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Abstract
Segmentation of white blood cell nucleus is a crucial step in white blood cell counting
and classification system based on peripheral blood smear images. It is also used in the
automated diagnosis of blood cancer diseases. However, this step is a challenging task
due to the variation of contrast and shape of the nucleus in peripheral blood smear images.
This paper proposes an improved method for white blood cell nucleus extraction. The
proposed method makes use of arithmetical operation guided by a control parameter,
Fourier Transform algorithm for texture enhancement, mean shift technique for smooth-
ing and boundary preservation, and k-means clustering algorithm with an adaptive K for
nucleus extraction. The proposed segmentation algorithm was tested on 5 completely
different image databases, and the results compared favorably with recent methods from
good standing papers. An Average dice similarity coefficient of 97.35% was obtained for
CellaVision database, 96.63% for normal leukocytes of ALL-IDB2 database, 93.48% for
BloodSeg database, 93.14% for JTSC database, 88.63% for the healthy leukocytes of the
ALL-IDB2 database and 86.02% for the LSCI database.
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1 Introduction

In the last decade researchers have provided some interesting methods for the automated
detection of diseases [4, 43, 46, 47, 54]. Some of these methods make use of different steps in
image processing namely, segmentation, feature extraction, and classification based on deep
learning [15, 21, 37, 44, 45]. These methods have extensively been applied for white blood cell
(WBC) cancer diagnosis. WBC cancer is among the number of diseases that need to be
diagnosed at its early stage and treated, to give a better chance of recovery to the patient. WBC
cancer is caused by a rapid and out of control growth of abnormal WBC which disturbs or
interrupts the right functioning of the human immune system [48]. There are three main types
of blood cancer, namely, leukaemia, lymphoma, and myeloma [8]. Leukemia is the most
common, and it can be diagnosed using different methods such as molecular biology,
cytochemistry, immunophenotyping, and the study of morphology under a microscope. The
morphological study of WBCs in a blood smear under microscope is the most available and
cost-effective method for leukaemia diagnosis. However, this method is mainly conducted
manually and therefore influenced by a human factor. Results for the same sample could differ
from one operator to another hence an inter-operator variability that could lead either to false
positives or false negatives.

Many methods of automated detection of leukaemia from blood smear images acquired in
different conditions have been proposed to address the above challenge. Segmentation of
WBC plays an important role in this wise. Segmentation methods change from one author to
the other. Byoung et al. [23], applied the estimated probability density function, mean-shift
clustering, merge rule, and the snake algorithm for nucleus segmentation. They used 100 blood
smear images of CellaVision and a private database in their study. They reported a low average
accuracy of 88% for nucleus segmentation. Madhloom et al. [29] applied arithmetic calcula-
tions, followed by linear contrast stretching, histogram equalization, and a 3×3 median filter to
highlight the leukocyte nucleus in the peripheral blood smear images. Finally, a global
threshold was applied to extract nuclei on the resulting image.

Vogado et al. [57] on the other hand, used components of two color spaces (CMYK and L
� a� b), contrast adjustment and median filter for nucleus segmentation. They also made use
of K-means with 3 clusters and morphological erosion and dilatation as final process to refine
the boundary of the nucleus. Unfortunately, the implementation of morphological operation
affected the natural shape of the nucleus. Three databases (ALL-IDB2, BloodSeg and
Leukocytes) were used in their study. They reported an average K-index equal to 0.902. This
method also achieved a high average of Dice similarity coefficient of 89.84 % ompared to six
existing nucleus segmentation methods based on k-means[1, 5, 25, 30, 40, 56] in the
comparative study done by Ref [6].

Hedge et al. [18] proposed an image pre-processing method based on contrast enhancement
and normalization process. The tissuequant algorithm and adaptive thresholding were succes-
sively applied on the result of the prepossessing step for nucleus extraction. However, this
method is single color space dependent and was mostly tested on derived images of a private
dataset. Tareef et al. [50], applied an arithmetical equation on the RGB and CIElab component
to generate a grayscale image, then, Poisson distribution based on thresholding for WBC
nucleus segmentation and morphological filter for post-processing. These researchers also
yielded decorrelation stretch enhancement and discrete wavelength transform for cytoplasm
extraction. This method was tested on BloodSeg and LSCI databases and achieved a segmen-
tation performance metric equal to 88.6%. Zeinab et al. [33] presented a computer-aided
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diagnosis system of leukaemia. In their system, the WBC nucleus was segmented by applying
thresholding based on intuitionistic fuzzy divergence on the component of L � a � b color
space. However, this nucleus segmentation method was quantitatively evaluated on a single
database, namely LSCI. The authors reported an average Segmentation performance metric
equal to 76%.

More recently, Makem and Tiedeu [31] proposed a nucleus segmentation method based on
a two-color spaces (HSV and CMYK), an adaptive PCA fusion process, and the Otsu’s
thresholding method. These authors avoided the use of morphological operation in their
segmentation method and their algorithm was assessed on three databases (BloodSeg,
CellaVison, and JTSC). They reported an average dice similarity coefficient of 94.2%.
Khamael et al. [2] on the other hand applied contrast enhancement technique, morphological
opening and closing, and edge-based GACS with forces such as curvated, normal direction,
and vector field for WBC nucleus extraction. They obtained an average F-score of 92.09% on
three datasets (CellaVision, ALL-IDB2, and Wadsworth Centre). Sapna et al [38] proposed an
approach of nucleus segmentation based on mathematical operation, Fuzzy c-mean clustering,
and morphological opening and erosion. The authors achieved an overall accuracy of 88.1%
on the LSCI database.

In addition to traditional image processing methods, deep learning networks were also
employed for WBC segmentation and classification [7, 9–11, 19, 22, 26, 28, 36, 52, 58].
Thanh et al. [52] proposed a deep learning architecture, namely SegNet for both segmentation
of white blood cells and red blood cells in peripheral blood smear images. The authors reported
the use of 45 images of the ALL-IDB1 database. Kutlu et al. [26] proposed a regional base
convolutional neural network (CNN) for the identification and classification of WBCs. In their
study, AlexNet, VGG16, GoogLeNet, ResNet50 architectures were tested with full learning
and transfer learning. The architectures were trained and tested using the LSCI and BCCD
databases. Partha et al. [9] used color space conversion, circular average filter and k-means
clustering for nucleus extraction. However, this nucleus segmentation method did not perform
well on contrast variation of the JTSC database. The authors also used a CNN model based on
the concept of fusing first and last convolutional features and propagating input image to each
layer for WBC classification. Their classification model was trained and tested on the BCCD
database. In their study, Yusuf et al. [10] classified WBC under five categories by using
capsule networks. They considered the LSCI database. Amin et al. [22] proposed a method
based on deep learning for automatic detection of the nucleus and cytoplasm region in the
peripheral blood smear. In their study, techniques such as regularization, transfer learning, and
data augmentation were used to avoid the overfitting problem. However, this method was
trained and tested on 87 images of a private database. Anita et al. [7] made use of the ellipse
detection approach and artificial electric field algorithm (AEFA) for automatic detection and
counting of white blood cells. They considered 68 images from the AHS database to evaluate
the performance of their method. An overall detection of 96.80% was reported. Reena et al.
[36] proposed a semantic segmentation technique based on deepLav3+ architecture for
leukocyte segmentation in blood smear images. The authors tested their method on three
public databases, namely JTSC, CellaVision and LSCI. The authors reported an average
accuracy of 96.15%. Deep convolutional neural networks were also used by Chen et al. [11]
for leucocyte segmentation. However, the authors did not evaluate the performance of the
method on the challenge dataset, namely LSCI. They report an average dice coefficient of
96.68% on CellaVision and JTSC databases.

From these related works the most current limitations are:
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1. Most of the existing nucleus segmentation methods based on traditional image processing
techniques used erosion and dilation as a final step to refine the boundary of the nucleus,
meanwhile, these processes directly affect the original shape of the nucleus [42]. Further-
more, some methods used private image databases with less variation of contrast and
illumination [18, 22, 23] and their methods are not accessed on other databases.

2. Deep learning-based models required significant memory and computational time for
training and testing the data [36]. They also require a large set of training data to achieve
good segmentation accuracy and also to be generalized in other databases. Unfortunately,
most of the authors who used the deep learning approach in their study had trained and
tested their models on a maximum of two databases.

3. Many authors who used the deep learning approach in their study focused on the analysis
of the entire leucocyte. Though it is demonstrated that, nucleus features are more useful
than cytoplasm features in WBC classification and leukaemia diagnosis [20].

4. According to references [, 39, 62], the major setbacks of leukocyte nucleus segmentation
are shape and color variation of the nucleus, WBC, presence of artifact and overlapped
cells.

Faced with the above drawbacks, the question arises: Is it possible to develop an efficient and
robust segmentation algorithm based on simple techniques that can selectively segment WBC
nucleus for computer-aided-diagnosis of leukemia?

To conduct this work, we assume the following hypotheses:
a. The algorithm developed can selectively segment nucleus of WBC
b. The combination of simple and well known techniques used namely, arithmetical oper-

ation, Fourier Transform algorithm, mean shift technique for smoothing, and adaptative k-
means clustering give improved results as compared to those present in literature

c. The algorithm developed is efficient and robust

In this paper, we used a smart combination of techniques namely, Fourier Transform,
arithmetical operation, mean shift cluster and k-means, to segment WBC nucleus which
proved very efficient and robust. It is rather the smartness of the combination of known
techniques that has be highlighted here, coupled to the fact that the proposed method yielded
very good results as will be seen later (Section 4.2.3.). These are the major contributions of our
work:
1. An efficient WBC image enhancement based on the combination of Fourier Transform,

arithmetical operation, and mean shift cluster is presented.
2. An adaptive approach for the selection of the right number of cluster k, based on solidity

and area parameters is designed for better extraction of the nuclei in the image processing
using k-means clustering.

3. The proposed algorithm can segment the nucleus of WBC from five different databases
acquired from different staining techniques and imaging conditions.

4. The results yielded from testing our method on these databases exhibit better perfor-
mances than recently proposed methods in the literature.

The rest of this paper is organized as follows: the proposed method is presented in Section 2. In
Section 3, the image databases used are described. Section 4 presents the evaluation metrics,
the results and discussion. Finally, the conclusion and perspectives are given in Section 5.
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2 Proposed method

Our three-step method aim is to extract the WBC nucleus on 5 blood smears image databases,
acquired differently and having different colour variations. The block diagram of the proposed
method is shown in Fig. 1. It is based on a new principle of image enhancement which uses
Fourier Transform and arithmetical operation to enhance the contrast between the nucleus and
the background. This enhancement is applied after localization of the WBC and followed by
the adaptive K-means segmentation method.

2.1 WBC localization

The objective of this step is to crop the input I_RGB image to obtain sub-images containing
the WBC. The Cropping of WBC in a sub-image allows the reduction of the processing time
and the improvement of segmentation accuracy [42]. The steps of our WBC localization
method are listed below.
1. Extracting the green (G) and blue (B) components of the input I_RGB image.
2. Improving on the contrast of the nucleus in the blue component using the relation I_div =

70 * B / G.
3. Applying Otsu’s thresholding method on the grayscale image I_div.
4. Applying an area filter for extraction of fragment platelets and artefacts.

5. Applying morphological dilation with a diamond structural element of size 10 pixels to
extend the detected region of WBC. The size 10 was found experimentally.

6. Cropping the Input image, I_RGB using the binary mask dimensions obtained in the
previous step.

In the WBC localization process, Steps 1 and 2 help to obtain a grayscale image having two or
three pixel intensities as shown in Fig. 2.b, from an input image (Fig. 2.a). Moreover, the
amplification parameter 70 was found experimentally suitable for all the images of the
different database used. Steps 3 to 6 allow the location of the WBC, estimation and application
of the crop rectangle as shown in Fig. 2.d and c.

Fig. 1 Block diagram of the proposed method.

17853Multimedia Tools and Applications (2022) 81:17849–17874



2.2 Image enhancement

Based on the fact that each color space contains specific characteristics[20], in the proposed
image enhancement method, all the components of RGB and CMYK spaces are not used.
Indeed, the nucleus of WBC has high pixel intensities in the C and M color components of the
CMYK space, but low in the R and G color components of the RGB space. These components
will therefore be used in the image enhancement stages. Fig. 3 shows the difference in pixel
intensity of the same nucleus for the C, M, R and G components.

The proposed preprocessing method uses two main steps including the one performing
arithmetic subtraction and addition operations between colour components, and the one
performing the Fourier transform of an RGB image and the phase shift on all the elements
of the phase [16]. These two steps help to obtain 3 gray level images (IMG; IMG CRetIFT MG),
from which the red blood cells are eliminated as shown in Fig. 4. (f, g and m). The three
images are then recombined to form a new colour image named IR0

G
0
B
0 . The mean shift

clustering method using colour information with a flat kernel, proposed by [3], is applied to
smooth and preserve the nucleus region in the new imageIR0

G
0
B
0 . Figs. 4. (n and o) respectively

illustrate the image IR0
G

0
B
0 and the image obtained after applying the mean shift clustering.

The creation of intermediate images IMG and IMG CR

1. Converting the input IRGB image into ICMYK in CMYK color space
2. Extracting the (R and G) components of IRGBimage and (C and M) components of ICMYK

Fig. 2 WBC localization: (a) original image, (b) Idiv image, (c) WBC cropping, (d) sub-images obtained.

Fig. 3 M, G, C and R components of RGB and CMYK color spaces.
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3. Calculating : �1 ¼ max Mð Þ=max Gð Þ; �2 ¼ max Cð Þ=max Rð Þ
4. Calculating: IMG ¼ M � Gi�1 > 1

M � 0:5 � Gsi�1

�
; ICR ¼ C � Rsi�2 > 1

C � 0:3 � Rsi�2

�
5. Replacing the negative pixels of IMG and ICR by zero.
6. Applying the circular average filter of radius r = 3 on IMG and ICRimages.
7. Calculating : IMG CR ¼ ðIMG þ ICRÞ=2.

The creation of intermediate image IFTMG

1. Calculating IRGB FT ¼ Fourier Transform ofIRGB.
2. Computing the phase Iphase and the magnitude Imag ofIRGB FT .
3. ComputingIRGB FTS ¼ Imag � exp jð ðIphase þ �

2 ÞÞ
4. Calculating IRGB IFT ¼ Inverse Fourier Transform ofIRGB FTS.
5. Normalizing IRGB IFT in the range [0 1]
6. Extracting the green component IG IFT ofIRGB IFT .
7. CalculatingIG IFTR1 ¼ Rescale IG IFT ; 0:3; 1ð Þ
8. Computing IG IFTR2 ¼ Rescale IG IFT ; a; bð Þ where a ¼ min IMG CRð Þ; b ¼ max

IMG CRð Þ;Rescale I ; a; bð Þ ¼ aþ I�min Ið Þ
max Ið Þ�min Ið Þ

� �
� ðb� aÞ

9. CalculatingIFT MG ¼ IG IFTR2þIMG
2�IG IFTR1

.
10. IFT MG ¼ Rescale IFT MG; a; bð Þ
11. Applying the circular average filter of radius r = 3 on IFT MG.

Fig. 4 (a) Original image; (b) R color component; (c) G color component; (d) C color component; (e) M color
component; (f) IMG (subtraction of M and G colors components); (g) ICR (subtraction of C and R colors
components); (h) IMG CR (average of IMGandICR); (i) IRGB IFT (RGB image obtain with phase shift of �

2 ); (j) IG IFT

(G component of IRGB IFT ); (k) IG IFTR1 (resale of IG IFT in range [0.3 1]); (l) IG IFTR2 (resale of IG IFT in range [a
b]);(m) IFT MG (image obtain with IMG CR; IGIFTR1andIG IFTR2 ); (n) IR0

G
0
B
0 (new RGB image); (o) mean shift

clustering result of IR0
G

0
B
0
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2.3 Adaptative K-means clustering

The resulting image IR0
G

0
B
0 of the proposed enhancement step in the ideal case is a two-colour

image. One describes the nucleus and the other describes the background as shown in Fig. 5. (a
and j). In that case, the k-means algorithm [12] with a number of clusters (nb_clust) equals to
two will effectively segment the nucleus. But in some cases, the image IR0

G
0
B
0 possesses more

than two colors which describe the nucleus, background and cytoplasm as shown in Fig. 5.(b -
i). In order to find the suitable nb_clust of all the images resulting from the preprocessing for
nucleus extraction, the K-means algorithm is applied first to separate the images IR0

G
0
B
0 into 3

clusters. The intensities of the clusters are saved separately. The cluster of maximum intensity
is taken for the nucleus, the median intensity for cytoplasm, and the last for background. A
criterion based on area and solidity is defined to establish the appropriate number of clusters
for the extraction of WBC nucleus in each image.

The choice of the number of clusters is made according to the following steps:
1. Applying K-means on IR0

G
0
B
0 image to group the pixels into 3 clusters.

2. nuc_clust = takes the maximum intensity cluster group to segment the nucleus
3. cyto_clust = takes the mid-intensity cluster group to segment the cytoplasm.
4. nbclust ¼ 2 if Areaðcyto clustÞ

Areaðnuc clustÞ
2
3 and solidity

n

The boundaries values (2/3 and 0.7) used to select the nb_clust were defined experimentally
for optimal extraction of the WBC nucleus. Finally, the K-means algorithm is applied to the
image IR0

G
0
B
0 by considering the nb_clust found. The cluster with the maximum intensity is

then taken to segment the nucleus. The area filter is applied to remove the platelet fragments.
As in Ref [31], pixel’s regions less than 800 were eliminated in BloodSeg and CellaVision
database, and pixels less than 100 for JTSC database. For LSCI and ALL-IDB2 databases,
pixel’s regions less than 500 were removed.

3 Image databases and evaluation metrics

3.1 Image databases

In this study, five public blood smear image databases acquired under different conditions and
widely used by several researchers were considered to assess the performance and robustness
of the proposed method. These databases commonly called ALL-IDB2 [41], BloodSeg [32],
LSCI [35], CellaVision and JTSC [63] were respectively acquired in Italy, Sweden, china,

Fig. 5 Output of the proposed image enhancement for (a)-(b) CellaVision, (c)-(d) JTSC, (e) BloodSeg, (f)-(h)
ALL-IDB2, and (i)-(j) LSCI database.
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Malaysia and Iran. The blood smear images of these databases contain red blood cells, platelets
and WBC. WBC has a nucleus and a cytoplasm, and exists in five types (basophil, neutrophil,
eosinophil, lymphocyte and monocyte). CellaVision, JTSC, BloodSeg and LSCI databases are
developed with manual segmentation performed by an expert. For the ALL-IDB2 database, we
considered the expert segmentation provided and used in the work of Partha et al. [9]. The
features of the five databases considered are summarized in Table 1.

3.2 Evaluation metrics

The following parameters: Accuracy (A), Precision (P), Recall (R), Specificity (S), Dice
Similarity Coefficient (DSC), Kappa index (K), Classification Error (ME), Jaccard Distance
(JD) [6, 31] were computed to assess the performance of the proposed segmentation method.
We also calculated the confusion matrix and the true positive rate TPRt _t [6]. The DSC and K
metrics assess differently the similarity between the segmentation performed by the expert and
the one obtained with the proposed method. The values of these metrics vary from 0 to 1. The
values of DSC close to 1 attests the robustness of the segmentation method, which corresponds
to a low value of ME and JD. According to [27], a specific qualifier can be given to the
segmentation method based on the value of K: poor (K≤ 0.2); reasonable (0.2 <K≤ 0.4); good
(0.4 <K≤ 0.6); very good (0.6 <K≤ 0.8); excellent (K> 0.8). TPRt represents the ratio between
the number of white blood cells (w) with DSCl � t and the total number of white blood cells
(n) in the base. The value of t considered is 0.9 as in the work of [6]. The mathematical
expressions of the previously mentioned metrics are shown in Table 2. In this table, TP
represents the region of the segmented nucleus which corresponds to the segmentation made
by an expert (Ground Truth (GT)), TN the segmented background coinciding with that
segmented by expert, FP the background segmented as the nucleus and FN the nucleus region
segmented as the background. In addition, Aexp represents the area of nucleus segmented by
the expert (GT) and Aprog the area of nucleus obtained with the proposed method.

3.3 Complexity analysis

The evaluation of the computational complexity of an algorithm is mainly based on the
number of arithmetic and logical operations of the algorithm. The proposed method has three

Table 1 Features of image databases used to evaluate the segmentation methods

Features ALL-IDB2 CellaVision JTSC BloodSeg LSCI Total

Camera PowerShot
G5

- Motic Moticam Pro
252A

CCD Sony model
No.SSCDC50AP

-

Magnification 300 to 500 - - 100� lens
objectif

100 -

Image Format JPG BMP BMP JPG BMP -
Color Depth 24 bit 24 bit 24 bit 24 bit 24 bit -
Resolution 257� 257 300� 300 120� 120 640� 480 720� 576 -
Images 260 100 300 367 242 1269
Healthy images 130 0 0 0 0 130
Ground truth

images
260 100 300 367 242 1269
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main steps. Firstly, the WBC is localized in the original image using Otsu’s thresholding
which time complexity is O(L)[49] plus other operations such as multiplication, division,
comparison for which complexity is in the order ofO(N) [60]. The time complexity of this step
is O(L+N). Where N is the number of pixels of the input image and L highest intensity level of
the pixel. Secondly, the image enhancement using arithmetical operation, Fourier Transform
and mean shift operation for which time complexity are respectively estimated to O(N),
O(N2)[53] and O(TN2)[13], where T is the number of iterations and N the number of pixels
of the input image. The time complexity of this step is O(N+N2+ TN2) ≈ O(N2). Finally,
adaptative k_means operation is applied to segment the nucleus. According to reference[34],
the k-means algorithm is known to have a time complexity of O (N2). Where N is also the
number of pixels of an image. So, the total time complexity of the proposed method is O(L+
N+N2+N2)≈ O(N2).

4 Results and discussions

4.1 Results of the new proposed enhancement method

Our proposed method for the enhancement of blood smear images is robust to variations in
colour and illumination. Figs. 6, 7, 8, 9, and 10 show the results of the proposed enhancement
method for the five image databases.

4.2 Evaluation and comparison of the performance of the proposed method
on the five databases.

A Core-i5 processor computer with Windows 10 operating systems and 12 GB RAMwas used
for experiments. The proposed method has been implemented in Matlab 2018.a with the
appropriate toolboxes.

Table 2 Mathematical expression of the similarity metrics

Parameters Expression

Accuracy (A) TPþ TN=TP þ TN þ FP þ FN
Precision (P) TP=TPþ FP
Rappel (R) TP=TP þ FN
Specificity TN=TN þ FP
Dice similarity

coefficient
(DSC)

2*TP=ð2*TP þ FP þ FNÞ

Misclassification
error (ME)

FPþ FN=TP þ TN þ FPþ FN

Jaccard distance
(JD)

A prog [ A expj j � A prog \ A expj j= A prog [ A expj j

True positive rate
TPRtð Þ

# wð Þ � 100=n;where l � w and DSCl � t

Kappa index (K) θ1 � θ2=1� θ2
θ1 ¼ TP þ TN=TP þ TN þ FPþ FN

θ2 ¼ TP þ FNð Þ * TP þ FNð Þ þ TN þ FNð Þ * TN þ FPð Þð Þ= TPþ TN þ FPþ FNð Þ2
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4.2.1 Presentation of the confusion matrix results

In this section, a comparison is made between the region of the nucleus obtained with the
proposed method and that obtained by the expert segmentation. In the case of the ALL-IDB2
database, the comparison is made separately depending on whether the leukocytes are
leukemia or healthy. The results of the mean value of the confusion matrix for the five
databases are shown in Tables 3, 4, 5, 6, 7, and 8. These tables illustrate that the proposed
method can effectively segment WBC nucleus in the five image databases with a minimum
average percentage of TP equal to 85.01% (Table 8), and a low percentage of FN equal to
0.26% (Table 5).

Fig. 6 Output of the proposed image enhancement for ALL-IDB2 database: (a) Original image, (b) IR0
G
0
B
0 (new

RGB image), (c) mean shift of IR0
G

0
B
0 .

Fig. 7 Output of the proposed image enhancement for CellaVision database: (a) Original image, (b) IR0
G
0
B
0 (new

RGB image), (c) mean shift of IR0
G

0
B
0 .
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4.2.2 Results of the evaluation metrics

For each image database considered, the nine metrics presented in Table 2 were calculated, and
the results were presented in Tables 9 and 10. From the analysis of these tables, it emerges that
the proposed method achieves much better performance for the abnormal leukocytes of the
ALL-IDB2 database, with respective mean values of 96.52%, 96.69%, 96.09% and 0.96 for
the R, DSC, TPR and K (Table 9). In addition, the obtained results of the proposed method for
CellaVison database are higher than the results of the four other databases in terms of A, P, R,
DSC, K and TPR (Table 10). This superiority is confirmed by the inferiority values of the
metric ME and JD of this database compared to those of the four other databases (Table 10).
The lowest performance is obtained for LSCI database, with average values of R, DSC, TPR
and K respectively equal to 85.16%, 86.60%, 60.74%, 0.85 (Table 10). Although the lowest
value of K being 0.85 is obtained for LSCI database, according to [27] a qualifier of excellent
is attributed to the proposed method. The poor performance obtained for the LSCI database
may be due to the presence of nucleus regions which are very dark and difficult to discern in
this database [33].

Fig. 8 Output of the proposed image enhancement for BloodSeg database: (a) crop of original image, (b) IR0
G

0
B
0

(new RGB image), (c) mean shift of IR0
G
0
B
0 .

Fig. 9 Output of the proposed image enhancement for JTSC database: (a) Original image, (b) IR0
G

0
B
0 (new RGB

image), (c) mean shift of IR0
G
0
B
0 .

17860 Multimedia Tools and Applications (2022) 81:17849–17874



4.2.3 Comparison of the proposed method with previous methods in the literature

In this session, the results of the nucleus segmentation obtained with the proposed method are
visually compared with the expert segmentation and three other competitive segmentation
methods [31, 56, 57]. The selection of those three methods was motivated by the availability of

Table 3 Average confusion matrix for normal leukocyte of ALL-IDB2 database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 6823.61
98.66%

FP= 92.9
(1.34%)

Background FN= 826.54
(1.41%)

TN= 57758.33
(98.59%)

Fig. 10 Output of the proposed image enhancement for LSCI database: (a) crop of original image, (b) IR0
G

0
B
0

(new RGB image), (c) mean shift of IR0
G
0
B
0 .

Table 4 Average confusion matrix for abnormal leukocyte of ALL-IDB2 database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 10321.82
97%

FP= 319.59
(3%)

Background FN= 380.84
(0.69%)

TN= 55008.67
(99.31%)

Table 5 Average confusion matrix for CellaVision database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 8885.4
96.73%

FP= 300.1
(3.27%)

Background FN= 208.32
(0.26%)

TN= 80606.18
(99.74%)
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their implementation algorithms and their performance compared to 15 existing nuclei seg-
mentation methods in the study made by Refs [6, 31]. So, it is an indirect comparison to 15
other methods. The visual comparison is performed by considering 5 images in each of the
databases used, and the illustrations are shown in Figs. 11, 12, 13, 14, and 15. In these figures,

Table 6 Average confusion matrix for JTSC database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 1625.62
89.26%

FP= 195.52
(10.74%)

Background FN= 98.30
(0.81%)

TN= 12055.75
(99.19%)

Table 7 Average confusion matrix for BloodSeg database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 10292.80
85.70%

FP= 1717.74
(14.30%)

Background FN= 264.79
(0.51%)

TN= 51714.43
(99.49%)

Table 8 Average confusion matrix for LSCI database

Segmentation Ground Truth
Nucleus Background

Nucleus TP= 2492.63
85.01%

FP= 439.51
(14.99%)

Background FN= 367.37
(1.02%)

TN= 35384.77
(98.97%)

Table 9 Results of evaluation metrics for the ALL-IDB2 database

Pathology A (%) P (%) R (%) S (%) DSC (%) K ME JD TPR(%)

Normal leucocyte 98.59 99.30 82.99 99.80 90.63 0.878 0.014 0.176 73.30
Abnormal leucocyte 98.93 97.03 96.52 99.41 96.69 0.960 0.010 0.069 96.09

Table 10 Results of evaluation metrics for the CellaVision, JTSC, BloodSeg and LSCI databases

A (%) P (%) R (%) S (%) DSC (%) K ME JD TPR(%)

CellaVision 99.43 97.31 97.60 99.61 97.35 0.970 0.005 0.050 97.00
JTSC 97.79 93.64 94.61 98.43 93.17 0.920 0.0209 0.1161 89.33
BloodSeg 97.67 91.27 96.93 97.82 93.48 0.920 0.0232 0.1167 83.74
LSCI 97.63 90.70 85.16 98.43 86.02 0.850 0.0253 0.7824 60.74
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row (a) represents the images obtained after superimposing the contours of nucleus segmented
by the expert on the original image; line (b), the images obtained after superimposing the
boundary of the nucleus obtained with the proposed method; and rows (c) to (e) represent the
result of the superposition of the nucleus boundary obtained with the methods of Makem and
Tiedeu. [31], Vogado et al. [57] and vincent et al. [56], respectively, on the original image. As
shown in Fig. 11 (B, 1-5), Fig. 12 (B, 1-5), Fig. 13 (B, 1-5), Fig. 14 (B, 1-5), Fig. 15 (B, 1- 5),
the region of the nucleus segmented by the proposed method matches nicely with that of
expert, for all the 5 image databases considered. These results indicate that the proposed
method is robust in face of the variation of nucleus contrast, consequently to the different
acquisition processes of blood smear images. In contrast to the proposed method, in ALL-
IDB2 and BloodSeg databases, the methods implemented by Makem and Tiedeu. [31],
Vogado et al. [57] and Vincent et al. [56] include some portions of cytoplasm in the segmented
region of nucleus as illustrated in Fig. 11. ([c, d, e], 2), Fig. 11. ([c, d, e], 5), Fig. 14. ([c, d, e],
3) and Fig. 14. ([c, d, e ], 4). For CellaVision and LSCI databases, the method of Makem and
Tiedeu. [31], as shown in Fig. 12. ([c, e], 1-4) and Fig. 15 ([c, e] 2-3) gives better nucleus
region compared to the methods of Vogado et al. [57] and Vincent et al. [56]. However, as
shown in Fig. 12. ([b, d], 3-4) and Fig. 15. ([b, d], 1-2), the method proposed in this work gives
more satisfactory results than that of Makem and Tiedeu [31]. Compared to the proposed
method, the algorithm implemented in the JTSC database by Vincent et al. [56] gives poor
nucleus segmentation results in most of the images as shown in Fig. 13. (e, [1 ,2, 3, 5]).

Fig. 11 Visual comparison of the proposed method with expert segmentation and the result of three state of art
method for ALL-IDB2 database: (a) expert segmentation, (b) result of the proposed method, (c) Vogado et al.
[57], (d) Makem et al. [31], (e) Vincent et al. [56] .
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In Figs. 16, 17, 18, 19, 20, and 21, a quantitative comparison between the
proposed method and the algorithmss by Makem and Tiedeu [31], Vogado et al.
[57] and Vincent et al. [56] for all the image databases used are presented. This
comparison was carried-out using parameters A, DSC and TPR. To perform the
comparisons, the methods of Makem and Tiedeu. [31], Vogado et al. [57] and vincent
et al. [56] were coded in Matlab 2018. Analysis of the comparison figures reveals that
the proposed method gives the highest values of DSC and TPR in the database
CellaVision (Fig. 18), JTSC (Fig. 19) and abnormal leukocytes in the base ALL-
IDB2 (Fig. 16). For the LSCI database (Fig. 21), the proposed method gives an
average DSC value greater than those of the methods of Vincent et al., Vogado et al.
and Makem and Tiedeu [31, 56, 57], with a TRP value also greater than those
obtained by the methods of Refs. [56, 57] but 2.89 lower than that of Ref. [31].
For normal leukocytes of ALL-IDB2 database (Fig. 17), the mean value of DSC
obtained with the proposed method is lower than those of the methods by Makem and
Tiedeu [31] and Vogado et al.[57], nevertheless, higher than that of the method by
Vincent et al. [56]. The mean value of DSC of the proposed method is slightly lower
than that of Makem and Tiedeu [31] for the BloodSeg (Fig. 20) database, but higher
than that of Vogado et al. [57] and Vincent et al. [56].

Fig. 12 Visual comparison of the proposed method with expert segmentation and the result of three state of art
method for CellaVision database: (a) expert segmentation, (b) result of the proposed method, (c) Vogado et al.
[57], (d) Makem et al. [31], (e) Vincent et al. [56] .
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We also compared the average performance of the proposed method with existing
segmentation algorithms. The similarity measure for nucleus extraction is presented in
Table 11.

4.3 Discussion

The shape of the nucleus of WBCs varies from round to lobulated depending on the type of
WBC, on one hand. On the other hand, the color of the nucleus in the blood smear images
varies from database to database, due to the difference between acquisition devices and the
techniques of smear preparation. Therefore, segmentation of the nucleus WBCs from different
image databases is a very difficult task. Confronting the results obtained to our initial
hypotheses, we can bring out the following remarks:
1. The algorithm developed in this paper successfully segmented in a selective way

the nucleus of WBC. The average accuracy of the algorithm on the databases as
diverse as the ones we have chosen is still very high (98.34% ). This confirms
our first hypothesis

Fig. 13 Visual comparison of the proposed method with expert segmentation and the result of three state of art
method for JTSC database: (a) expert segmentation, (b) result of the proposed method, (c) Vogado et al. [57], (d)
Makem et al. [31], (e) Vincent et al. [56] .
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2. From comparison with other works standpoint, the proposed algorithm gave better results
than 18 recent works in the literature (15 by indirect comparison and 3 by direct
comparison as explained in Section 4.2.3). This was the point of our second hypothesis.

3. The proposed algorithm has been tested on 5 databases and gave good results on one
hand. On the other hand, we computed a metric (K) that measures the robustness of a
segmentation algorithm. According to [27], a value of K>0,8 is considered excellent. The
proposed algorithm yields an average value of K of 0,91when used on the 5 databases.
This means that the segmentation algorithm proposed is very robust. This confirms the
third hypothesis.

We recall that most of the existing methods using k-means achieve low results
because they focus on a static number of clusters for all the input images. The new
method proposed gave satisfactory results on the databases (ALL-IDB2, JTSC,
CellaVision, BloodSeg, and LSCI). Our results were compared, database by database,
with those of 3 competitive literature methods [31, 56, 57]. These comparisons have
been illustrated by Figs. 16, 17, 18, 19, 20, and 21. An average performance
comparison was also made between our proposed method and 12 existing nucleus
segmentation methods in Table 11. From that table it emerged that the performances

Fig. 14 Visual comparison of the proposed method with expert segmentation and the result of three state of art
method for BloodSeg database: (a) expert segmentation, (b) result of the proposed method, (c) Vogado et al.
[57], (d) Makem et al. [31], (e) Vincent et al. [56] .
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of the proposed method is better compared to the other proposed methods that do not
use private databases [9, 24, 31, 33, 38, 50, 51, 56, 57]. We obtained an average
DSC equal to 92.89% for all the five databases acquired from different staining
techniques and imaging conditions. This indicates that the combination of Fourier
Transform, arithmetical operation and mean shift for nucleus enhancement performs

Fig. 15 Visual comparison of the proposed method with expert segmentation and the result of three state of art
method for LSCI database: (a) expert segmentation, (b) result of the proposed method, (c) Vogado et al. [57], (d)
Makem et al. [31], (e) Vincent et al. [56] .

Fig. 16 Comparison between the proposed method and recent methods in the literature for leukemia WBCs
using the ALL-IDB2 database.
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Fig. 17 Comparison between the proposed method and recent methods in the literature for normal WBCs using
the ALL-IDB2 database.

Fig. 18 Comparison between the proposed method and recent methods in the literature unsig the CellaVision
database.

Fig. 19 Comparison between the proposed method and recent methods in the literature using the JTSC database.
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Fig. 20 Comparison between the proposed method and previous methods in the literature using the BloodSeg
database.

Fig. 21 Comparison between the proposed method and recent methods in the literature using the LSCI database.

Table 11 Performances of the state-of-the-art algorithms and the proposed method.

Methods Databases Average similaraty

The proposed method JTSC, CellaVision, BloodSeg, ALL-IDB2 and LSCI 92.89%
Makem et al. 2020 [31] JTSC, CellaVision, BloodSeg, ALL-IDB2 and LSCI 91.69%
Partha et al.[9] JTSC, CellaVision, BloodSeg and ALL-IDB2 92.75%
Sapna et al.[38] LSCI 90.20%
Moshavash et al.[33] LSCI 76%
Tareef et al. [50] BloodSeg and LSCI 86.9%
Kumar et al.,2017[24] JTSC, CellaVision, BloodSeg and ALL-IDB2 67%
Tareef et al.[51] BloodSeg and LSCI 88.45%
Vogado et al. 2016 [57] JTSC, CellaVision, BloodSeg, ALL-IDB2 and LSCI 79,85%
Vincent et al.,2015 [56] JTSC, CellaVision, BloodSeg, ALL-IDB2 and LSCI 68.68
Amin et al.[22] 87 of private database 95.73%
Hedge et al.[17] 119 private database and 54 images ALL-IDB2 96%
Hedge et al.[18] 160 Private database and 160 ALL-IDB2 96. 5%

The bold entries were used to show the average value of DSC obtained using the proposed segmentation method
considering the 5 public databases and average similarity obtained using test private databases
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better for images with brightness and color variation. The high performance obtained
by Refs [17, 18, 22] may be the result of the mainly use of private database with less
variation of contrast and illumination for their evaluation and the inconsideration of
the challenged database, namely LSCI for their test. The proposed method could give
more promising results for segmentation of nuclei in the five or more databases if we
made an accurate choice of the number of clusters

As far as the complexity is concerned, the value from the proposed algorithm which is
O(L+N+N2+N2)≈ O(N2), is high compared to the method proposed in [14] O(L + N.K) but,

better as compared to other methods developed in [55] O(Nc+l), [59] O m N
m

� �3 þ NlogBN
� �

and [61] tO(N2).
As far of the clinical significance of our finding is concerned, suffices it to say that WBC

segmentation is a critical step in preparation of WBC classification for computer-aided-
diagnosis of leukaemia. The result of the segmentation affects the classification and therefore
the computerized diagnosis. It is our pleasure to note that the proposed algorithm is able to
segment leucocyte nucleus of both leukemia and healthy cells (see Table 9) Based on this, our
research can be used in the segmentation step of an automated system of leukemia diagnosis.
As limitation to our proposed method, the proposed criteria for the selection of the number of
clusters may not give a good result on some enhancement images.

5 Conclusion

This paper proposed a new method for detection and extraction of the nucleus of white blood
cells in blood smear images. To extract the WBC nucleus, images with a resolution greater
than 300� 300 were first cropped, then a new colour image named IR0

G
0
B
0 is obtained from the

cropped image by exploiting the arithmetic operations using a control parameter, the Fourier
Transform, the average circular filter and the mean shift clustering method. A new criterion is
established for choosing the appropriate number of clusters to segment the nucleus in the color
image. After segmentation of the nucleus, the area filter is applied to eliminate artifacts in the
binary image. The proposed method was tested on 5 totally different image databases, the
following means of [DSC, TPR] were obtained: [97.35%, 97%] for CellaVision database
[96.63%, 96.09%] for leukemia leukocytes of ALL -IDB2 database, [93.48%, 83.74%] for
BloodSeg database, [93.17%, 89.33%] for JTSC database, [90.63%, 73.30%] for the healthy
leukocytes of the ALL-IDB2 database and [86.02%, 60.74%] for the LSCI database. These
results demonstrate the robustness of the proposed method with respect to the variation of
nucleus contrast in the different image databases. The proposed method yields a better average
performance as compared to at least nine competitive methods in the literature. WBC
segmentation is an important part of the WBC classification system, and the segmentation
results directly affect the accuracy of the system. Our new approach is able to segment
leucocyte nucleus of both leukemia and healthy cells. Based on this, our research can be used
in the segmentation step of an automatic system of leukemia diagnosis.

The ultimate goal of this project is computer-aided-diagnosis of leukaemia. The first step is
segmentation of WBC nucleus. The second one will deal with classification of WBC nucleus.
This will be carried out using convolutional neural networks
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