

23335Multimedia Tools and Applications (2022) 81:23311–23337

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/CIFAR.html
http://arxiv.org/abs/1611.01714
http://arxiv.org/abs/1512.01537


16. Gheorghe T, Ivanovici M (2021) Model-based weight quantization for convolutional neural network
compression. In: 2021 16th International conference on engineering of modern electric systems (EMES).
IEEE, pp 1–4

17. Ghosh S, Srinivasa SK, Amon P, Hutter A, Kaup A (2019) Deep network pruning for object detection.
In: 2019 IEEE international conference on image processing (ICIP). IEEE, pp 3915–3919

18. Goldberg Y (2016) A primer on neural network models for natural language processing. J Artif Intell
Res 57:345–420

19. Gradojevic N, Gençay R., Kukolj D (2009) Option pricing with modular neural networks. IEEE
Transactions on Neural Networks 20(4):626–637

20. Han S, Mao H, Dally WJ (2015) Deep compression: compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv:1510.00149

21. Happel BL, Murre JM (1994) Design and evolution of modular neural network architectures. Neural
Netw 7(6-7):985–1004

22. He Y, Zhang X, Sun J (2017) Channel pruning for accelerating very deep neural networks. In:
Proceedings of the IEEE international conference on computer vision, pp 1389–1397

23. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017)
Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861

24. Huizinga J, Clune J, Mouret J-B (2014) Evolving neural networks that are both modular and regular:
hyperneat plus the connection cost technique. In: Proceedings of the 2014 annual conference on genetic
and evolutionary computation, pp 697–704

25. Jain S, Hamidi-Rad S, Racapé F (2021) Low rank based end-to-end deep neural network compression.
In: 2021 Data compression conference (DCC). IEEE, pp 233–242

26. Karim F, Majumdar S, Darabi H, Chen S (2017) Lstm fully convolutional networks for time series
classification. IEEE Access 6:1662–1669

27. Lavin A, Gray S (2016) Fast algorithms for convolutional neural networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 4013–4021

28. LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. The
Handbook of Brain Theory and Neural Networks 3361(10):1995

29. Melin P, Mendoza O, Castillo O (2011) Face recognition with an improved interval type-2 fuzzy logic
sugeno integral and modular neural networks. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans 41(5):1001–1012

30. Mikolov T, Kombrink S, Burget L, Černockỳ J, Khudanpur S (2011) Extensions of recurrent neural net-
work language model. In: 2011 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, pp 5528–5531

31. Modhej N, Bastanfard A, Teshnehlab M, Raiesdana S (2020) Pattern separation network based on the
hippocampus activity for handwritten recognition. IEEE Access 8:212 803–212 817

32. Phan KT, Maul TH, Vu TT, Lai WK (2018) Dropcircuit: a modular regularizer for parallel circuit
networks. Neural Process Lett 47(3):841–858

33. Ronco E, Gawthrop P (1995) Modular neural networks: a state of the art. Rapport Technique CSC-95026,
Center of System and Control, University of Glasgow. http://www.mech.gla.ac.uk/control/report.html

34. Ronen M, Shabtai Y, Guterman H (2002) Hybrid model building methodology using unsupervised fuzzy
clustering and supervised neural networks. Biotech Bioeng 77(4):420–429

35. Srivastava RK, Greff K, Schmidhuber J (2015) Highway networks. arXiv:15050.00387
36. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to

prevent neural networks from overfitting. The J Mach Learn Res 15(1):1929–1958
37. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, inception-resnet and the impact of

residual connections on learning. arXiv:1602.07261
38. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4 inception-resnet and the impact of

residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence
39. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for

computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 2818–2826

40. Terekhov AV, Montone G, O’Regan JK (2015) Knowledge transfer in deep block-modular neural
networks. In: Conference on biomimetic and biohybrid systems. Springer, pp 268–279

41. Tseng MM, Wang C (2014) Modular design, pp 895–897. Springer, Berlin
42. Verbancsics P, Stanley KO (2011) Constraining connectivity to encourage modularity in hyperneat. In:

Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp 1483–1490
43. Waibel A (1989) Modular construction of time-delay neural networks for speech recognition. Neural

Comput 1(1):39–46

23336 Multimedia Tools and Applications (2022) 81:23311–23337

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1704.04861
http://www.mech.gla.ac.uk/control/report.html
http://arxiv.org/abs/15050.00387
http://arxiv.org/abs/1602.07261


44. Wang T, Wu DJ, Coates A, Ng AY (2012) End-to-end text recognition with convolutional neural net-
works. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE,
pp 3304–3308

45. Watanabe C (2019) Interpreting layered neural networks via hierarchical modular representation. In:
International conference on neural information processing. Springer, pp 376–388

46. Wei W, Wong Y, Du Y, Hu Y, Kankanhalli M, Geng W (2019) A multi-stream convolutional neural
network for semg-based gesture recognition in muscle-computer interface. Pattern Recogn Lett 119:131–
138

47. Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning structured sparsity in deep neural networks. In:
Advances in neural information processing systems, pp 2074–2082

48. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 68(1):49–67

49. Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: an extremely efficient convolutional neural network
for mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 6848–6856

50. Zhao Y, Wang D, Wang L, Liu P (2018) A faster algorithm for reducing the computational complexity
of convolutional neural networks. Algorithms 11(10):159

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Salman Ahmad1 · Shahab U. Ansari1 ·Usman Haider1 ·Kamran Javed2 ·
Jalees Ur Rahman1 · Sajid Anwar1

Salman Ahmad
ahmadsalman145@gmail.com

Shahab U. Ansari
sansari@giki.edu.pk

Kamran Javed
kamranuettaxila@gmail.com

Jalees Ur Rahman
jalees@giki.edu.pk

Sajid Anwar
sajid@giki.edu.pk

1 Ghulam Ishaq Khan Institute of Engineering Sciences and Technology,
District Swabi, Topi, 23640, Pakistan

2 National Center of Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority
(SDAIA), Riyadh, Saudi Arabia

23337Multimedia Tools and Applications (2022) 81:23311–23337

http://orcid.org/0000-0001-5221-6231
mailto: ahmadsalman145@gmail.com
mailto: sansari@giki.edu.pk
mailto: kamranuettaxila@gmail.com
mailto: jalees@giki.edu.pk
mailto: sajid@giki.edu.pk

	Confusion matrix-based modularity induction into pretrained CNN
	Abstract
	Introduction
	Literature review
	Proposed methodology
	Clustering input domain
	Confusion matrix driven centroid based clustering (CMCBC)
	Normalization
	Distance calculation


	Inhibition mask based training
	Clusters
	Mask
	Trained model
	Retraining and runtime pruning

	Inhibition masked based prediction
	Training mask prediction model
	Preparing dataset
	Training
	Deploying mask prediction models


	Single shot training for modular CNN
	Runtime pruning layer algorithm


	Experiments and results
	Preparing datasets
	Training MNIST and CIFAR10 networks
	MNIST experiment
	Clustering result for MNIST
	Inducing modularity in MNIST network
	Inhibition mask for MCNNMNIST
	Mask prediction models for MCNNMNIST

	Modular CNN for MNIST results

	CIFAR10 experiment
	Cluster result for CIFAR10
	Inducing modularity in CIFAR10 network
	Inhibition mask for MCNNCIFAR10
	Mask prediction models for MCNNCIFAR10

	Modular CNN for CIFAR10 results

	Modular CNN for MNIST: single shot training results
	Experiments of IFDB dataset

	Conclusion
	References
	Affiliations


