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Abstract
Deep learning has made significant achievements in the field of medical image processing.
To train a robust model with strong generalization, a large-scale, high-quality dataset with
balanced categories and correct labels is required. However, most datasets follow a long-tail
distribution that some classes occupy most of the data, and other classes have only a few sam-
ples. At the same time, incorrect labels exist in the datasets. The existing methods focus on
solving only one of these two problems, such as Focal Loss for class imbalance and mean-
absolute error loss function for noisy labels. However, methods that try to alleviate one of
the problems will aggravate the other. In order to tackle the class imbalance while avoids
fitting the noisy labels, we propose a novel Batch Adaptation Weighted (BAW) loss. It uses
the loss weights of known samples to guide the direction of network optimization for next
batch training. BAW is easy to implement and can be extended to various deep networks
to improve accuracy without any extra cost. We evaluate BAW on a general natural image
dataset, CIFAR-10, and verify it on a large-scale medical image dataset, ChestX-ray14.
Compared with existing algorithms, BAW gets best results on both datasets. Experiments
shows that our algorithm can solve the problem of class imbalance and noisy labels at the
same time. The code of our project is available at https://github.com/pansiyuan123/chestnet.
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1 Introduction

With the emergence of large-scale data and the rapid improvement of computing power,
deep learning method gradually gains the ability to surpass human beings in many visual
tasks [18, 27, 29], especially in the field of medical image processing [34].

Usually, a simple network can handle common visual tasks (such as classification, seg-
mentation, detection) well. In this paper, we proposed a network based on DenseNet121
which can be shown in Fig. 1. However, such remarkable success is undoubtedly insepara-
ble from the high-quality large-scale datasets [22, 28, 37]. However, most public datasets
are not evenly distributed. Naturally, common categories have more samples and the rare
types have less, because the difficulty of obtaining pictures is different [23].

Simultaneously, the compromise between label accuracy and dataset capacity has been
an obstacle that limits the accuracy of deep learning models. Datasets such as social tagging
and crowd-sourcing are noisy but easy to get. As a result, their scale can be massive. In
comparison, the capacity of well collected and labeled datasets is limited. Moreover, even
the well-labeled datasets can contain noise because of accidental label error, confusing and
low-quality images, or reporting bias [24, 32]. Since the noise in the dataset will have a
significant impact on the performance of the deep learning model, it is the key for the
network to identify and modify the noise samples. The noisy label refers to the false ground
truth given by the dataset (including training set and test set). This can be caused by many
reasons. For example, the data set is obtained by crawler from internet without cleaning;
The person who give the data labels has not been checked and confirmed after labeling; For
some medical image data, the labeled person need some relevant experience. And we show
some samples of these two datasets in Figs. 2 and 3.

The class imbalance will lead the network towards overfitting by the majority class and
ignore the minority class [2], while noisy labels will cause the network to over-learn the
wrong labels, which will both greatly reduce the performance of the model [30]. Recently,
many works focus on solving one of the two problems, such as: [3, 23, 33] for class imbal-
ance and [25, 31] for noisy labels. However, the tough issue is that the solutions to these two
problems are incompatible. The loss function of the former (i.e., Focal loss [22]) pay more
attention to the hard examples so their weights will be increased which can easily lead to
overfitting to the noisy data. The solution to the latter (i.e., O2U-Net [13]) hopes to find a
balance between loss under-fitting and over-fitting. while at this time, the network is likely
only to learn to fit the categories with huge samples but under fit the categories with few
samples. In conclusion, both of the above algorithms cannot solve the two problems at the
same time so that the network has not perfect performance.

Fig. 1 The architecture of the proposed ChestNet is based on DenseNet121. ChestNet selects features from
networks in channels and space through Squeeze-and-Excitation module [14] (SE) and Spatial pooling to
solve the diversity and relevance of diseases. BAW loss is used to solve the class imbalance and to avoid the
network overfitting with noisy labels
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Fig. 2 Examples of noisy labels selected from CIFAR dataset [17]. The given label is the ground truth from
the dataset. The correct label is the results computed by cleanlab [24]. Cleanlab is a data-centric python
package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and
learning with label errors in datasets

To solve the dilemmas mentioned above, this paper proposes a novel loss term called
BAW, whichuses the area under ROC (AUROC [7]) of the known samples to guide the weight
of different classes for the next batch training. By doing so, BAW focus more on the smaller
classes, thus solves the problem of class imbalance. Meanwhile, the lowweight ofwell-trained
categories will neglect the noisy label to avoid over-fitting. That is why BAW can deal with
both problems at the same time. For detailed functional analysis of BAW, please refer to
Section 5.3.2. It is easy-to-implement and can be extended to various deep neural networks.

The contributions of this work can be summarized as follows:

– We propose a new loss function called batch adaptation weighted loss to solve the
unbalanced distribution of categories. We uses the area under ROC (AUROC) of the
known samples to guide the weight of different classes for the next batch training.

– In order to avoid excessive noisy samples in one batch, we use Exponential Moving
Average (EMA) smoothing weights to obtain more stable class weights, which is proved
useful during the experiment.

– We evaluate BAW on a general natural image dataset, CIFAR-10 [17], and verify it on
a large-scale medical image dataset, ChestX-ray14 [34]. Our algorithm achieves best
results on both datasets.

2 Related work

2.1 Class imbalance

Class imbalance is often encountered in the real dataset [3, 23, 33]. The solutions to this
problem are mainly divided into two types, data preprocessing and loss function weighting.
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Fig. 3 Examples of noisy labels selected from chestX-ray14 dataset. The given label is the ground truth from
the dataset. The correct label is the results computed by cleanlab [24]

Data preprocessing, such as undersampling [23], oversampling [3] and data enhancement,
can solve the problem of class imbalance at the dataset level. However, due to poor operabil-
ity, it is easy to cause data loss and difficult to use for all tasks. By comparison, loss function
weighting can be easily applied to all tasks, and the modification is straightforward and con-
venient. At present, Focal loss [22] is proposed for the imbalance of positive and negative
samples in detection, but this method is easy to overfit outliers, leading to the decline of
model performance. Li et al. [20] proposed Gradient Harmonizing Mechanism (GHM) loss
to conduct weight reduction processing. It makes the model focus more on general samples
and discard difficult samples that containing a large amount of gradient information. How-
ever, Focal loss pays more attention to the difficult samples so the weights of them will be
increased. This can easily lead to overfitting of noisy data.

2.2 Noisy labels

Learning with noise has been extensively studied in machine learning. Most of them
includes noise-robust algorithms, noise-cleaning algorithms, noise modeling for learning
with noisy label.

2.2.1 Noise robust methods

Many studies have shown that label noise can impact the classification accuracy of trained
classifiers. To reduce the impact of noisy labels, some approaches rely on training classifiers
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using noise robust loss functions [8]. These methods alter normally used loss so that the
new loss punish less on samples whose label is not correct. These methods is relatively
simple, controllable and predictable. But most of them is not completely robust to label
noise, as they reduce the impact of label noise but do not get rid of it. Some approaches
enhance the network by regularization [4]. Applying regularization to the model can limit
the search space for optimization and delay the over-fitting. Most methods of this kind
are easy to implement and computing efficient. But the impact of regularization on deep
network is hard to explain and predict. There are also methods that clean the dataset by
remove samples or change labels based on training result. But these methods mix hard
examples with mislabeled ones, which can be harmful especially when the number of labels
is large and label distribution is not balanced. Most noise robust methods work under the
assumption that the label noise can be avoided by not over-fitting the training data, which is
not true for most datasets.

2.2.2 Semi-supervised learning

Semi-supervised learning is proposed to fully utilize weak and noisy labels, or even unla-
beled dataset with well labeled data. Ding et al. [5] proposed a two-stage framework for
learning with noisy labels. By ignoring labels that may be wrong, the algorithm avoids the
noisy samples while utilizing the whole dataset. Some other methods employ label prop-
agation and iterative label, and correct noisy dataset using the network trained on clean
dataset. Most semi-supervised methods require complex calculation of image similarity or
extra clean sub-dataset, which limits the usage of these methods. Moreover, semi-supervised
learning relies heavily on the initial model trained on clean dataset, which is not robust
under high noise ratio.

2.2.3 Transfer learning

Many previous studies have proved that CNNs are capable of learning rich and hierarchi-
cal visual features given that the training data is sufficient. Under the assumption that most
visual features are common between different domains, researchers proposed to first ini-
tializing CNN parameters with a model pre-trained on a large scale dataset. The pre-trained
network extract more useful features compared to random initialized network. If the two
tasks are related, the pre-trained network will generate representative features and fine-
tuning network on noisy dataset can be more robust compared to training the network from
scratch.

2.2.4 Noise modeling

Many previous studies in this area focus on modeling the label noise [15, 24, 35]. These
methods try to learn the joint distribution of given label and latent true label. In [15] a none-
linear noise module (NNAQC) is appended to standard CNNs, and the loss in this work is
designed to encourage clustering. The output of NNAQC is interpreted as a probabilistic
model and performs as an efficient denoise model. Jiangchao [35] proposed a probabilistic
model which explicitly introduce an extra variable to represent the trustworthiness of noisy
labels. The confident learning (CL) method [24], however, works on the prediction of well
trained networks. The CL module takes as input the predictions and corresponding labels,
and estimate the joint distribution of label noise. These noise modeling models are efficient
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estimators for label noise distribution and can be used to clean the dataset, estimating predic-
tion confidence, find the misleading labels in dataset. But almost all of these works focus on
labels-wise distributions rather than instance-wise distributions. The images in these meth-
ods are divided into groups by given label and true label rather than the characters of images
such as lighting, blurred or not, clarity, et.

2.3 Deepmodel on ChestX-ray14

Rajpurkar et al. [26] proposed CheXNet, which used the latest deep convolutional neural
network structure Densenet [12] as the feature extraction module. The model uses heatmaps
to obtain disease areas on the chest x-ray image. Li et al. [19] proposed a limited-supervised
method combining disease classification and detection, using a small number of detection
boxes to improve the identification and localization ability of chest diseases. However, class
imbalance and noisy labels are not take into account in their method, so our method behaves
better during the experiment.

3 Batch adaptation weighted loss

3.1 Inspiration

To solve the problem of class imbalance, the fundamental idea is to set the bigger categories’
weight as a smaller number. That is what α does in focal loss [22]. However, this requires
manual adjustment of the hyperparameters and will lead to over-learning of noisy labels.
Therefore, we hope to make the network adjust the weights of different categories during
the network training process adaptively. Based on this idea, we proposed a new loss function
termed BAW. It uses the samples of multiple batches that have learned before and then to
get the learning degree of each category, which is measured by AUROC. Use this as a guide
to calculate the new weight Wi for each category i. At the same time, in order to solve the
problem that the network is trapped in the noisy labels, we use Exponential Moving Average
(EMA) [10] to obtain a more stable class weights.

3.2 Definition

We use t ∈ T represents T iterations. k ∈ K indicates that the batch size of each iteration is
K . fΘt (x) is the CNN mapping function when the parameter is updated to Θt after t itera-
tions. At this time, the network learned a total of T ×K samples after T iterations. We hope
that the network can use the information of known samples to guide the next batch calcula-
tion. Let Λi(x) ∈ [0, 1] denote the indicator function (e.g., AUROC), where i represents the
ith category. Here, the weight indicator of category i is expressed as 1−Λi({fΘt (x)}t,k). If
the indicator of the category i is reduced after the T iterations, it indicates that the category
i does not obtain sufficient update information in the T iterations. So the learning of the
category i will be aggravated, and greater weight should be given. On the contrary, if the
index of the category i is high enough, it indicates that the category i has been fully studied
after T iterations compared with other categories. At this time, the focus of learning should
be on other categories, so less weight should be given on category i. Finally, we use soft-
max function to smooth the weight of each category so that

∑
i Wi = 1. Here, the formula

of weight indicator is
wi = sof tmax(1 − Λi({fΘt (x)}t,k)). (1)
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Furthermore, since the adaptive weight calculation in the formula comes from multiple
mini-batches of sample indicators, in order to avoid the possibility of excessive noisy sam-
ples in the multi-batch sample, We uses EMA smoothing weights to obtain more stable
class weights. We define w′

i as the weight factor of category i before updating. The update
formula for wi can be expressed as

wi = αw′
i + (1 − α)sof tmax((1 − Λi({fΘt (x)}t,k))). (2)

The α here is used for balancing the new calculated weight and the old one. In experiments,
a relatively small value (e.g., α = 0.1, our default) works better than a big value (e.g.,
α = 0.5).

So our loss function is:

L = − 1

N

N∑

i=1

wi(y
(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))) (3)

Here, we denote y(i) as the label of the instance, ŷ(i) is the prediction of our model. If we
take the derivative of this loss function with respect to θj , we get

∂L

∂θj

= − 1

N

(
∂wi

∂θj

(

y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))

+∂(y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))

∂θj

wi

))

. (4)

First, we calculate the derivative of wi for back propagation.

1

N

∂wi

∂θj

= 1

N

∂αw′
i + (1 − α)softmax((1 − Λi({fθt (x)}t,k)))

∂θj

= (1 − α)

N

softmax((1 − Λi({fθt (x)}t,k)))
∂θj

= (1 − α)

N
×

{
Λi({fθt (x)}t,k)i (1 − θj ),i = j

−θjΛi({fθt (x)}t,k)i ,i �= j
(5)

Then we calculate the derivative of cross entropy for back propagation.

1

N

∂(y(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))

∂θj

= ∂

∂θj

(
1

N

N∑

i=1

[log(1 + eθT x(i)

) − y(i)θT x(i)]
)

= 1

N

N∑

i=1

[
∂

∂θj

log(1 + eθT x(i)

) − ∂

∂θj

(y(i)θT x(i))

]

= 1

m

m∑

i=1

⎛

⎝
x

(i)
j eθT x(i)

1 + eθT x(i)
− y(i)x

(i)
j

⎞

⎠

= 1

N

N∑

i=1

(ŷ(i) − y(i))x
(i)
j (6)

Here, we use AUROC as the indicator function.

AUC =
∑

insi∈positive classrankinsi − M×(M+1)
2

M × N
(7)
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rankinsi represents the serial number of the sample i (The probability score is ranked from
small to large). M and N are the number of positive samples and negative samples. The∑

insi∈positive class is to add the positive number. This is a discrete function so we cannot
compute its derivation. In future work, we will discuss the use of other continuous functions
as indicator functions. Finally, we get

∂L

∂θj

= wi

N

N∑

i=1

(ŷ(i) − y(i))x
(i)
j (8)

Figure 4 shows the curve of the category i weights as a function of the indicator. The the
different colors of curves represent the different mean indicator scores of all classes except
the category i. The abscissa represents the indicator score of the category i, and the ordinate
indicates the weight wi assigned to the category i. For each curve, with the increase of the
indicator score of the category i, the learning of this category becomes sufficient, and the
concentration on category i should be reduced. So the weight assigned to it is reduced slowly
to avoid class imbalance and over-fitting. The curves of different colors shows that, when
the average indicator scores of other categories increase, the weight assigned to category i

also increases. This promotes the learning strength of the network model for category i.

3.3 Advantages

The design of the BAW has three advantages. (1) The algorithm calculates the weight by a
certain number of samples, which avoid the problem that the calculation of a single sample
is easy to fall into the noisy label. (2) The learning weight is calculated with the output of the
network. This process can be carried out adaptively during training and reduces the tedious
process of manual parameter adjustment. (3) The algorithm uses the evaluation indicator in

Fig. 4 Weights under different indicator scores. The the different colors of curves represent the different
mean indicator scores of all classes except the category i
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the training process to calculate class learning weight. This improves the performance of
the final evaluation, even if these indicators are discontinuous and non-differentiable.

4 ChestNet

We designed an end-to-end chest disease recognition framework ChestNet, as shown in
Fig. 1, based on deep learning modules, and applied it to the real medical dataset ChestX-
ray14. Based on DenseNet121, ChestNet extract features from the perspective of channels
and space through Squeeze-and-Excitation(SE) [14] and Spatial pooling [6]. Meanwhile, it
use BAW loss to deal with the problems of class imbalance and noisy labels. On the task of
pneumonia detection from chest X-rays, our ChestNet achieves the best results without any
fancy tricks.

4.1 Network architecture

ChestNet uses DenseNet121 as the backbone to extract features. We express the input fea-
ture map of the l dense block as Fl , where l = 1, 2, 3, 4. The output can be expressed as
Dense(Fl). We then use the SE to weight the channels to get the input of l+1 Dense Block.
It can be represented as

Fl+1 = SE(Dense(Fl)). (9)

The final output of DenseNet121 after extracting features, F5, is convoluted to obtain a
feature map with n number of channels. In the real experiments, n = 14, which repre-
sents 14 diseases. After, we use spatial pooling and sigmoid to get the final classification
result.

4.2 Spatial pooling

Unlike global max pooling, which only cares about the areas with the highest response val-
ues. Spatial pooling hopes to learn the regions with both the highest and the lowest response
in the feature map. Let C denote the number of channels in the feature map. UC represents
the feature map before pooling, and ZC represents the mapping points after pooling. Hk

is a series of pixel points from UC . First average the k pixels with the largest response to
get

zC+ = max
h∈Hk+

1

k+
∑

Hk,ju
c(i, j). (10)

Then average the k pixels with the lowest response to get

zC− = min
h∈Hk−

1

k−
∑

Hk,ju
c(i, j). (11)

Finally, we get

ZC = zC+ + α(zC−). (12)

α is a hyperparameter used for adjusting the relative importance between zC+ and zC−.
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5 Experiment

5.1 Datasets

5.1.1 Simulation data

To establish an ideal experiment environment with controllable dataset, we simulate class
imbalance and noisy labels on Cifar10. When simulating class imbalance, we randomly
select 10% to 100% of samples from ten categories. The number of samples of our imbal-
anced 10 categories is 469, 1039, 1533, 1992, 2510, 3014, 3461, 3970, 4508, 5000. When
generating noisy labels, we add 10%, 20%, 30%, 40% and 50% noise respectively to the
original data. Noise includes Asymmetric Noise (AN) and Symmetric Noise (SN). SN
randomly scrambles labels of different classes, and AN only scrambles labels of similar
images. The noisy labels generated by AN can still provide some information. Therefore,
SN is more challenging than AN.We combine Asymmetric noise/Symmetric noise and class
balance/class imbalance in pairs, to get four experiment contexts.

5.1.2 Real data

The ChestX-ray14 dataset collected a total of 108,748 chest radiographs of 32,716 individ-
ual patients. Each image is labeled with one or more chest diseases. There are 14 common
chest diseases in the whole dataset: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass,
Nodule, Pneumonia, Pneumothorax, Consolidation, Emphysema, Edema, Fibrosis, Pleu-
ral Thickening(PT) and Hernia. The number of samples varies from disease to disease, as
shown in Table 4. The quantity of these categories is extremely uneven. The accuracy of the
label is around 90%. Moreover, the noise is a mix of AN due to misdiagnosis and SN cause
by text processing errors. To make an objective comparison with the previous methods, we
use the official division of training, validation, and test list to divide the dataset into three
parts.

5.2 Implementation

5.2.1 Simulation data

We perform fair tests on different loss functions in our four simulation data environments
of Cifar10 data. The model uses ResNet18 [11] as the backbone, and uses SGD [1] with 0.9
momenta as optimizer. The weight decay is set to 5e-4, and the batch size is set to 128. The
model is trained with 500 iterations and the learning rate is set to 0.1.

5.2.2 Real data

On the real medical dataset ChestX-ray14, we compare the classification quality of BAW
with other loss functions on ChestNet. Moreover, to verify the robustness of these loss func-
tions to noisy data, we manually add 2% and 5% noise to the ChestX-ray14 dataset. Besides,
we also compare the results of our ChestNet with that of other methods. In the above exper-
iments, we preprocess the data through cropping, horizontal flip, and normalization. We
used SGD with 0.9 momenta as optimizer. The weight decay is set to 1e-4, and the batch
size is set to 15. The model is trained with 20 iterations. The initial learning rate is set to
0.01, and will decay at the the 9th, the 12th and the 15th epoch with a decay rate of 0.1.
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5.2.3 Other loss functions

In our experiments, we compare BAW loss with other four loss functions: Complement
Cross Entropy (CCE) [16], Mean Absolute Error(MAE), Gradient HarmonizingMechanism
(GHM) [20] and Focal Loss (FL) [22]. The first three loss functions are described below:

CCE loss is formulated as:

H(y, ŷ) = − 1

N

N∑

i=1

K∑

j=1

y
(i)
[j ] log ŷ

(i)
[j ] (13)

c̃(ŷ) = γ

K − 1
c(ŷ) (14)

CCE = H(y, ŷ) + c̃(ŷ) (15)

where N denotes the number of examples, K denotes the number of categories, y(i) denotes
the true distribution, and ŷ(i) denotes the softmax multinomial prediction distribution. c(ŷ)

denotes the cross entropy loss. γ should be tuned to decide the amount that complements
the cross entropy, e.g., γ = −1(γ < 0).

MAE loss is formulated as:

MAE = 1

K

K∑

i=1

|yi − ŷi | (16)

MAE calculates the average distance between the predicted value ŷi and the real value yi of
the sample. It is worth mentioning that MAE is less sensitive to outliers and more inclusive
than MSE. Because MAE calculates the absolute value of the error yi − ŷi , whether it is
yi − ŷi > 1 or yi − ŷi < 1 without square term, the penalty is the same, and the weight is
the same.

GHM loss is formulated as:

LCE

(
pi, p

∗
i

) =
{

− log(p), if p∗ = 1

− log(1 − p), if p∗ = 0
(17)

GD(g) = 1

l∈(g)

N∑

k=1

δ∈ (gk, g) (18)

δ∈(x, y) =
{
1, if y − ε

2 ≤ x < y + ε
2

0, otherwise
(19)

l∈(g) = min
(
g + ε

2
, 1

)
− max

(
g − ε

2
, 0

)
(20)

βi = N

GD (gi)
(21)

LGHM−C = 1

N

N∑

i=1

βiLCE(pi, p
∗
i ) =

N∑

i=1

LCE(pi, p
∗
i )

GD (gi)
(22)

LCE

(
pi, p

∗
i

)
is denoted as binary cross entropy loss. The researchers proposed the gra-

dient equalization mechanism. According to the proportion of the sample gradient modulus
length distribution, a corresponding normalization is carried out, so that various types of
samples have a more balanced contribution to the updating of model parameters, thus mak-
ing the model training more efficient and reliable. Since gradient equalization essentially
weights the gradients generated by different samples, and then changes their contribution,
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the weight added to the loss function can achieve the same effect, in GHM, the gradient
equalization mechanism is realized by reconstructing the loss function. Gradient density is
defined to describe the loss function. Following the physical definition of density (mass
per unit volume), they define gradient density GD(g) as the number of samples distributed
in the area of unit value. Where gk Represents the gradient of the kth sample. The gradi-
ent density harmonizing parameter is defined as βi . Here, multiplied the sample number
n is to ensure uniform distribution or only divide a unit area, the weight is 1, that is, loss
is unchanged. It can be seen that the weight of samples with high gradient density will be
reduced and the weight of samples with small density will increase. According to the GHM-
C’s calculation, the weights of simple negative samples and difficult abnormal samples will
be reduced, so that the loss will be reduced, and the impact on model training will be greatly
reduced. In order to improve the performance of the model, the weight of normal difficulty
samples is increased, so that the model will focus more on the normal difficulty samples
which is more effective.

5.3 Results

5.3.1 Simulation experiment

Table 1 show the results on balanced data (the upper part) and imbalanced data (the lower
part) with AN. It is obvious that our method has better performance when the noise increases
(for balanced data: AN>30%, for imbalanced data: AN>10%). When comparing the results
of the upper and lower part, our method gets better performance on the class imbalanced
data. It shows that BAW is robust to more serious noisy labels and class imbalance problems,
and can be applied to complex datasets in practice. In Fig. 5, we show the change of test
accuracy with the increase of epoch in different Asymmetric noise interventions in Cifar10.
The corresponding results are shown in the second, third, fifth and seventh columns of the
upper part of Table 1. We can find that test accuracy of different loss functions is very close
when there is no noisy labels (or less noisy labels). As the ratio of noisy labels increases,
the performance of the loss functions that is used to solve the problems of class imbalance

Table 1 Accuracy of different loss functions on Cifar10 with Asymmetric noise

Method AN=0 AN=10 AN=20 AN=30 AN=40 AN= 50

CCE 92.46 87.52 82.14 79.81 71.88 68.05

MAE 83.62 58.33 56.46 55.42 57.83 51.76

GHM 92.55 87.07 83.02 79.24 76.57 66.83

FL 91.27 88.11 84.23 82.41 77.72 72.42

BAW 92.3 87.07 83.4 80.42 77.89 75.42

CCE 81.89 78.24 74.9 70.98 68.49 61.04

MAE 61.02 60.23 59.42 56.38 55.74 48.87

GHM 80.85 78.58 75.01 70.47 68.09 65.49

FL 82.08 80.46 75.27 70.71 68.64 65.03

BAW 82.48 79.86 75.63 72.75 69.53 66.35

The upper group is the results of class balanced data, the lower group is the results of class imbalanced data,
and the bold figures represent the optimal result
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Fig. 5 This figure displays the change of test accuracy with the increase of epoch in different Asymmetric
noise interventions in Cifar10. Different color represents different loss functions. The corresponding results
are shown in the second, third, fifth and seventh columns of the upper part of Table 1

become worse, because they overfit the noisy data. In comparison, BAW is not sensitive to
a large number of noise labels. When 50% of the labels are incorrect, BAW loss achieves
better result that is 3% higher than the others. We further verify our method with SN which
is more complex. BAW achieves best performance in almost all (i.e., 9/10) cases (Table 2).

5.3.2 Real experiment

We use the AUROC curve to measure model classification performance. The ROC curve
takes false positive rate (FPR) as the abscissa and true positive rate (TPR) as the ordinate.
The AUROC curve combines the probability of all thresholds to obtain an estimate of the
classification performance.

We first compare the different loss functions on our proposed ChestNet. From the first
column of Table 3, we can see that on real large-scale datasets without modification, BAW
achieves best performance compared with other loss functions. As is shown in the second
and third columns, the performance loss of BAW is smallest after noise addition, but the
performance of other loss functions decreases significantly, which again proves that our
method is more effective on dealing with complex, noisy labels and class imbalance prob-
lems in reality. The main reason for the ability difference is that, these loss functions do not
take into account the existence of noisy labels when solving the problem of unbalanced data
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Table 2 Accuracy of different loss functions on Cifar10 with Symmetric noise

Method SN=0 SN=10 SN=20 SN=30 SN=40 SN=50

CCE 92.46 85.87 78.38 73.79 65.61 57.13

MAE 83.62 62.73 61.07 59.03 56.96 56.50

GHM 92.55 48.92 34.47 27.93 26.88 28.76

FL 91.27 83.4 78.42 66.45 62.74 57.94

BAW 92.3 83.93 79.76 75.89 67.02 58.67

CCE 81.89 63.83 59.24 55.1 51.21 47.89

MAE 61.03 56.80 56.10 50.98 50.03 46.77

GHM 80.85 35.66 27.64 25.76 21.08 18.85

FL 82.08 73.56 68 62.44 54.63 48.31

BAW 82.48 74.15 69.57 64.03 57.50 49.19

The upper group is the results of class balanced data, the lower group is the results of class imbalanced data.
The best performance of loss function in each experiment group are highlighted

and long tail distribution. Therefore, when learning the distribution, the category with less
data will be considered as marginal distribution, so these loss functions increase the weight
for such data when training. For example, Focal Loss believes that the greater the differ-
ence between the model output and the label, the more difficult the sample is to learn, so
the greater the weight should be. For a noisy label sample, the prediction and the ground
truth ought to be quite different, so the network will over fit it under this idea. The most
significant difference between BAW and these loss functions is that it does not pay atten-
tion to individual noisy label. It focus on the learning difficulty for a certain category by
the AUROC indicators of known samples and calculate the corresponding weight of each
category. Here we focus on two issues to better explain the working principle of BAW.

– What does the AUROC indicator represent? After a batch training, we calculate the
AUROC on all known data. This means that data involved in the calculation have been
fitted through network learning. So a high AUROC value means that the data of this
category is well fitted, and vice versa. There may be two reasons for under fitting. The
first is that the amount of data in this category is relatively small, so it is difficult to
be fitted. The second is that although there are plenty of data, they are difficult to dis-
tinguish at the semantic level (It is worth noting that although there are noise labels in
the training set, the impact on AUROC can be ignored due to the small number). At
this time, the mechanism of AUROC is similar to that of Focal Loss. The difference
is that Focal loss judges whether a specific sample is difficult to learn (increases the

Table 3 The results (AUROC) of different noise ratios under different loss functions in ChestX-ray14

Method No artificial noise 2% artificial noise 5% artificial noise

CCE 0.8210 0.8086 0.8051

GHM 0.8156 0.8137 0.6869

FL 0.8113 0.7970 0.7822

BAW 0.8279 0.8148 0.8116

We highlight the highest score in each group. BAW performs best under all the different ratios
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weight of difficult samples, reduces the weight of easy samples). And our algorithm
is to determine whether a category is difficult to learn (increases the weight of diffi-
cult categories, reduce the weight easy categories). So we can conclude that the use of
AUROC as indicator in BAW can solve the problem of unbalance data distribution.

– What happens when a mislabeled sample passes through the network? First, its predic-
tion score should be low on the given wrong label. However, because its weight is given
by the AUROC of the wrong class, it will not get a huge weight compared with the
weight given by Focal loss, thus avoiding network over-fitting on this sample. Accord-
ing to our observation, general label errors tend to occur in easy categories with large
amount of data, so the given weight under this condition should be quite small. We con-
clude that BAW is not sensitive to noisy labels because it uses the AUROC indicator of
known data as a buffer to alleviate the negative impact of the huge gradient caused by
extreme samples.

Table 4 shows the detailed comparative experiments with other methods on each disease
category. BAW achieves best result in most of the categories. In particular, our method
significantly improves the performance on relatively small classes (i.e. Edema, Fibrosis,
Hernia). Rajpurkar et al. [26] has discussed why his results are better than the others. We
use the same backbone (DenseNet) in [26] as feature extractor and use the same data split
scheme but different loss functions. CheXNet modified the loss function to optimize the
sum of unweighted binary cross entropy losses. However, it can not surpass the performance
of BAW in dealing with data imbalance, nor can it prevent the network from over fitting the
noise label data.

It’s worth noting that the results of [19] in the third column perform better on Atelecta-
sis, Effusion, Consolidation and Emphysema. However, one possible reason is that they did

Table 4 The classification performance (AUROC) of our ChestNet and of other models on ChestX-ray14 for
different diseases

Method Wang [34] Li [19] DNetLoc [9] CheXNet [26] Ours

Official division Y N Y Y Y

Atelectasis (8.15%) 0.7160 0.8000 0.7670 0.7795 0.7833

Cardiomegaly (1.96%) 0.8070 0.8700 0.8830 0.8816 0.8941

Effusion (9.41%) 0.7840 0.8700 0.8280 0.8268 0.8374

Infiltration (17.46%) 0.6090 0.7000 0.7090 0.6894 0.7112

Mass (4.06%) 0.7060 0.8300 0.8210 0.8307 0.8462

Nodule (4.47%) 0.6710 0.7500 0.7580 0.7814 0.8047

Pneumonia (1.65%) 0.6330 0.6700 0.7310 0.7354 0.7349

Pneumothorax (3.74%) 0.8060 0.8700 0.8460 0.8513 0.8753

Consolidation (3.30%) 0.7080 0.8000 0.7450 0.7542 0.7620

Emphysema (3.26%) 0.8350 0.8800 0.8350 0.8496 0.8489

Edema (1.77%) 0.8150 0.9100 0.8950 0.9249 0.9360

Fibrosis (1.19%) 0.7690 0.7800 0.8180 0.8219 0.8262

PT (5.28%) 0.7080 0.7900 0.7610 0.7925 0.7965

Hernia (0.16%) 0.7670 0.7700 0.8960 0.9323 0.9339

AVE 0.7381 0.8064 0.8066 0.8180 0.8279

The bold figures represent the optimal result
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not use the official dataset split. Guendel et al. [9] observed several limitations of the offi-
cial split that training and test sets have different characteristics, which can be either label
inconsistency or the fact that there are on average 3 times more images per patient in the
test set compared with the training set. They computed several random splits, each of which
leads to better performance and can increase AUROC from 0.8066 (the last figure in the
forth column) to 0.841.

5.3.3 Visualization analysis

In this section, we will evaluate the effectiveness of the location positioning of the model
in the chest disease detection task. We used the CAM method to build a thermal map for
each disease category of each sample and visualize the most exciting area with the max-
imum response of the chest X-ray image, which is also the disease area predicted by the
model. Figure 6 shows the comparison between the output by our model and the bound-
ing box labeled given by doctors. Our network can preliminarily locate the disease area in
a chest X-ray image by enlarging the response value of the target area in the feature map.
The predicted disease area (red) is very close to the real lesion labeled area (green bound-
ary box) from the perspective of visual evaluation. As shown in Fig. 6, our method expands
the area with cardiac hypertrophy symptoms and provides more information for clinicians.

Fig. 6 We use CAM [36] to visualize the attention of the network when doing classification. The green
bounding box in the image is labeled by doctors to frame out the symptoms. From the perspective of visual
evaluation, the disease area (red area) predicted by this model is very close to the real lesion labeled area
(green bounding box)
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Both sides of the chest X-ray with invasive pulmonary tuberculosis in the figure have this
symptom. In contrast, each image in the dataset has only one disease boundary box, so the
annotation ignored some boundary boxes of the same disease. Our approach gives a rem-
edy so that we do not ignore any suspicious symptoms. Besides, the proposed model can
still accurately identify and locate small target diseases such as masses and pneumonia. The
final prediction of our model can provide potential candidate areas for further examination
in clinical practice. Our model does not use any samples with boundary box labels dur-
ing the training, which means that our model only uses the samples with category labels to
achieve the preliminary positioning of chest diseases. This weakly supervised target detec-
tion diminishes the workload for labeling the disease boundary box. Simultaneously, the
heat map generated by the model shows a promising ability to locate the disease area and
can be widely used in clinical practice when lacking annotation information.

6 Conclusion

This paper proposes the BAW loss that solves the problem of class imbalance and avoids
the over-fitting of noisy labels. Specifically, BAW uses the information of known samples
to calculate weights for each category, and to guide the direction of network optimization
for the next batch training. BAW is easy-to-implement and can be extended to various deep
networks. First of all, this paper uses Cifar10 to simulate imbalanced classes and noisy
labels. It is proved that BAW performs better with tough situation of noisy labels and class
imbalance.

Besides, we also propose ChestNet, which is used to test our BAW loss in the large-scale
medical dataset ChestX-ray14. The result shows that BAW is quite robust in real data.
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