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Abstract
Accurately modeling the crowd’s head scale variations is an effective way to improve the
counting accuracy of the crowd counting methods. Most counting networks apply a multi-
branch network structure to obtain different scales of head features. Although they have
achieved promising results, they do not perform very well on the extreme scale varia-
tion scene due to the limited scale representability. Meanwhile, these methods are prone
to recognize background objects as foreground crowds in complex scenes due to the lim-
ited context and high-level semantic information. We propose a compositional multi-scale
feature enhanced learning approach (COMAL) for crowd counting to handle the above lim-
itations. COMAL enhances the multi-scale feature representations from three aspects: (1)
The semantic enhanced module (SEM) is developed for embedding the high-level semantic
information to the multi-scale features; (2) The diversity enhanced module (DEM) is pro-
posed to enrich the variety of crowd features’ different scales; (3) The context enhanced
module (CEM) is designed for strengthening the multi-scale features with more context
information. Based on the proposed COMAL, we develop a crowd counting network
under the encoder-decoder framework and perform extensive experiments on ShanghaiTech,
UCF CC 50, and UCF-QNRF datasets. Qualitative and quantitive results demonstrate the
effectiveness of the proposed COMAL.
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1 Introduction

Crowd counting is to estimate the number and density distribution of people in an image
or video frame. It is particularly prominent because of its special significance for public
safety and management [6, 52, 53], especially during the COVID-19 pandemic, accurate
crowd counting helps avoid gatherings of people. It has also attracted widespread attention
of many scholars [5, 12, 23, 36, 38, 49, 58]. However, crowd counting is a very challenging
due to the large scale variation of crowd head and complex backgrounds.

In recent years, with the renaissance of deep learning [28, 50, 51], convolutional neu-
ral network (CNN) based methods [8, 15], have achieved significant progress in crowd
counting task [13, 18, 27, 55, 63]. They formulate the task as a regression problem [10,
22, 32, 39, 64], which designs the sophisticated network to establish the nonlinear rela-
tionship between the input crowd image and its corresponding crowd density map. Among
them, efficiently modeling the scale variations of a crowd is a classical and hot research
topic, and many researchers spare no effort to propose methods to handle it. For example,
multi-column networks [37, 44, 66] are designed to model different scales of crowd head.
However, they usually have complicated structures and need a long time to be optimized,
requiring large computation resources to be implemented and not appropriate to real-world
applications. The encoder-decoder frameworks are recently very popular in crowd count-
ing tasks, and the sophisticated decoder is proposed. For instances, Zhao et al. [68] design
the decoder with different auxiliary task branches for obtaining robust representations from
the auxiliary tasks. Xie et al. [60] extract multi-scale features via the proposed decoder
with the stacked dilated convolutional layers and the recurrent modules. Although they
achieve promising performances, they may fail in the scene with the extreme crowd scale
variations and complicated background stuff due to the limited scale representations and
representational ability. Thus, modeling a crowd’s scale variations in different scenes is still
a challenging and unsolved problem for crowd counting.

To solve the challenges mentioned above in the crowd counting task, we aim to extract
efficient multi-scale feature representations for crowd counting from three aspects: (1)
extract high-level semantic features of crowd for enhancing the crowd-aware representa-
tions; (2) model continuous scale variations of crowd for multi-scale crowd counting; and
(3) extract long-range dependency of pixel for obtaining context information. To this end,
we propose a compositional multi-scale feature enhanced learning approach (COMAL).
Specifically, for Semantic feature enhancement, the semantic enhanced module (SEM) is
designed, which embeds the semantic information from high-level features to the multi-
scale crowd features. The diversity enhanced module (DEM) enriches the varieties of feature
representations via three diversity enhanced blocks in a cascade manner for scale diversity
enhancement. For context enhancement, the context enhanced module is proposed to extract
context information from spatial and channel dimensions via the neural attention mecha-
nism. With the help of COMAL, the multi-scale features can own strong representational
ability and abundant feature representations, which can handle the scale variation challenges
from different crowd scenes. Based on the proposed COMAL, we design a counting net-
work under the encoder-decoder framework. The COMAL is used as the decoder for final
crowd density estimation. Extensive experiments are performed on commonly-used crowd
counting benchmarks, and our network outperforms the other state-of-the-art methods. The
visualization results further prove the effectiveness of the proposed COMAL.
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To summarize, the main contributions of our paper are fourfold:

– We propose a semantic enhanced module (SEM) to embed the high-level semantic
information into the multi-scale features, which can improve the crowd recognition
performance on complex crowd scene.

– We develop a diversity enhanced module (DEM) to enrich the scale representations. It
helps the counting network to handle the extreme scale variations case better.

– We design a context enhanced module (CEM) to strengthen the extracted multi-scale
features with more context information. CEM can help the counting network recognize
the foreground crowd and background stuff for the complex crowd scene.

– We combine the above three modules into a compositional learning approach, COMAL,
and build an encoder-decoder network based on it for crowd counting. With the assis-
tance of COMAL, the counting network outperforms the other state-of-the-art methods
on commonly-used crowd counting benchmarks.

The rest of this paper is organized as follows. Section 2 demonstrates the related works
of CNN-based crowd counting and multi-scale feature learning methods. In Section 3, we
introduce the COMAL and its components in detail. We introduce the experiment details
and model analysis in Section 4 and conclude our method in Section 5.

2 Related works

In this section, we review the CNN-based crowd counting methods and multi-scale feature
representation learning methods.

2.1 CNN-based crowd counting

We first review the crowd counting method [7, 29, 34, 45, 46, 57, 62] and summarize them
in Table 1. For example, Zhang et al. [66] proposed a Multi-column Convolutional Neu-
ral Network (MCNN) with different convolutional structures to solve the scale variations
of crowd heads. Sam et al. [44] designed Switch-CNN, which trained a switch classifier to
select the optimal CNN regressor for the specific scale density estimation. However, The
limitation of Switch-CNN is that it chooses one of the results of different sub-networks
rather than fusing them. Deb et al. [11] proposed an aggregated multi-column dilated con-
volution network for perspective-free counting. Although the above multi-column networks
have achieved significant progress, they only consider limited crowd scale and doesn’t per-
form well on continuous scale variation scene. To reduce the computational resources, Li
et al. [30] proposed the CSRNet, which adopted the dilated convolutional layers to enlarge
the receptive field of the network. However, the six successive dilated convolutional layers
of CSRNet will cause a serious gridding effect [54], which can not efficiently extract crowd
features. To solve this problem, our SEM adopted multiple parallel filters with different
dilate rates for exploiting multi-scale features. Cao et al. [3] proposed a scale aggrega-
tion network (SANet), which applied the scale aggregation module to extract multi-scale
features and the transposed convolutional layer to regress the final crowd density map.
Besides, some neural attention based methods have also been applied to the crowd counting
task [16, 19]. Guo et al. [19] explored a scale-aware attention fusion method with differ-
ent dilated rates to obtain different visual granularities of the crowd’s region of interest.
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Table 1 Summarizations of crowd counting methods

Methods Backbone Multi-branch Dilation convolution Attention

MCNN [66] -
√

CrowdNet [2] VGG-16
√

Switch-CNN [44] -
√

AMDCN [11] -
√ √

ic-CNN [42] -
√

IG-CNN [43] VGG-16
√

CSRNet [30] VGG-16
√

SANet [3] -
√

DADNet [19] -
√ √

SCAR [16] VGG-16
√ √

TEDnet [26] -
√ √

SACANet [1] VGG-16
√ √ √

DACC [14] VGG-16

ASD [61] VGG-16
√

CAN [33] VGG-16
√

PCC Net [17] VGG-16
√

COMAL(Ours) VGG-16
√ √ √

Gao et al. [16] proposed a space-/channel-wise attention regression network to exploit
the context information of crowd scene for accurate crowd counting. The well-designed
attention models effectively encode the large-range contextual information. We propose
a compositional learning approach to enhance the multi-scale feature, which guides the
counting network to learn robust representations for different crowd scenes.

2.2 Multi-scale feature representation learning

Scale variation is a common problem in different computer vision tasks [4, 9, 20, 31,
67]. Many multi-scale feature representation learning methods are proposed to solve it. Lin
et al. [31] proposed a feature pyramid network (FPN), which fused high-level features and
low-level features by element-wise summation for small object detection. Zhao et al. [67]
proposed a pyramid scene parsing network (PSPNet) for aggregating context information at
different scales. Inspired by the spatial pyramid pooling (SPP) [21], Chen et al. [9] proposed
the Atrous Spatial Pyramid Pooling (ASPP) module to use four convolutions with different
dilated rates. ASPP can effectively enlarge the network’s receptive field and obtain multi-
scale information, which prompt the network to achieve a new superior result on semantic
segmentation task. He et al. [20] proposed the Adaptive Pyramid Network (APCNet), which
used Adaptive Context Modules to leverage local and global representation to estimate an
affinity weight for local regions. To obtain larger-scale information, Cao et al. [4] proposed a
global context network (GCNet), which focuses on the connection between different image
positions by establishing a long-range relationship between pixels. In this paper, we propose
the DEM to enrich the multi-scale feature representations, and apply the proposed SEM and
CEM to strengthen the feature representations.
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3 Proposedmethod

In this section, we firstly introduce the overview of the counting network with the proposed
COMAL. Then, SEM, DEM, and CEM are elaborated. Finally, we demonstrate the loss
function and evaluation metrics we use.

3.1 Overview

The overview of the counting network we used in this paper is shown in Fig. 1. Follow-
ing [2, 16, 30], we choose VGG-16 [48] as the feature encoder. However, in order to obtain
semantic features, we use the first thirteen layers instead of the first ten convolutional layers.
Then, the encoder features are fed to SEM, DEM and CEM sequentially to get the enhanced
multi-scale crowd features. Finally, the extracted multi-scale features are processed by a
single 1 × 1 convolutional layer and the bilinear interpolation operation to regress the final
crowd density map. Each component of the counting network is demonstrated as follows.

3.2 Semantic enhancedmodule

We propose the SEM to generate the multi-scale crowd features with abundant semantic
information for final crowd density estimation. The detailed structure of SEM is shown in
Fig. 2. It has two paths: the low-level feature process path (LFP) and the high-level feature
process path (HFP). The LFP is designed to extract multi-scale features, and the HFP aims
to enhance the extracted feature with more high-level semantic information. Specifically, we
use four convolutional layers with different dilated rates in a parallel way to extract various
scale features. After that, the different scale features are combined with the concatenate
operation. A 1×1 convolutional layer is applied to reduce the feature dimensions. For HFP,
the high-level feature from VGG-16 is fed to 1× 1 convolutional layer to reduce the feature
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SEM Semantic  Enhanced Module

DEM Diversity Enhanced Module
CEM Context Enhanced Module

Low-level  
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Fig. 1 Overview of the proposed counting network. Each input image is fed to the first 13 layers of VGG-
16 to extract the crowd features. Then, the output of the first 10 layers of VGG-16 (Low-level feature)
and the first 13 layers of VGG-16 (high-level feature) are sent to SEM, DEM and CEM to generate the
enhanced multi-scale crowd features. Finally, the extracted multi-scale context features are processed by 1×1
convolutional layer and bilinear interpolation operation for final crowd density estimation
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Fig. 2 Illustration of SEM. The low-level features are fed to different dilated convolutional layers to generate
the initial multi-scale crowd features. The high-level features from the encoder are multiplied with the output
of the dilated convolutional layers to modified the extracted multi-scale crowd features with more semantic
information

dimension and processed by the bilinear interpolation operation to the same size as the low-
level feature dimensions. Different from the previous approach [31], which directly uses the
element-wise summation operation to fuse the upsampled high-level features and low-level
features, we follow the design of Exfuse [65]. The output of HFP is multiplied with the
output of LFP with element-wise multiplication operation to generate the initial multi-scale
features, which prompt the network with more feature discriminability. More analysis can
be seen in Section 4.3.

3.3 Diversity enhancedmodule

Although SEM generates multi-scale crowd features, the representation of crowd features
are limited, which will hinder the performance of counting network in complex scene. To
increase the diversity of crowd features, we design the DEM, which consists of three diver-
sity enhanced blocks (DEB). The design philosophy of DEM comes from [56]. As shown
in Fig. 3, each DEB has two branches. One branch with a single 3 × 3 convolutional layer
and another branch with two stack 3×3 convolutional layers. All 3×3 convolutional layers
have the half channel number of the input features and the output of two branches are fused
with the element-wise summation. We place three DEBs in a cascade manner after SEM, as
shown in Fig. 3 (b), and it is equivalent to eight branches with different receptive fields in
parallel, as shown in Fig. 3 (c). Thus, it can generate the abundant crowd features for model-
ing continuous scale variations. The performance of different numbers of DEB can be seen
in Section 4.3.3.
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Fig. 3 Illustration of DEM. From left to right: (a) the structure of DEB, (b) the structure of three DEBs in a
cascade manner (DEM), (c) the equivalent structure of (b)

3.4 Context enhancedmodule

To increase the discriminability of the proposed COMAL, we propose the CEM to exploit
the context information from multi-scale crowd features. The detailed architecture of CEM
is shown in Fig. 4. CEM includes two branches: position attention module (PAM) and
channel attention module (CAM). The details of PAM and CAM are as follows.
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Fig. 4 Illustration of CEM. The PAM of CEM is designed for exploiting the context information from spatial
dimension and the CAM of CEM is developed for acquiring the context information from channel dimension
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3.4.1 Position attention module

The PAM encodes the context information by calculating the long-range pixel relationship.
Its detailed structure is shown in Fig. 4. The input features are firstly processed by a 3 × 3
convolutional layer. After that, the processed features are fed into a 1×1 convolutional layer
and the Softmax layer to get the position attention weight P att

i , which can be formulated as
follows:

P att
i = exp

(
Pi · Pj

)

∑N
j=1 exp

(
Pi · Pj

)Pi, (1)

where {Pi |i ∈ {1 · · ·N}} denotes the i-th position of input feature map, N is the number of
positions in the feature map, which is equal to H × W .

The position attention weight P att
i is fed to the bottleneck structure which is constructed

by two 1 × 1 convolutional layers. Specifically, we place the LayerNormalization (LN) at
the middle of two 1 × 1 convolutional layers for better weight optimization. The output of
bottleneck is fused with the input of PAM via the residual learning and the final position
attention feature can be formulated as follows:

P final
i =P +Wp2ReLU

(

LN
(
Wp1

) N∑

i=1

P att
i P

)

, (2)

where P denotes the input feature of PAM. ReLU(·) and LN(·) denote the ReLU and LN
layer, respectively. Wp1 and Wp2 represent the weight of two 1 × 1 convolutional layers,
respectively.

3.4.2 Channel attention module

The structure of CAM is similar with PAM, which is shown in Fig. 4. Different from PAM,
we apply the global average pooling layer to acquire the global context information and the
final channel attention weight Cfinal

i can be defined as follows:

Cfinal
i = C + Wc2ReLU (LN (Wc1Cm)) , (3)

where C denotes the input feature of CAM. Cm represents the global average pooling
feature. Wc1 and Wc2 denote the weight of two 1 × 1 convolutional layers, respectively.

3.5 Ground-truth density map generation

Following [66], we use the Gaussian kernel to convolve the head annotation points and
generate a crowd density map F(x), which is defined as follows:

F(x) =
N∑

i=1

δ (x − xi) ∗ Gσ (x) (4)

where Gσ (x) stands for the Gaussian kernel, xi is the ground truth head location, x is
a pixel position in the input image. We convolve δ (x − xi) with a Gaussian kernel with
parameter σ . For different datasets, σ is set as different values. For ShanghaiTech Part B,
UCF CC 50, and UCF QNRF, σ is set to 15. For ShanghaiTech Part A, σ is equal to βd̄i ,
where d̄ i represents the average distance of k nearest neighbors and β is set to 0.3.
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3.6 Loss function and evaluationmetrics

We use the L2 loss to optimize the proposed COMAL. The loss function is defined as
follows:

L(Θ) = 1

2N

N∑

i=1

‖F (Xi, Θ) − Fi‖22 , (5)

where N is the total number of training images. F (Xi,Θ) is the estimated density map
generated by COMAL with parameters Θ . Xi represents the input image while Fi is the
ground truth of the input image Xi .

The mean absolute error (MAE) and the mean square error (MSE) are chosen to evaluate
the effectiveness of our method. The formulations are as follows:

MAE = 1

N

N∑

i=1

∣
∣
∣Cpred

i − C
gt
i

∣
∣
∣ , (6)

MSE =
√√
√
√ 1

N

N∑

i=1

∣
∣
∣Cpred

i − C
gt
i

∣
∣
∣
2
, (7)

where N stands for the total number of the test images. C
gt
i and C

pred
i denote the ground

truth number and the prediction number in the i-th image, respectively.

4 Experiments

In this section, we first describe the implementation details and experiment setup. Then,
we introduce the commonly-used crowd counting datasets and compare our method with
other state-of-the-art methods. Finally, we conduct ablation experiments to evaluate the
effectiveness of each component from our method.

4.1 Implementation details

We apply the Adam to optimize our network. Following [16, 19, 40], the initial learning
rate is set to 1 × 10−5. And the learning rate decreased by 0.99 times every two epochs.
The weight decay is set to 1× 10−4. To optimize the network better, we set a magnification
factor to enlarge the value of the ground truth density map. The magnification factor is set
to 100 for ShanghaiTech Part A and UCF-QNRF, 200 for ShanghaiTech Part B, and 10 for
UCF CC 50. All training images are cropped and resized to 576 × 768. The experiments
are conducted under the Pytorch framework with a single NVIDIA GTX 2080Ti GPU.

4.2 Datasets and comparisons

4.2.1 Datasets

We evaluate our method on three commonly-used crowd counting datasets. The details of
each dataset are shown in Table 2.

ShanghaiTech [66] includes 1,198 images with 330,165 annotated people. It is divided
two parts: Part A and Part B. Part A contains 482 highly crowded images randomly grabbed
from the Internet. Part B contains 716 images taken on downtown Shanghai’s bustling
streets.
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Table 2 Summarization of ShanghaiTech Part A, ShanghaiTech Part B, UCF CC 50, and UCF-QNRF

Property ShanghaiTech Part A ShanghaiTech Part B UCF CC 50 UCF-QNRF

Year 2016 2016 2013 2018

Resolution different 768 ×1024 different different

Number of images 482 719 50 1535

Train/Test 300/182 400/316 - 1201/1334

Max 3139 578 4543 12865

Min 33 9 94 49

Avg 501.4 123.6 1279.5 815.4

Total 241677 88488 63974 1251642

UCF CC 50 [24] dataset includes 50 images with 63,974 annotated heads. It is a very
challenging dataset because the number of people in each image varies greatly.

UCF-QNRF [25] dataset contains 1,535 images with 1,251,642 annotated heads. It
includes different crowd congested scenes and large variation crowd distributions, which is
also challenge for current crowd counting methods.

4.2.2 ShanghaiTech

The comparison results on ShanghaiTech dataset are presented in Table 3. We can see that
the proposed COMAL outperforms other state-of-the-art methods in terms of MSE metrics.
Specifically, compared with CSRNet, our COMAL achieves lower 8.6 and 17.9 in terms of
MAE and MSE metrics, which benefits from the proposed SEM that can avoid a serious
gridding effect [54]. Compared with SCAR, our COMAL also performs better counting
accuracy, which benefits from the proposed SEM and DEM. The qualitative results in Fig. 5
further prove the effectiveness of our method. We observe from the fourth column that our
proposed DEM can capture continuous scale changes of the crowd.

Table 3 Comparison results of different methods on ShanghaiTech dataset

Method Part A Part B

MAE MSE MAE MSE

MCNN[66] 110.2 173.2 26.4 41.3

Switch-CNN[44] 90.4 135 21.6 33.4

CSRNet[30] 68.2 115 10.6 16

PACNN[47] 66.3 106.4 8.9 13.5

SCAR[16] 66.3 114.1 9.5 15.2

TEDNet[26] 64.2 109.1 8.2 12.8

DADNet[19] 64.2 99.9 8.8 13.5

RAZ-Net[35] 65.1 106.7 8.4 14.1

2-DA-CNN[69] 64.6 106.6 8.9 13.9

SFCN†with Pre-GCC[40] 64.8 107.5 7.6 13.0

PSCC+DCL[41] 65.0 108.0 8.1 13.3

COMAL(Ours) 59.6 97.1 7.8 12.4

Bold fonts indicate the best results
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Fig. 5 Visualization results of different counting methods. From top to bottom, they are input images, ground
truth, the results of COMAL, SCAR, and CSRNet, respectively

Besides, we conduct the further statistic analysis of the performance of the pro-
posed COMAL on ShanghaiTech Part A dataset. Specifically, as shown in Table 4, the
ShanghaiTech Part A dataset is divided into five crowd density levels. We compare the per-
formance of COMAL, SCAR and CSRNet on the five crowd density levels, the comparison

Table 4 Summarization of five crowd density levels on ShanghaiTech Part A

Density Level Number of images Max Min Avg Total

1 36 65 191 133.5 4805

2 37 192 253 220.2 7926

3 36 254 379 307.1 11054

4 37 380 567 457.9 16485

5 36 578 2255 1007.7 38290
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details are shown in Fig. 6. We find that COMAL performs better than the other count-
ing networks on all five crowd density levels, which demonstrates the effectiveness of the
proposed method.

4.2.3 UCF CC 50

Following some previous works, we perform five-fold cross validation to evaluate the per-
formance of the proposed COMAL. The quantitive results on UCF CC 50 are presented

Table 5 Comparision results of different methods on UCF CC 50 dataset.“-” denotes the results are not
provided by the original paper

Method MAE MSE

MCNN[66] 377.6 509.1

Switch-CNN[44] 318.1 439.2

CSRNet[30] 226.1 397.5

PACNN[47] 267.9 357.8

SCAR[16] 259 365.5

TEDNet[26] 249.4 354.5

DADNet[19] 285.5 389.7

RAZ-Net[35] - -

2-DA-CNN[69] 252.0 340.3

SFCN†with Pre-GCC[40] 214.2 318.2

PSCC+DCL[41] - -

COMAL(Ours) 231.9 333.7

Bold fonts indicate the best results
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in Table 5. Compared with other state-of-the-art methods, SFCN†with Pre-GCC[40] uses
synthetic data to expand the limited training images of UCF50 and achieves a better count
performance. However we see that our COMAL achieves state-of-the-art results in meth-
ods without synthetic data pretraining, which further proves the superiority of our method.
Although there are huge variation crowd distribution in this dataset, COMAL performs bet-
ter 17.5 and 20.8 than the performance of TEDNet in terms of MAE and MSE metrics,
which is a significant progress for crowd counting task.

4.2.4 UCF-QNRF

The performance of the proposed COMAL on UCF-QNRF is presented in Table 6. We can
see that COMAL outperforms the other methods in methods without synthetic data pretrain-
ing, which further proves the superiority of our method. Compared with the performance of
TEDNet, COMAL achieves lower 10.9 in terms of MAE, which further proves the effec-
tiveness of our method. Without the help of synthetic data, our method still achieves similar
performance on MAE metrics compared to Pre-GCC [40].

4.3 Ablation study

4.3.1 The effectiveness of different structures of COMAL

To evaluate the effectiveness of different structures, we design four variants of COMAL and
conduct extensive experiments on the ShanghaiTech Part A dataset. The details of the four
variants are as follows.

The first model is the first 10 layers of VGG-16, which is denoted as VGG-10. The
second model places the proposed SEM on the first model, which is represented asVGG-10
+ DEM. Based on the second model, the third model changes the first 10 layers of VGG-16
into the first 13 layers of VGG-16, and is denoted as VGG-13 + DEM. The fourth model
adds DEBs into the third model and is represented as VGG-13 + SEM + DEM.

Table 6 Comparision results of different methods on UCF-QNRF dataset

Method MAE MSE

MCNN[66] - -

Switch-CNN[44] 228 445

CSRNet[30] 120.3 208.5

PACNN[47] - -

SCAR[16] - -

TEDNet[26] 113 188

DADNet[19] 113.2 189.4

RAZ-Net[35] 116 195

2-DA-CNN[69] - -

SFCN†with Pre-GCC[40] 102.0 171.4

PSCC+DCL[41] 108 182

COMAL(Ours) 102.1 178.3

Bold fonts indicate the best results
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Qualitative and quantitative results are displayed in Fig. 7 and Table 7. We can see
that the counting performance is continually improved with the injection of the proposed
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Fig. 7 Visualization results of COMAL with different components. From top to bottom, they are input
images, ground truth, VGG-10, VGG-10 w/ DEM, VGG-13 w/DEM, VGG-13 w/SEM and DEM, and
COMAL, respectively
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Table 7 Comparison results of COMAL with different structures on ShanghaiTech Part A dataset

Method MAE MSE

VGG-10(baseline) 74.2 122

VGG-10+DEM 67.4 113.7

VGG-13+DEM 66.4 106.9

VGG-13+SEM+DEM 66.2 105.7

VGG-13+SEM+DEM+CEM (COMAL) 59.6 97.1

Bold fonts indicate the best results

components into the counting model, and achieves the best results with all the proposed
components, which proves the effectiveness of our method. Specifically, compared with
the fourth model, COMAL performs better 6.6 and 8.6 in terms of MAE and MSE met-
rics, which demonstrates the importance of context information generated by CEM for final
crowd counting.

4.3.2 The effectiveness of the components of COMAL

We design three different structures to verify the effectiveness of each component in
COMAL. As shown in Table 8. C(Nc) represents convolutional layer with Nc filters. From
the first row and the last row of Table 8, we can see that the counting accuracy drops when
we use the convolutional layer to replace the SEM, which demonstrates that the high-level
semantic features are important for final crowd counting. Besides, compare the performance
of the second row and the third row, we find that the method with DEM performs better
than the method without DEM. This is contributed to the multi-scale features generated by
the DEM. For the last two rows of Table 8, we can see that the performance of CEM out-
performs the performance of CBAM [59] hugely, which further proves the effectiveness of
our proposed CEM.

4.3.3 The number of DEB

We explore the effect of the number of DEB to the final counting accuracy. The comparison
results are displayed in Table 9. We can see that with the increased number NDEB of DEB,
the counting performance of COMAL is improved, and COMAL achieves the best results
when the NDEB is equal to 3, which is benefited from the scale diversities provided by
DEBs. However, when the NDEB is larger than 3, the counting performance drops. The rea-
son is that more DEBs increase the complexities of the network and hinder the optimization
process of the counting network.

Table 8 Comparison results of the components of COMAL on ShanghaiTech Part A dataset

Method MAE MSE Params(MB)

VGG-13+C(512)+DEM+CEM 62.9 103.6 21.49

VGG-13+SEM+C(512,256,128,64)+CEM 61.5 106.7 21.53

VGG-13+SEM+DEM+CBAM [59] 65.4 109.7 21.47

VGG-13+SEM+DEM+CEM(COMAL) 59.6 97.1 21.49
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Table 9 Comparison results of
COMAL with different numbers
of DEB on ShanghaiTech Part A
dataset

Number MAE MSE

1 65.0 108.7

2 63.6 105.0

3 59.6 97.1

4 61.1 103.2Bold fonts indicate the best
results

Table 10 Comparison results of
different designs of CEM on
ShanghaiTech Part A dataset

Method MAE MSE

COMAL w/CAM 63.4 101.2

COMAL w/PAM 60.2 100.2

COMAL w/CEM 59.6 97.1Bold fonts indicate the best
results
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Fig. 8 Visualization results of COMAL with different attention modules. From top to bottom, they are input
images, ground truth density maps, COMAL w/CA, COMAL w/PA, and COMAL, respectively
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4.3.4 The design of CEM

To evaluate the rationality of CEM, we explore the performance of COMAL with only
PAM (COMAL w/PAM) or CAM (COMAL w/CAM) on ShanghaiTech Part A dataset.
The quantitative results are shown in Table 10. We can see that the counting accuracy has
continually improved with the help of CA and PA. The model achieves the best results when
the model with CEM, which demonstrates that effectiveness of our method. The qualitative
results in Fig. 8 further prove the importance of CEM to final counting accuracy.

5 Conclusions

In this paper, we propose the COMAL for multi-scale crowd counting. We use the first 13
layers of VGG-16 as the encoder to extract features, and adopt the proposed decoder to
process the extracted features for final density estimation. COMAL is evaluated on three
challenging crowd counting datasets and achieves superior results compared with other
state-of-the-art methods. However, COMAL owns lots of network parameters which is not
suitable for the devices with limited computation resources. Besides, we only model the
image spatial context information and do not consider to extract temporal information of
video. Thus, in future work, we can explore our COMAL to video crowd counting task in a
lightweight design.
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