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Abstract
Underwater images generally are characterized by color cast and low contrast due to
selective absorption and light scattering in water medium. Such degraded images reveal
some limitations when used for further analysis. To overcome underwater image degrada-
tion, various enhancement techniques are developed. Especially, the fusion-based methods
have made remarkable success in this filed. However, there are still some defects in the
fusion of input images and weight maps, which cause their results to be unnatural. In this
paper, we propose a novel and effective natural-based fusion method for underwater image
enhancement that applies several image processing algorithms. First, we design an adap-
tive underwater image white balance method motivated by our statistical prior to mitigate
the impact of color deviation of underwater scenes. We then derive two inputs that rep-
resent local detail-improved and global contrast-enhanced versions of the color corrected
image. Instead of explicitly estimating weight map, like most existing algorithms, we pro-
pose a naturalness-preserving weight map estimation (NP-WME) method, which models
the weight map estimation as an optimization problem. Particle swarm optimization (PSO)
is used to solve it. Benefiting a proper weighting, the proposed method can achieve a trade-
off between detail enhancement and contrast improvement, resulting a natural appearance of
the fused image. Through this synthesis, we merge the advantages of different algorithms to
obtain the output image. Experimental results show that the proposed method outperforms
the several related methods based on quantitative and qualitative evaluations.
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1 Introduction

The quality of visual information of underwater images plays an important role in many
ocean engineering applications and scientific researches, such as aquatic robot inspection
[53], underwater saliency detection [29]. However, underwater images are usually plagued
by color cast and low contrast owing to the presence of selective absorption and light scat-
tering. For underwater scenario, The selective absorption leads to the serious color cast and
image information loss [2]. The light scattering blurs image features and reduces the con-
trast [9]. Therefore, underwater image enhancement techniques are desired in both scientific
researches and computer applications.

Several attempts have been made to enhance the visual manifestation of such degraded
underwater images. On the whole, the early methods mainly make use of multiple images
[42, 47] or additional information [30] to restore the underwater image. Nevertheless, these
algorithms are generally limited in practical applications. In recent years, researchers focus
on haze removal from a single image, most of which have been made using the image
formation model (IFM). The core idea of these IFM-based dehazing methods depends on
various hypothesis or priors. However, for underwater scenes, these extra information may
not always hold, due to the unbalanced attenuation caused by the selective absorption in
water. Subsequently, with the popularity of Graphics Processing Unit (GPU), the deep learn-
ing approach has become the most advanced solution in the image dehazing field. However,
these methods introduce unsatisfactory results since the lack of dataset, which contains both
the real-world underwater images and their corresponding ground truth for different water
types. Although various methods are proposed to imitate underwater image, there still exists
a gap between synthetic and real-world underwater images [36].

Noticing these problems, several methods [3, 4, 7, 39] based on fusion have been pro-
posed. In [3], Ancuti et al. proposed a multi-scale fusion method that combined the result
images of color correction and contrast enhancement by four weight maps about laplacian
contrast, local contrast, saliency and exposedness. Recently, [4] modified this previous work
without calculating the exposedness weight map, to avoid amplifying some artifacts and
improve the color appearance of resultant images. Although these methods make valuable
achievements. But it still suffers from artifacts and unnatural appearance, because it limits
itselves to these several weight maps only, without fully considering the information bal-
ance among different derived inputs version. In addition, these methods estimate weights
based on single pixel, which is susceptible to noise and easy to produce visual artifacts in
the fused image.

To solve the aforementioned problem, we propose a novel enhancement method that
reasonably combines several algorithms to obtain final enhanced result. The specific
contributions are as follows:

• We propose an effective natural-based fusion method to enhance underwater image,
which simultaneously solves the dehazing problem. Extensive experiments show that
the proposed method has better results than other related methods.

• To remove the color casts of underwater images, we propose an adaptive underwa-
ter image white balance (AUWB) method inspired by our statistical prior that the
green channel is relatively well preserved. By considering the significant attenuation
difference between the green channel and the degraded channels into a gain fac-
tor, the proposed AUWB method can effectively compensate various color distorted
underwater images.
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• To improve the naturalness of the fused image, we design a novel naturalness-
preserving weight map estimation (NP-WME) algorithm, which is formulated as an
optimization problem. Particle swarm optimization (PSO) provides a helpful support
to solve it. Compared with previous fusion-based algorithms, our enhanced image
achieves a good trade-off on the transfer of contrast and details without the significant
amplification of visual artifacts.

The rest of this paper is organized as follows: Section 2 introduces the work related to
underwater dehazing. The proposed method is described in Section 3. Section 4 evaluates
and compares experimental results. Section 5 concludes the paper.

2 Related work

The existing image dehazing methods can be roughly divided into the following categories:
traditional methods [25, 62] and deep-learning based methods [32, 59]. The traditional
methods are further classified into underwater image restoration methods and underwater
image enhancement methods. Here is a brief overview of all the above methods.

2.1 Underwater image restorationmethod

Underwater image restoration methods [54, 55, 60] use the optical model parameters derived
from prior knowledge to restore the image by reversing the degradation process. Most of
these technologies are based on image formation model (IFM). To estimate the derived
parameters, the dark channel prior (DCP) [24] is used. Since the DCP has been effectively
proven, many researchers have proposed various underwater restoration methods based on
DCP. For example, Drews Jr et al. [16] proposed the underwater DCP (UDCP) from the
traditional DCP by excluding the red channel in producing the prior. Peng et al. [44] pro-
posed a generalized dark channel prior (GDCP), which estimated ambient light using the
depth-dependent color, and also used adaptive color correction incorporated into the IFM.
Apart from the DCP-related priors, there are also useful priors proposed by other under-
water image restoration works. Galdran et al. [20] proposed a red channel prior method to
recover the lost contrast in underwater images. This prior reversed the red channel to com-
pensate the strong attenuation of red light in the water medium. Li et al. [34] represented an
effective underwater image dehazing method built on a minimum information loss principle.
And then, a histogram distribution prior was proposed to increase the contrast and bright-
ness of underwater images. Peng and Cosman [45] proposed a depth estimation method for
underwater scenes based on image blurriness and light absorption, which can be used in the
IFM to restore underwater images. Hou et al. [26] proposed a variational model based on
non-local different operators, which successfully integrated the underwater image formation
model into the variational framework.

2.2 Underwater image enhancementmethod

On the other hand, underwater image enhancement methods [23, 37] improve the image
quality by changing the intensity values of the RGB color channels according to certain
rules. For example, in [11], Chambah et al. proposed an automatic color equalization (ACE)
model to correct strong and nonuniform color casts in underwater images. In [27], Iqbal
et al. used histogram stretching method to restore the color balance and improve the con-
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trast of underwater images. This approach is easy to apply and can successfully improve
underwater image quality. Fu et al. [19] proposed a two-step enhancement method, which
carries out a color correction process followed by a contrast enhancement process. Mi
et al. [40] proposed a multi-purpose oriented method, which decomposes the input into illu-
mination and reflectance layer. Brightness compensation is performed on the illumination
layer, while enhancement of color correction and contrast are carried out on the reflectance
layer through a multi-scale processing strategy. Zhang et al. [61] introduced a method called
LAB-MSR, which is implemented by extending the Retinex algorithm to CIEL∗a∗b∗ color
space.

2.3 Deep-learning basedmethod

More recently, deep-learning based dehazing network is designed for underwater images.
Fabbri et al. [17] proposed UGAN, which uses gradient penalty as the soft constraint on
the output image. In letter [35], Li et al. proposed a weakly supervised color transforma-
tion technique inspired by cycle-consistent adversarial networks (CCAN) to correct color.
Most recently, UWCNN [32] is proposed, which uses a CNN architecture trained on the
underwater scene prior based underwater images. Islam et al. [28] presented a supervised
enhancement model called FUnIE-GAN for estimating clear image. Guo et al. [21] proposed
a multi-scale dense block, called DenseGAN that employs the use of dense connections,
residual learning and multi-scales network for enhancing underwater image.

3 The proposedmethod

In this section, the proposed method is deliberated for generating a haze-free underwater
image characterized by natural appearance and good visibility. An overview of the proposed
method is shown in Fig. 1. The different steps involved in the proposed method are as
follows:

3.1 Adaptive underwater image white balance

In terms of underwater image enhancement, it is necessary to correct the unwanted color
appearance caused by selective absorption of colors with depth. In water, the unbalance
attenuation caused by the selective absorption varies with geographical, seasonal, and cli-
mate related events [8]. For example, visible light with the longest wavelength is absorbed

Fig. 1 Overview of the proposed method. AUWB: Adaptive underwater image white balance. SLIC: Simple
linear iterative clustering. NP-WME: Naturalness-preserving weight map estimation
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at the highest rate, appearing deep-blue or blue-green to the eye, when travling in clear
open waters. In near-shore waters, sea water contains more suspended particles and organic
matter, which strongly absorb the shortest wavelength, resulting in yellowish or greenish
appearance.

When focusing on the issue of color correction, existing white balance methods are con-
sidered to search for a proper solution, and the visual results are shown in Fig. 2. However,
most traditional methods perform poorly due to not considering the selective absorption.
They fail to remove the color shifting, and generally look bluish. The Gray World is the
best method to remove blue tone, but it suffers from severe red artifacts. Recently, some
methods [4, 5, 12] have been proposed to reduce the effect of selective absorption. In [4], a
constant proportional compensation model is developed to make up the difference between
the degraded channel and other channels. The global visual performance can be improved.
However, it obtains the degraded channels by artificially observing the tones of the image,
which reduces their practical applicability. Therefore, how to effectively compensate for the
light attenuation is still a challenge.

To solve the problems mentioned above, an adaptive underwater image white balance
(AUWB) approach is proposed. Firstly, we have noticed that images captured under water
usually show four color tone types, namely, blue, blue-green, greenish and yellow. To ana-
lyze the selective absorption of each color tone, we gather an underwater image dataset from
UCCS [38] and UIEBD [36]. The corresponding example images are shown in the first two
columns in Fig. 2. Table 1 calculates the mean (μ) and standard deviation (σ ) of the three
channels in each color tone type. The bold value means the maximum value of the R-G-B
channel. From Table 1, the following observations can be obtained :

1) Generally, the red component is attenuated faster than blue/green ones, which is only
suitable for images with bluish and blue-green tones in clear water.

2) When the images appear greenish or yellow, the mean value of the blue channel is
much smaller than the green. It reveals the fact that, the blue channel may be significantly
attenuated, due to the absorption by organic matter when traveling in sea water.

3) The green channel is relatively well preserved under water, compared to the red and
blue ones.

Following the above statistical prior, we design a gain factorZ to carry information about
the difference in average pixel value between the green channel and the degraded channels.
This information is critical for controlling the appropriate amount of pixel values that should

Fig. 2 Comparative results of different white balance methods. From left to right are original images that
are examples of the four color tones, and the results generated by Grey Edge [58], Shades of Grey [18], Max
RGB [31], Gray World [10], and AUWB method. One to three rows are selected from UCCS [38]. The set
contains three 100-image subsets of “Blue”, “Green-blue”, and “Green” tones according to the degree of
color casts. Fourth row is selected from UIEBD [36], This subset contains 10 typical yellow images
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Table 1 The mean (μ) and standard deviation (σ ) of each subdataset

Tone Mean (μ) Standard deviation (σ )

R G B R G B

Blue 0.1919 0.5955 0.5754 0.0365 0.0567 0.0503

Blue-green 0.2431 0.5640 0.4410 0.0422 0.0607 0.0574

Green 0.1400 0.4437 0.2648 0.0156 0.0569 0.0364

Yellow 0.4878 0.5382 0.2300 0.1067 0.1092 0.1323

be added to the degraded channels. The gain factor Z is defined as:

Zc =
∣
∣
∣
∣

μ (Ig) − μ (Ic)

μ (Ig) + μ (Ic)

∣
∣
∣
∣
, c ∈ {r, g, b} (1)

where μ (Ic) is the average of color component I c.
And then the underwater image white balance function is defined as:

W
(

I c (x)
) = I c (x) + ZcIg (x) (2)

where W (·) is the white balance function.
To adaptively correct various color cast images, we add a threshold judgment (τ ), and

τ = λ
∑

μ (Ic). If μ (Ig) − μ (Ic) ≥ τ , then the AUWB compensates for the attenuation
of degraded channels. Otherwise, it means the image has less color cast and white balance
may causes unnecessary artifacts. In practice, our tests reveal that λ = 0.1 is appropriate for
various illumination conditions and acquisition settings.

Overall, we present an effective and automatic AUWB method, which is able to selec-
tively respond to color casts. For a given underwater image I (x), the color corrected image
IWB (x) is obtained as:

I c
WB (x) =

{

W (Ic (x)) , μ (Ig) − μ (Ic) ≥ τ,

I c (x) , otherwise.
(3)

Fig. 3 Comparisons of several well-known white balance approaches (Grey Edge [58], Shades of Grey [18],
Max RGB [31], Gray World [10], and Ancuti’s white balance method [4]). The original images (selected
from [46]) are captured at the depths of 3.26m, 6.06m, 8.98m, 12.25m, and 15.11m. The color checker is
used as a reference for calculating CIEDE2000 [49]. The range of CIEDE2000 is [0,100], a smaller value
indicates a small color difference. In other words, the smaller the metric, the better
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To further analyze the robustness of the AUWB, Fig. 3 shows the comparisons of sev-
eral white balance techniques to measure the color corrected accuracy of images taken at
different depths. Our assessment considers the CIEDE2000 [49], which measures the color
difference between the reference ground truth Macbeth Color Checker and the correspond-
ing color patch, manually located in each image. As can be seen, the AUWB approach as a
pre-processing step performs better than other methods in most of cases. In addition, com-
pared to Ancuti [4], the proposed method is adaptive and can effectively handle multiple
underwater environments.

3.2 Natural-based fusion

In this section, our goal is to develop an effective natural-based fusion method that blends
the advantages of different mature image processing techniques. Specifically, the proposed
technique could be divided into the following four steps:

3.2.1 Inputs

A natural and intuitive way to enhance the degraded images is simply to adjust illumination
since it is linked to the naturalness of the image [57]. Therefore, in this section, the color
corrected image is converted into CIEL∗a∗b∗ color space. Then, the L channel is extracted
as the illumination information. Our two inputs are derived from the estimated illumina-
tion, which allows us to avoid distortion. The first input IC is designed to address the global
contrast in order to clarify the dark regions of the image. Many techniques can be used
to enhance global contrast, such as sigmoid function and gamma correction. In this step,
we obtain the first input by applying the Contrast-Limited Adaptive Histogram Equaliza-
tion (CLAHE), which useful for expanding the global contrast between adjacent structures.
Since enhancing the global contrast is at cost of blurring the visual information. Thus, the
second input IL is derived to improve local detail by using Laplacian filter.

In order to avoid the artifacts caused by the pixel-wise weight map estimation, we
use SLIC (Simple Linear Iterative Clustering) [1] to divide the input image into N non-
overlapping patches. To achieve the division of the input images, the color corrected image
is divided into non-overlapping N image patches (Mask) by using SLIC. To ensure that the
segmentation results of two input images are consistent, we directly apply the mask to the
input images to obtain final input images IC = In

C and IL = In
L, where n = (1, 2, · · · , N).

3.2.2 Weights

Estimating the weight map is an important step of image fusion. Existing fusion-based meth-
ods often introduce unnatural appearance, due to the inaccurate weight map estimation. To
fill this gap, the NP-WMEmethod is proposed in this work. It is designed as an optimization
problem, defined as:

W = argmin

{
∑

c

L (f (GF(W), IC, IL))

}

(4)

where c indicates each channel, W is the initial weight map, GF (·) is refinement function,
f (·) is the abbreviation of fusion function, L (·) is the objective function. Note that f (·) is
a function of three parameters, W is the only unknow component.
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To estimate the value of W with high accuracy, PSO is selected to solve this optimization
problem. Since PSO has been proven to be effective in image enhancement field [41, 48].
Furthermore, it is uncomplicated to hybridize PSO with other algorithms and can be used
in various application environments with a little modification [56].

Particle swarm optimization (PSO) is a random search algorithm based on swarm coop-
eration [22], which is developed by simulating the foraging behavior of birds. Each bird is
regarded as a “particle”. The position of each particle represents a solution to the problem.
The algorithm randomly initializes a group of particles, then iterates to find the optimal
solution, and uses fitness to determine the quality of the solution. Each iteration of the par-
ticle tracks the personal best (Pbest ) and the global best (Gbest ) to dynamically update its
velocity and position. It specifically includes the following steps:

Parameter Initialization. Initializing the beginning parameters, such as the maximum
number of iterations tmax , total population of particlesm, inertia weightω, learning factor
c1 and c2, and the random numbers r1 and r2.

Updating the Particles. The velocity of each particle is updated based on the summation
of parameters, which is defined as:

vt+1
i = ωvt

i + c1r1 × (

Pbest − xt
i

) + c2r2 × (

Gbest − xt
i

)

(5)

where i = (1, 2, · · · ,m), v is velocity, ω is an inertia factor. c1 and c2 are non-negative
constants and learning factors, r1 and r2 are two random numbers. t represents the num-
ber of current iterations. In addition, the personal best (Pbest ) is the current optimal
position searched by the single particle, and the global best (Gbest ) is the current optimal
position searched by all particles. Both Pbest and Gbest are updated at every iteration.

Then, the particle’s new velocity vi (t + 1) is used to update the position x of particle
defined as:

xt+1
i = xt

i + vt+1
i (6)

In the velocity update formula (5) , the first item is the product of the inertia weight
and the current velocity of the particle, which represents the trust of the particle in its
current motion, and is based on the original velocity’s inertial movement. The second
term represents the state of self-consciousness, which is the particle’s judgment of its
own history. The third item indicates social consciousness and is the mutual cooperation
and information sharing of the various particles in the group.

Objective Function. The fitness of the particle’s current position is measured by the
objective function. Once the inputs of the natural-based fusion process are obtained, it
is possible to estimate fused image using enhancement properties: contrast and informa-
tion loss. The objective function is formulated to maximize the contrast and minimize
the information loss of the fused image, defined as:

L = Lcon − Linf (7)

where Lcon and Linf are defined as:

Lcon =
∑

c

∑

i∈Ωn

Gc (i) − μ (Gc)

|Ωn| (8)

Linf =
∑

c

∑

i∈Ωn

(

max (0, Jc (i) − 255)2 + min (0, Jc (i))2
)

(9)

where c indicates each channel, |Ωn| is the cardinality of the nth patch Ωn, Gc is a gray-
scale layer of fused image Jc, and the intensity range is set 0 to 255, and μ (Gc) is the
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average intensity of Gc. The information loss can be counted by the sum of enhanced
pixel values that are out of bounds (0, 255).
In Eq.(7), the first term ensures the fused image J has rich contrast and texture infor-

mation, and the second term is used to measure the lost information cost. A good fused
result is described by the large value of L. In other words, our weight maps can be
obtained when the L achieves the largest value.

Fig. 4 shows the different weights obtained by fusion-based method [3], fusion-based
method [4] and the proposed method. It can be observed that the visual effect of the pro-
posed method is pleasing, while the contrast is well enhanced. The results of [3] and [4]
lose the global lightness order and have the certain lightness distortion. Therefore, it proves
that the proposed natural-based fusion method has better flexibility and can well transform
the contrast and details into the fused image. For clarity, the entire procedure of calculating
weights (W ′) is outlined in Algorithm 1.

Fig. 4 Different weight maps obtained by fusion-based method [3], fusion-based method [4] and the
proposed method
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3.2.3 Refinement

To ensure spatial consistency, we refine the weight maps of input images with guided filter.
Guided filter can maintain the edges while smoothing the image. The gray-scale version of
the input image is selected as the guided image. The refined weight maps can be written as:

W ′
y = GF

(

Igray, Wy, r, ε
)

, y = {C,L} (10)

where GF (·, ·, ·, ·) represents the guided filter operation. W is the weight map of each
component of the nth image. W ′ is the refined weight map. r is the size of the filter win-
dow. ε denotes the regularization parameter, which determines the blur degree of the filter.
According to the experiments, r = 3 and ε = 0.15.

3.2.4 Fusion framework

The final enhanced image version J is obtained by fusing the defined inputs with the weight
measures at every pixel location, which is defined as:

J = f
(

W ′, IC, IL

) = W ′
C · IC + W ′

L · IL (11)

where IC and IL are the input images, W ′
C and W ′

L are the weight maps. The weights are
normalized, and W ′

C + W ′
L = 1. For clarity, the detailed calculation steps of the proposed

method are outlined in Algorithm 2.

4 Experimental results

In this section, we test various underwater images to examine the effectiveness of the pro-
posed approach. Test images are selected from underwater image enhancement benchmark
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dataset (UIEBD) [36] and real-world underwater image enhancement (RUIE) [38] dataset.
The UIEBD contains 890 degraded underwater images and 60 challenging data. RUIE is
composed of three subsets, which contains a total of 3930 challenged images of marine life
captured in real marine aquaculture environment.

To verify the performance of the AUWB method, we conduct comparative experiments
with several traditional color constancy techniques, namely, Grey Edge [58], Shades of
Grey [18], Max RGB [31] and Gray World [10]. Furthermore, the performance of the
natural-based fusion method is compared with that of several underwater image enhance-
ment/restoration methods, namely, UDCP [15], Histogram prior [33], Haze Line [6],
UIBLA [45], GDCP [44], fusion-based (Ancuti2012) [3], fusion-based (Ancuti2018) [4],
UGAN [17], UWCNN [32], FUnIE-GAN [28].

4.1 Parameters

4.1.1 Parameter settings

In this work, several parameters are initialized manually. They are the image patches N , the
number of particles m, the maximum number of training iterations tmax , the inertia factor
ω, the positive constants c1 and c2, the random numbers r1 and r2.

In the analysis done by Bratton and Kennedy [14], it was reported that under testing,
a population size between 20-100 particles produced better results for the test problems.
Further, in [41], this argument was also confirmed. So in this work, m is set to be 30.

The inertia weight ω is added to obtain a better balance between global exploration and
local exploitation of PSO approach. A larger value of ω promotes a global exploration
(searching new areas), while a smaller value encourages a local exploitation [51]. It was
found that linearly decreasing the inertia weight from 0.9 to 0.4 produces good results [50].
In this work, ω is set to be 0.8.

c1 and c2 are learning factors. The cognitive acceleration (c1) starts with a higher value
and linearly decreases, while the social acceleration (c2) starts with a lower value and lin-
early increases. The ranges of the values are the following: c1 decreases linearly from 2.5
to 0, and c2 increases linearly from 0 to 2.5. In this work, both c1 and c2 are set to be 2. r1
and r2 are random numbers in [0, 1].

N is the number of image patches. When an image is divided into 400 patches, the fused
image shows a pleasant result. So in this work, N is set to be 400.

Fig. 5 The iteration curve of average fitness value on image with 400 patches. The x-axis represents the
number of iteration, the y-axis represents the average fitness value (£) of all patches
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4.1.2 Parameter analysis

The maximum number of iterations is highly problem-dependent. 400 patches of one origi-
nal image have been tested to determine the appropriate iteration value. It can be seen from
Fig. 5, the algorithm is converged before 30 times. So in this work, tmax is set to be 30.

4.2 Underwater dehazing evaluation

4.2.1 Qualitative comparison

Figure 6 presents the results obtained on seven different representative underwater images
in the UIEBD through several recent dehazing methods. Experiments show that the effects
of attenuation can be successfully eliminated by proposed method and the visibility of raw
underwater images is effectively improved. Although qualitative comparison also shows that
most of the above methods can well complete the task of underwater image enhancement,
but due to the accurate estimation of the weight maps and the excellent performance of the
white balance, the proposed technique can restore most scene details and maintain a natural
appearance.

Fig. 6 Subjective comparisons on underwater images from UIBED [36] testing set. From left to right are
original images, and the results generated by UDCP [15], Histogram Prior [33], Haze Line [6], UIBLA [45],
GDCP [44], fusion-based (Ancuti2012) [3], fusion-based (Ancuti2018) [4] and the proposed method
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As shown in Fig. 6, the result of fusion-based [3] method introduce a significant color
shift, due to the inaccurate color correction. The Histogram Prior [33] method produces
unsatisfying results with reddish color shift and artifacts. The Haze Line [6] often fail to
remove color cast. All the IFM-based methods (e.g., UDCP [15], histogram prior [33] and
UIBLA [45]) fail to estimate transmission and veiling light accurately, which results in
visually unpleasing restoration results.

4.2.2 Quantitative comparison

For quantitative evaluation, full-reference criteria: peak signal to noise ratio (PSNR), patch-
based contrast quality index (PCQI) [52], non-reference criteria: Blur [13], underwater
image quality measure (UIQM) [43] are used. For full reference evaluation, we regard the
reference images supported by UIEBD as basic facts, and calculate the PSNR and PCQI
between the restored result and the corresponding reference.

A higher PSNR value indicates that the result is closer to the reference in terms of image
content. The Blur metric [13] evaluates the image quality in terms of blur perception, and
the blur metric ranges from 0 to 1, indicating the best to the worst.

PCQI [52] method is used to predict the human perception of contrast variations. A
higher PCQI score, the better image contrast. PCQI can be described as:

PCQI = 1

M

M
∑

i=1

qi (xi, yi) qc (xi, yi) qs (xi, yi) (12)

where M means the total number of the patches in the image, qi , qc and qs are three
comparison functions.

The UIQM metric [43] is designed specifically to quantify the colorfulness(UICM),
sharpness(UISM) and contrast(UIConM) that characterize underwater images. A greater
value of the UIQM reprents higher image quality. UIQM can be described as:

UIQM = c1 × UICM + c2 × UISM + c3 × UIConM (13)

where c1, c2 and c3 are the scale factors, we set c1 = 0.0282, c2 = 0.0953, and c3 = 3.5753
as the original paper.

Table 2 Underwater dehazing evaluation based on PSNR

Image Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d) Fig. 6 (e) Fig. 6 (f) Fig. 6 (g)

UDCP 19.22 19.01 18.76 23.20 13.30 24.12 17.62

Histogram prior 20.55 13.79 18.10 14.82 20.90 21.53 21.96

Haze Line 23.13 23.09 22.42 24.09 14.74 14.70 17.50

UIBLA 24.36 18.08 28.81 16.57 26.76 16.22 24.21

GDCP 14.36 15.27 22.17 11.80 17.07 16.79 15.15

Fusion-based 22.53 21.28 23.51 16.72 22.78 22.49 20.13

(Ancuti2012)

Fusion-based 24.78 30.89 33.08 19.39 25.63 24.50 20.31

(Ancuti2018)

Ours 25.28 27.47 29.57 26.77 27.56 26.27 22.39
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Table 3 Underwater dehazing evaluation based on Blur

Image Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d) Fig. 6 (e) Fig. 6 (f) Fig. 6 (g)

UDCP 0.21 0.24 0.25 0.28 0.24 0.23 0.24

Histogram prior 0.21 0.21 0.22 0.27 0.25 0.22 0.24

Haze Line 0.22 0.51 0.26 0.29 0.26 0.22 0.25

UIBLA 0.21 0.22 0.26 0.27 0.26 0.16 0.24

GDCP 0.20 0.22 0.24 0.26 0.24 0.21 0.23

Fusion-based 0.22 0.24 0.27 0.27 0.25 0.22 0.25

(Ancuti2012)

Fusion-based 0.21 0.77 0.26 0.25 0.25 0.22 0.24

(Ancuti2018)

Ours 0.19 0.19 0.23 0.24 0.22 0.20 0.22

Table 4 Underwater dehazing evaluation based on PCQI

Image Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d) Fig. 6 (e) Fig. 6 (f) Fig. 6 (g)

UDCP 0.94 0.84 0.93 0.90 0.86 1.05 0.98

Histogram prior 1.08 1.05 1.04 1.13 1.16 1.10 1.20

Haze Line 1.00 1.02 0.93 0.71 0.63 0.76 0.89

UIBLA 1.10 1.11 1.07 1.11 1.09 0.99 1.13

GDCP 1.00 1.03 1.13 1.02 1.14 1.14 1.00

Fusion-based 1.17 1.21 1.10 1.26 1.29 1.24 1.30

(Ancuti2012)

Fusion-based 1.00 1.05 1.02 1.12 1.06 1.01 1.13

(Ancuti2018)

Ours 1.25 1.15 1.14 1.24 1.28 1.26 1.34

Table 5 Underwater dehazing evaluation based on UIQM

Image Fig. 6 (a) Fig. 6 (b) Fig. 6 (c) Fig. 6 (d) Fig. 6 (e) Fig. 6 (f) Fig. 6 (g)

UDCP 1.80 1.73 1.61 1.45 1.76 0.57 1.69

Histogram prior 1.69 1.65 1.78 1.56 1.50 1.57 1.53

Haze Line 1.69 1.72 1.54 1.41 1.44 1.73 1.63

UIBLA 1.65 1.45 1.47 1.49 1.26 1.82 1.57

GDCP 1.62 1.35 1.61 1.46 1.60 1.59 1.46

Fusion-based 1.69 1.59 1.61 1.61 1.53 1.57 1.60

(Ancuti2012)

Fusion-based 1.53 1.38 1.39 1.46 1.27 1.56 1.51

(Ancuti2018)

Ours 1.74 1.76 1.79 1.64 1.84 1.75 1.63

30064 Multimedia Tools and Applications (2022) 81:30051–30068



Fig. 7 Experimental results about naturalness preserving among the images yielded by different fusion-
based mathods. (a) Original image, (b) Fusion-based method (Ancuti2012) [3], (c) Fusion-based method
(Ancuti2018) [4], (d) Global-based fusion, (e) Ours

Tables 2, 3, 4 and 5 represent the evaluation values of the enhanced results shown in
Fig. 6 in terms of PSNR, Blur, PCQI and UIQM, respectively. The red value indicates the
best result, the blue value indicates the second best. As described in these four tables, the
proposed method performs better in most cases.

4.3 Naturalness-preserving analysis

For underwater image enhancement based on fusion, the fused results with naturalness are
important and highly desired for many practical applications (such as object recognition,
object tracking, etc.). However, The fused results obtained by using existing algorithms
often have artifacts. In this section, we compare the fused results of the proposed technique
with previous state-of-the-art fusion-based methods on the several challenging underwater
images, as shown in Fig. 7.

From Fig. 7, it can be seen that the proposed technique is characterized by higher robust-
ness for extreme underwater cases (such as non-uniform artificial illumination and turbid
sea water). Fusion-based methods [3, 4] tend to introduce artifacts, over-enhancement and
color cast (for example, reddish color). Global-based fusion results are obtained by setting
the number of patches N to 1. The results show that the global-based fusion method has also
been over-enhanced. In contrast, as displayed in enlarged regions, our algorithm thoroughly
removes haze and naturally restores contrast.

5 Conclusion

In this paper, we propose an efficient natural-based fusion method for underwater image
dehazing. Firstly, the adaptive underwater image white balance (AUWB) method is
employed to reduce the color deviation, which is based on a statistical prior that the green
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channel is relatively well preserved under water. Secondly, to solve the problems of low con-
trast, a novel natural-based fusion method is proposed, which combines the result images
of global contrast-enhanced and local detail-improved. And in this procedure, we modeled
weight map estimation as an optimization problem. Particle swarm optimization (PSO) is
used to solve it, which promotes more accurate transfer of contrast improvement and detail
enhancement to the fused image. The qualitative and quantitative results demonstrate that
the proposed method achieves better natural visual quality with more valuable information
and higher contrast. In addition, the proposed technique still suffers from low computational
efficiency, and we will further explore the solutions to this drawback in future work.
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