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Abstract
Hazy images obstruct the visibility of image content, which can negatively affect vision-
based decision-making in multimedia systems and applications. Recently, convolutional
neural networks (CNN) are proven with great benefit to remove single image haze, which
has aroused research attention. However, in practice, previous works fail to fully exploit
multi-scale features and restore the faithful image details from the hazy inputs, resulting
in sub-optimal performance. In this paper, we propose a novel and high-efficiency deep
hourglass-structured fusion model to address this issue, which also indicates the applica-
bility of the modified hourglass architecture to remove haze. Unlike the conventional
multi-scale learning schemes, top-down and bottom-up feature fusions are repeated, so
each of the coarse-to-fine scale representations receives data of parallel ones, which
allows for more flexible information exchange and aggregation at various scales. To be
specific, we develop residual dense module as the backbone unit, while introducing the
channel-wise attention mechanism to further enhance the representation ability of the
network. As proved by extensive assessments demonstrate, our designed model out-
classes existing ones and achieves the advanced performance on benchmark datasets and
real hazy images. We have released source codes on GitHub: https://github.com/cxtalk/
Hourglass-DehazeNet.

Keywords Single imagedehazing .Hourglass architecture .Multi-scale features . Parallel fusion .

Channel attention . Deep learning

1 Introduction

Haze refers to a bad weather phenomenon, and images captured in such scenario undergo
visible quality degradation (e.g., color distortion and information loss). Such degradation of
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images severely hinders the performance of many multimedia applications such as pedestrian
detection, autonomous driving, and video surveillance, etc. Accordingly, haze removal has
been adopted as a vital preprocessing step and receives significant attention recently in the
computer vision field [4, 15, 28, 37].

Referring dehazing process, numerous approaches are carried out for addressing such tough
issue. Early works are mostly prior based, which leverage hand-crafted statistics as extra
mathematical constraints for remedying data lost in the corrupting process. Here are the
following instances. He et al. [10] fully exploited dark channel prior (DCP) to estimate map
of transmitting process. Berman et al. [1] developed a non-local prior to observe the formation
of compact clusters in RGB space according to the color of clear images. Although these
approaches are simple and fast to perform, there are still some limitations in specific cases.

Recently, we have witnessed the rapid progress of convolutional neural networks (CNN) for
image dehazing task as supported by the powerful feature representation capability. Earlier dehazing
methods used deep neural networks to estimate the transmission map and atmospheric light,
including DehazeNet [2], Multi-Scale CNN (MSCNN) [25], All-in-One Dehazing Network
(AOD-Net) [14]. Ren et al. [26] exploited the Gated Fusion Network (GFN), which leverages
hand-selected preprocessing strategies and multi-scale estimation. Although the above methods
perform in certain dehazing tasks, they may not be able to estimate the transmission map by
depending on atmospheric scattering model. Subsequently, there are some methods that use end-to-
end deep models to directly estimate clean results instead of explicitly estimating the parameters of
the atmospheric scattering model. Considering that the estimation of the transmission map and
atmospheric light occasionally deviates from the real hazy image, directly estimating the haze-free
image can avoid sub-optimal restoration. For instance, the work of [3] offer a Gated Context
Aggregation network (GCA-Net) for removing the gridding artifacts attributed to dilated convolu-
tion. Unfortunately, it is difficult for such a single-scale framework to capture the intrinsic correlation
of haze characteristics at different scales. Later, Liu et al. [19] designed a novel trainable Grid-
Dehaze Network (GDN) that indicates how confident the network is about the multi-scale features
are learned. Following it, massive studies [6, 16, 36] have pointed out that different features at a
range of scales show high importance to infer relative haze thickness according to an individual
image. Therefore, the network architecture should exhibit some fashion for efficiently processing
and integrating features at various scales.

However, few attempts have been explored to preserve the desired fine image details and
strong contextual information. More fundamentally, conventional multi-scale manners [6, 14,
16] do not make full use of image features in the previous layers, making it difficult to transfer
local features to other layers, and their performance is easily limited by a bottleneck effect as
the multi-scale feature flow will be suppressed [33, 35]. Therefore, investigating the way of
capturing information at various scales and constructing more effective hierarchy architecture
is essential for image reconstruction. To this end, we perform multi-scale estimation on an end-
to-end deep hourglass-structured hierarchical model to remove haze, which flexibly allows
efficient information exchange at various scales. The hourglass network has clear advantages
over the conventional multi-scale network widely adopted in several vision tasks [5, 22, 30].
For further achieve distinctive features conducive to dehazing, a residual dense attention
module is embedded in the backbone network, which can also enhance the robustness of the
proposed model. Figure 1 presents one dehazing example on a real-world image, where our
method products a satisfactory result against other competing methods in restoring the detailed
structure information.

The main contributions of this work are as follows:
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& We propose an effective framework to achieve the single image dehazing task, which also
provides an effective multi-scale processing solution thanks to its modified hourglass
architecture.

& To our knowledge, the Residual Dense Attention Module (RDAM) is first constructed to
boost the feature extraction performance to a great extent.

& Extensive experiments are conducted on both synthetic benchmark datasets and real hazy
images. The developed method outclasses the existing approaches in visually and quan-
titatively comparisons.

The remainder of the paper is organized as follows: Section 2 describes an overview of relatedwork.
In Section 3, we present the main technical details. Then, Section 4 shows the comprehensive
experiments results with discussions. At last, the conclusions are givens in Section 5.

2 Related work

In this section, we introduce several proposed image dehazing approaches based on prior-
based and learning-based types. In addition, recently developing states of multi-scale feature
fusion is presented.

2.1 Single image dehazing

Single image dehazing is an ill-posed issue, and extensive works are carried out for addressing
this issue. Based on the model of atmosphere scattering [20, 21], the hazing process is defined:

Fig. 1 Dehazing example on a real-world hazy image
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IðxÞ ¼ JðxÞtðxÞ þ A 1� tðxÞð Þ ð1Þ

In which x indicates the pixel coordinate, I(x) and J(x) denote the hazy image under observa-
tion and the clear image, respectively. There are two critical parameters: t(x)refers to the
medium transmission map, and A is termed as the global atmospheric light. Under the
homogeneous haze, the map of transmitting process t(x) is written:

tðxÞ ¼ exp ��dðxÞð Þ ð2Þ
In which d(x) and βdenote the scene depth and the atmosphere scattering coefficient. Since
only I(x) is available, the process to recover the haze-free scene J(x) becomes a mathematically
ill-posed issue. The existing dehazing approaches are able to fall to prior-based and learning-
based strategies, as presented in the following.

2.1.1 Prior-based dehazing

For recovering the haze-free images from hazy images, prior-based approaches largely comply with
prior data and assumptions. For instance, the albedo of the scene can receive the estimation to be prior
knowledge by referencing [7]. Assuming that the local contrast of hazy image was low, [31] put
forwardMarkov RandomField for maximizing color contrast. For the more reliable calculation of the
transmission map, [1] reported the dark channel for quality improvement related to dehaze images.
Greater advancements in terms of the dark channel were achieved on [13]. [1, 8] presented their
algorithm in a separate manner by complying with the observation that image patches usually show
one-dimensional feature distribution in RGB color space. According to conventional prior-based
approaches, the assumption was true in limited scenarios, and it was partially restricted.

2.1.2 Learning-based dehazing

Recently, many learning-based approaches are employed to achieve dehazing by exploiting the large-
scale datasets and computational power advancement. Early learning-based approaches continuously
comply with global atmospheric scattering model and restore haze-free image through the estimation
of the global atmospheric light and transmissionmap. Ren et al. [25] designed amultiscale framework
to estimate a transmission map. Cai et al. [2] developed one DehazeNet built with feature layers to
predict transmission map. Nevertheless, it exhibits susceptibility to the noise, thereby reducing
dehazing performance. For this reason, end-to-end CNNs are developed for directly outputting a clear
image based on a hazy input with no use of global atmospheric scattering pattern. Chen et al. [3]
employed an encoder-decoder network exhibiting smoothed dilated convolution in the model for
gridding artifacts alleviation. Qu et al. [24] converted image dehazing as one image-to-image
translating problem, and proposed one optimized pix2pix dehazing framework. However, the
mentioned approaches largely comply with several generic framework architectures with no notice-
able change, showing inefficiency in terms of image dehazing. The present paper further explores a
more efficient framework to promote the utilization and transmission of image feature flows.

2.2 Multi-scale feature fusion

Feature fusion receives extensively applications for designing framework to gain performance
through the use of features of a range of layers. Considerable image restoring approaches fuse
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features based on dense connecting process [39], feature concatenating process [40] or
weighted element-wise summation [3, 41]. In [11], the features at a range of scales undergo
the projecting process and concatenating process based on the strided convolutional layer.
Though the mentioned approaches can merge multiple features from a range of extents, the
concatenation scheme exhibits ineffectiveness to achieve efficient feature extraction. For
sharing data of nearby extents, the grid architectures [9, 42] have been developed through
the interconnection of the features from nearby extents with convolutional and deconvolutional
layers. Liu et al. [19] recently developed one feasible end-to-end trainable grid framework to
dehaze images. Inconsistent with [19], one deep hourglass-structured hierarchical model was
developed, fusing features under a range of scales significantly. Our work aims to integrate the
multi-scale fusion into the hourglass framework to better exploit and mine multi-scale
information.

3 Methodology

In this section, we elucidate the developed method, consisting of overall network design,
backbone component, and loss function.

3.1 Overall design

The proposed network design largely complies with [22], which initially presented a “stacked
hourglass” framework develop for the task of human pose estimation. Figure 2 indicates that
the Hourglass is inconsistent with previous designs largely because of its higher symmetrical
topological characteristic, enabling the network for capturing and integrating data at various
image scales. We continue along this trajectory and further adjust the hourglass architecture to
meet the need for dehazing. To our knowledge, this is the first study of developing hourglass-
structured dehazing model, which enriches the literature of this field.

Figure 3 gives an overview of our method. The main body, contains three parallel streams,
which accordingly feature map number at 3 scales is increased to the double, with values of 16,
32 and 64. We start from a coarse-scale stream as the first level input, and then gradually repeat
top-down and bottom-up processing to form more coarse-to-fine scale streams one by one. In
each stream, the residual dense attention modules (RDAM) are introduced as the basic
component to deeply learn the features for hazy regions reconstruction. Visually, the path of

Fig. 2 The illustration of a single hourglass network
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expansion exhibits symmetry towards the path for contract, yielding an hourglass-shaped
frame. This operation enables the model to better reorganize and explore features in width
and depth. In all paths, it is worth mentioning that up-sampling and down-sampling are
achieved with the use of a range of convolution-based layers for the adjustment of feature
map size, instead of conventional bilinear or bicubic interpolation.

Feature fusion in network design is motivated by the need to exploit features from different
layers for performance gain. By combining features at different scales, the object and its
surroundings can be better represented [12]. To our knowledge, encoder-decoder network
information flow or conventional multi-scale network information flow easily face the bottle-
neck influence resulting from the hierarchical architecture, while the developed method can
effectively alleviate this issue via connections at a range of scales via up-sampling/down-
sampling process. It is noteworthy that the approach connects coarse-to-fine scale pipelines in
parallel rather than in series as done in most existing multi-scale solutions [40]. Throughout the
whole process, we perform repetitive multi-scale fusions through the exchange of the data
across the paralleling multi-scale pipelines. Since the final output is an aggregation of the input
maps, this study finds that contracting path integrating the feature and multi-scale information
facilitates statistical features learning to remove haze of images.

3.2 Residual dense attention module

Feature extraction refers to the critical step in image reconstruction. For achieving accurate
clear image estimation, RDAM is introduced to deeply learn detailed features, as inspired by
[18, 34] with the aims to recover more image details with better color information preserving.
Figure 4 indicates that one RDAM consists of N dense residual blocks (RDB) in series with
channel-wise attention, where N is set to 3. Since RDB is capable of more fully exploiting both
the dense block and the residual block, it is adopted to link all matching feature maps, and
reuse low-level features at high levels to enhance dehazing performance, thereby ensuring
maximum information flow between the layers of the network. However, these features fused
after stacking the RDBs will inevitably be confused with the artifacts generated during CNN,
which may reduce the final performance noticeably. The channel attention mechanism [34]
clarifies this problem, and RDAM only employs the channel-wise attention once, thereby
greatly increasing model efficiency.

To better explain the working mechanism of the block, we provide the decomposed
structure of RDB in Fig. 4. Specifically, in each RDB, the first four convolutional layers are
adopted to elevate the number of feature maps, while the last convolutional layer is employed

Fig. 3 The overall network framework of the proposed deep hourglass-structured fusion model for dehazing. The
network consists of three parallel convolution streams with channel dimensions of 16, 32, 64 at resolution 1, 1/2,
1/4
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to aggregate these feature maps. Subsequently, its output is merged with the input of RDB via
channel-wise addition. Note that, the growth rate of RDB is set to 16. Except for the 1 × 1
convolutional layer in each RDB, all convolutional layers adopt rectified linear unit (ReLU) as
the activation function.

Since different channels have totally different weighted information [23], channel attention is
added after the stacked RDBs to acquire necessary local features. First, the channel-wise global
spatial information is transformed into a channel descriptor based on global average pooling.

zc ¼ Hp Fcð Þ ¼ 1

H �W

Xn

i�1

Xn

j�1

X c i; jð Þ ð3Þ

where Xc(i, j) denotes the value of c-th channel Xc at the location (i, j) and Hp stands for global
pooling.

In order to get the weights of various channels, the Sigmod and ReLU activation functions
are used following with two convolution layers.

CAc ¼ σ Conv � Conv zcð Þð Þð Þð Þ ð4Þ
Eventually, we element-wise multiply the input Fc and the weights information CAc.

F*
c ¼ Fc � CAc ð5Þ

3.3 Loss function

By optimizing the model parameters, the linear combination of two losses is taken as the
optimization objective here, the MSE loss and the perceptual loss. Mathematically,

Fig. 4 The architecture of residual dense attention module (RDAM)
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Lmse ¼ J � JGTk k2 ð6Þ

Lperceptual ¼
X

l2 4;9;16;23f g
vgglðJÞ � vggl JGTð Þk k1 ð7Þ

where J and JGT respectively represent the predicted image and the ground truth for supervi-
sion; vggl(⋅) denotes the lth features obtained by the layer within the VGG-16 model. Lastly, the
total loss function can be written as:

Ltotal ¼ Lmse þ λLperceptual ð8Þ
where λ denotes a loss weight.

4 Experimental results

In this section, we have conducted extensive experiments to compare the performance of
different dehazing algorithms. Besides, ablation studies are also conducted to analyze the
configuration of the proposed model.

4.1 Experimental settings

The available benchmark synthetic datasets, named RESIDE [17] and HazeRD [38], is
employed for assessments. RESIDE contains different hazy images in outdoor and indoor
scenes, which is generated by atmospheric scattering model. For testing, synthetic Objective
Testing Set (SOTS) is the test subset of the RESIDE, containing 1000 hazy images. HazeRD
contains 75 synthesized hazy images with real fog conditions. As the ground-truths available,
the common PSNR and SSIM [32] act as the metrics of this study, with higher value for better
quality. Furthermore, 30 real hazy images are selected from the Internet data to verify the
generalization ability of different models.

In the training process, similar to [29], RGB images directly act as input instead of using
image patches. The implementation here is developed in PyTorch framework and performed
on one NVIDIA Tesla V100 GPU. The final model is trained for 120 epochs. The learning rate
is set to 0.001, and then attenuated by half every 20 epochs. Given the loss term, the weight
parameter is set as λ = 0.04, empirically. The Adam optimizer is adopted with a batch size of
16, where β1 and β2 respectively take the default values of 0.9 and 0.999.

4.2 Quantitative results

We compare our models with some existing classic and popular approaches, including DCP
[10], NLD [1], DehazeNet [2], MSCNN [25], AOD-Net [14], GFN [26], GCA-Net [3] and
GDN [19]. Table 1 lists the average values between each pair of dehazed result and haze-free
image. From the table, we can observe that our Hourglass-DehazeNet achieves the best
performance on the SOTS [18] and HazeRD [34] datasets, which indicates that the best
detailed recovery and the least noise impact are obtained by our hourglass-structured fusion
model. Compared with SOTS dataset, HazeRD dataset is more challenging [27], and what’s
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Table 1 Quantitative comparison results on the SOTS [18] and HazeRD [34] dataset

Method SOTS HazeRD

PSNR SSIM PSNR SSIM

DCP [10] 18.75 0.8590 15.58 0.7673
NLD [1] 17.28 0.7503 16.20 0.7278
MSCNN [2] 17.57 0.8115 15.87 0.7949
DehazeNet [25] 21.14 0.8500 15.56 0.7552
AOD-Net [14] 18.80 0.8342 16.85 0.8331
GFN [26] 24.11 0.8996 16.54 0.8024
GCA-Net [3] 28.13 0.9455 16.62 0.8195
GDN [19] 31.51 0.9804 17.33 0.8384
Ours 33.54 0.9849 19.08 0.8719

Fig. 5 Qualitative comparison results on the SOTS [18] dataset
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exciting is that the SSIM and PSNR produced by our approach are higher than GDN by up to
0.03 and 1.75 dB, respectively.

4.3 Qualitative results

Besides quantitative comparisons, several visual examples are taken as comparison, as illustrated in
Figs. 5 and 6. Here, it is noteworthy that the visualization results of NLD,MSCNN and DehazeNet
are not presented for their relatively inferior performance and the space limitation. By observing
zoomed parts of image, DCP is clearly indicated to make the background darker and over saturated.
We can figure out that the AOD-Net and GFN underestimate the haze level and leave lots of haze
residuals. GCA-Net can remove the haze well but bring about color artifacts and amplified noise.
Moreover, blurry outcomes achieved by GDN with lost details reveal the defect of the current

Fig. 6 Qualitative comparison results on the HazeRD [34] dataset
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approach. In contrast, the proposed method can restore images with better color fidelity and sharper
details, which are confirmed to be closer to the ground-truths. Accordingly, the simple but effective
idea of this study for such a modified hourglass architecture is clarified effectively, and the designed
basic model is confirmed.

Moreover, the generalization ability of the proposed algorithm on real images is evaluated.
From Fig. 7, we can see that the amount of haze reduced by the existing techniques is limited
as compared to that of our method. In contrast, our proposed approach can remove almost all
the haze in diverse haze distribution with complex background. In addition, another benefit
can be found is being good at restoring the detailed structure information. For the overall
subjective perception, our model exhibits impressive restoration performance.

4.4 Ablation studies

The effectiveness of configuration and parameters in the network proposed is verified through
ablation studies, which is based on the SOTS dataset and conducted in the same environment.

Fig. 7 Qualitative comparison results on the real-world hazy images

Table 2 Ablation study on the number of residual dense blocks in RDAM

Block No. N=1 N=2 N=3 N=4

PSNR 31.27 32.60 33.54 33.56
SSIM 0.9786 0.9812 0.9849 0.9848
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Number of residual dense blocks in RDAM The experiments are performed under different
numbers of residual dense blocks (RDB) to explore their influences. To be more specific, the
number of RDB is set to N∈{1, 2, 3, 4}. Table 2 reports the performances. PSNR and SSIM
values grow as blocks increase; however, when N reaches 3 and extra time is cost, these values
undergo limited increment. Therefore, to balance effectiveness and efficiency, the default
number of N is set to 3.

Effectiveness of channel-wise attention Afterward, different variants of RDB are studied to
explore the effectiveness of the introduced attention mechanism. The channel-wise attention is
removed to build the baseline module. Table 3 demonstrates the ability of the feature attention
module to improve PSNR and SSIM. When the channel-wise attention is adopted, the
performance is the best and the total gain over the baseline is 0.68 dB in term of PSNR. It
indicates its role in promoting haze removal.

5 Conclusion

In this work, an effective deep hourglass-structured fusion model is developed for
processing the single image dehazing task. Our approach achieves the abundant repre-
sentation of features at various scales, where the abundant multi-scale haze-relevant
features captured from the residual dense attention module is gradually fused along the
parallel layers and stages of the modified hourglass architecture. Furthermore, a channel-
wise attention mechanism is presented for improving network performance, which treats
channel unequally, thereby showing extra flexibility in feature fusion. As proved by
extensively conducted studies, the proposed method outclasses several existing ap-
proaches on the synthetic benchmark dataset and the practical ones. In future, we plan
to employ the developed network idea into other image restoration tasks as impacted by
the generic characteristic exhibited by its building parts.
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