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Abstract
Recently, many concepts in technology has been changed. According to the digital trans-
formation trends, Internet of Things (IoT) represents an interested research issue. As the IoT
grows, the data and the processes will need more space. The data in cases like healthcare,
smart cities, autonomous vehicles, smart agriculture, etc. needs to be analyzed and processed
in real-time. Cisco refers to the dependence of edge and cloud as “The Fog”. The data can be
analyzed at the fog layer to maximize data utilization. This paper presents a new Effective
Prediction and Resource Allocation Methodology (EPRAM) for Fog environment, which is
suitable for Healthcare applications. Resource Allocation (RA) represents a hard mission as
it involves a set of various resources and fog nodes to achieve the required computations for
IoT systems. EPRAM tries to achieve effective resource management in Fog environment
via real-time resource allocating as well as prediction algorithm. EPRAM is composed of
three main modules, namely: (i) Data Preprocessing Module (DPM), (ii) Resource Alloca-
tionModule (RAM) and (ii) Effective PredictionModule (EPM). The EPM uses the PNN to
predict a target field, using one or more predictors. In order to detect the probability of the
heart attack, PNN is trained using the training dataset. Then PNN will be tested using the
user’s sensing data coming from the IoT layer to predict the probability of heart attack and
then take the most appropriate action accordingly. The main goal of the system is to achieve
a low latency while improving the Quality of Service (QoS) metrics such as (the allocation
cost, the response time, bandwidth efficiency and energy consumption). Unlike other RA
techniques, EPRAM employs deep Reinforcement Learning (RL) algorithm in a new
manner. It also uses the PNN for the prediction algorithm. It has achieved such acceptable
performance due to using deep RL and PNN. Deep RL has shown impressive promises in
resource allocation. PNN generates accurate predicted target and is much faster than
multilayer perceptron networks. Comparing the EPRAM with the state-of-the-art algo-
rithms, EPRAM achieved the minimumMakespan as compared to previous LB algorithms,
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while maximizing the Average Resource Utilization (ARU) and the Load Balancing Level
(LBL). Accordingly, EPRAM is a suitable algorithm in the case of real-time systems in FC
which leads to load balancing. ERAM is effective in monitoring and predicting the status of
the patient accurately and quickly.

Keywords Resource Allocation . Internet of Things (IoT) . FogComputing (FC) . Digital
Technology .DigitalTransformation .DeepLearning(DL) . smartHealthcareSystem.Prediction
. Reinforcement Learning .Mobile HEALTHDataset

1 Introduction

Depending on the phenomenal development of the digital technology in recent years, the
Internet of Things (IoT) has a great impact in our lives [16]. IoT can be considered as a set of
devices equipped with sensors, actuators, and processors that communicate with each other to
serve a reliable objective. IoT innovates an integrated system that combines different systems
to provide intelligent performances in each task. It has created a new growth of cell phones,
home and other embedded applications that are all connected to the internet. Consequently,
different IoT-enabled systems such as smart healthcare, smart city, smart home, smart factory,
smart transport and smart agriculture are getting significant attention across the world. Cloud
Computing (CC) is considered as the standard infrastructure, platform and services to develop
IoT systems [11]. However, Cloud datacenters locate at remote distance from IoT devices
which leads to high latency. This issue adversely affects the response time for real time
applications such as critical health monitoring systems, traffic monitoring, and emergency fire.
In addition, IoT sources are geographically extended and can generate a large amount of data
sent to Cloud for processing which lead to overloading. The edge computational resources can
handle the previous mentioned challenges in IoT systems [21]. Fog Computing (FC) can be
defined as edge computing that aims to deploy services at the edge network. The FC achieves
the location-awareness and reduces the latency [2].

In FC, there are various devices such as Cisco IOx networking equipment, micro-
datacenter, Nano-server, smart phone, personal computer and Cloudlets. The fog device is
usually named as Fog Node (FN). These Fog Nodes create a generous distribution of services
to process IoT-data near to the source. FC and CC paradigms most often work in an integrated
manner as shown in the Fig. 1 to meet Quality of Service (QoS) and resource requirements of
wide standard IoT systems [2]. In FC, Resource Allocation (RA) represents a hard mission as it
involves a set of various resources and fog nodes to achieve the required computations for IoT
systems [38]. Many previous RAmethods have been proposed such as Least Connection (LC),
Round Robin (RR), Weighted Round Robin (WRR), and Adaptive Weighted Round Robin
(AWRR). These algorithms will illustrated in details in section 2 (the related work section).
However, they have many disadvantages such as; (i) they do not take into account the
heterogeneity of the computational resources, (ii) low performance due to process migration.
(iii) High latency. (iv) The lack of unified standard for FC [1]. The integration between Fog,
Cloud, and various IoT devices increases the difficulty of RA issue [22]. The real-world
implementation of FC environment with IoT and Cloud datacenters is very expensive and the
modification is tiresome issue so the solution is the empirical analysis using simulation. There
are a certain number of simulators like Edgecloudsim [28], SimpleIoTSimulator [25] and
iFogSim [12] for modelling FC environment.
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The rest of this section introduces some concepts in the field of stratified sampling, resource
management, Deep Learning (DL) algorithm, Deep Neural Network (DNN), Probabilistic
Neural Networks (PNN), and Reinforcement Learning (RL).

Figure 1 shows the relation between IoT, big dta, cloud, and fog. It also illustrates some
examples of IoT applications.

1.1 Stratified sampling

In stratified sampling, the data is first divided into subgroups (or strata) with same probability.
For example, you can stratify by gender to ensure that men and women are sampled in equal
proportions, or by region to ensure that each region within an urban population is represented.
It is also possible to specify a different sample size for each stratum. For example, when you
want to sample for a survey, you can give men a higher probability of being sampled than
women when you think that the willingness to participate in the survey is lower for men than
for women. It is used when we might reasonably expect the measurement of interest to vary
between the different subgroups, and we want to ensure representation from all the subgroups.
For example, in a study of stroke outcomes, we may stratify the population by gender, to
ensure equal representation of men and women.

The study sample is then obtained by taking equal sample sizes from each stratum. In
stratified sampling, it may also be appropriate to choose non-equal sample sizes from each
stratum. For example, in a study of the health outcomes of nursing staff in a county, if there are
three hospitals each with different numbers of nursing staff (hospital A has 500 nurses, hospital
B has 1000 and hospital C has 2000), then it would be appropriate to choose the sample
numbers from each hospital proportionally (e.g. 10 from hospital A, 20 from hospital B and 40
from hospital C). This ensures a more realistic and accurate estimation of the health outcomes
of nurses across the county, whereas simple random sampling would over-represent nurses
from hospitals A and B. The fact that the sample was stratified should be taken into account at
the analysis stage. Stratified sampling improves the accuracy and representativeness of the
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Fig. 1 Interactions among IoT-enabled systems, Fog and Cloud Computing
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results by reducing sampling bias. However, it requires knowledge of the appropriate charac-
teristics of the sampling frame (the details of which are not always available), and it can be
difficult to decide which characteristic(s) to stratify by.

1.2 Resource management

The resource management is divided into; (i) resource assignment, and (ii) task placement [14,
34]. Resource assignment defines the number of incoming processes and determines the
resource to be allocated to each process. For example, a Spark application selects the resource
to be allocated based on the available memory and the data size. Task placement involves the
determination of the location for each incoming task. For example, Delay Scheduling algo-
rithm [41] in Hadoop assigns tasks based on data locality.

1.3 Deep learning (DL)

Deep learning (DL) (also known as deep structured learning or hierarchical learning) is a
branch of machine learning methods based on Artificial Neural Networks (ANN) [39]. DL is
named deep as it uses the deep neural networks [4, 26]. It is applied in fields of object
detection, classification, and speech recognition [6]. Unlike the traditional learning algorithms,
the performance of DL algorithm increases with the increase of the amount of data as shown in
Fig. 2.

1.4 Deep neural network (DNN)

A Deep Neural Network (DNN) is an ANN with multiple layers between the input and output
layers [29]. It is constructed with a set of connected layers which are: (i) Input Layer, (ii)
Output Layer, and (iii) Hidden Layers (all layers in between). It finds the correct mathematical
method to convert the input into the output. The word "deep" means the network joins the
neurons in more than two layers (hidden layers) [3] as shown in Fig. 3.

Fig. 2 Why deep learning
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In DNN, each layer represents a deeper level of knowledge, i.e., the hierarchy of knowl-
edge. At first, the DNN creates a map of virtual neurons and assigns random numerical values,
or "weights", to connections between them. The weights and inputs are multiplied and return
an output between 0 and 1. If the network did not accurately recognize a particular pattern, an
algorithm would adjust the weights [15]. That way the algorithm can make certain parameters
more influential, until it determines the correct mathematical manipulation to fully process the
data.

1.5 Probabilistic neural networks (PNN)

Probabilistic Neural Networks (PNN) is organized into a multilayered feed forward network
containing four layers [17, 35]: (i) Input layer: contains nodes with a set of measurements. (ii)
Pattern layer: contains one neuron for each case in the training data set. It computes the
Euclidean distance of the test case from the neuron’s center point and then applies the Radial
Basis Function (RBF) kernel function using the sigma values. (iii) Summation layer: performs
a sum operation of the outputs from the second layer for each class. (iv) Output layer: takes all
the outputs of the summation nodes and outputs the max, e.g. the label node that had the
highest score. PNN has several advantages such as [17]: (i) PNNs are much faster than
multilayer perceptron networks. (ii) PNN networks are insensitive to outliers. (iii) PNNs can
be more accurate than multilayer perceptron networks. (iv) PNN networks generate accurate
predicted target probability scores. (v) Guaranteed to converge to an optimal classifier as the
size of the representative training set increases. In general, it is obvious that PNNs have high
speed of learning and training. The main advantage of a PNN is its ability to output
probabilities in multi-classification. However, PNN has disadvantages such as it requires more
memory space to store the model. It requires a representative training set.

The originality of this paper is to introduce a new Effective Resource Allocation Method-
ology (ERAM) for Fog environment, which is suitable for Healthcare applications. ERAM
tries to achieve effective resource management in Fog environment via real-time resource
allocating as well as prediction algorithm. ERAM is composed of three main modules, namely:
(i) Data Preprocessing Module (DPM), (ii) Resource Allocation Module (RAM) and (ii)
Effective Prediction Module (EPM). The DPM is responsible for sampling, partitioning, and

Fig. 3 DNN architecture
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balancing data to be in the appropriate form for analyzing and processing. The RAM learns to
select the best FN to execute the incoming request. The RAM uses Reinforcement Learning
(RL) algorithm to achieve a high LB for fog environment. The EPM uses the PNN to predict a
target field, using one or more predictors. In order to detect the probability of the heart attack,
PNN is trained using the training dataset. Then PNN will be tested using the user's sensing data
coming from the IoT layer to predict the probability of heart attack and then take the most
appropriate action accordingly.

The proposed IoT-Fog system consists of three layers, namely: (i) IoT Layer, (ii) Fog
Layer, and (iii) Cloud Layer. The mission of the IoT layer is to monitor the patient symptoms.
The fog layer is considered with handling the incoming requests and forwards them to the
suitable server. The cloud layer is responsible for managing the transfer of data to and from the
fog layer. The user data is sent to the most appropriate resource to be allocated and processed.
The allocating resource is managed by a specific healthcare organization. The main goal of the
system is to achieve a low latency while improving the Quality of Service (QoS) metrics such
as the allocation cost, the response time, bandwidth efficiency and energy consumption.
Unlike other RA techniques, EPRAM employs deep RL algorithm in a new manner. It also
uses the PNN for the prediction algorithm. It has achieved such acceptable performance due to
using deep RL and PNN. Deep RL has shown impressive promises in resource allocation.
PNN generates accurate predicted target and is much faster than multilayer perceptron
networks. Accordingly, EPRAM is a suitable algorithm in the case of real-time systems in
FC which leads to load balancing.

The rest of paper is organized as follows: Section 2 introduces some of the recent previous
efforts in the field of RA techniques generally. Then, it introduces the recent previous efforts in
the area of RA algorithms for in CC and FC. Section 3 introduces a proposed Effective
Prediction and Resource Allocation Methodology (EPRAM) for Fog environment using real-
time resource allocating as well as PNN with more details about each contribution. Section 4
introduces the evaluation results and discussion. Our conclusion is discussed in Section 5.

Fig. 4 Fog environment for IoT-enabled healthcare case study
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2 Related work

This section introduces some of the recent previous efforts in the field of RA techniques
generally and in the area of RA algorithms for in CC and FC. In the last years, many
researchers are working on different issues to solve the FC and IoT challenges. Fatma M.
Talaat et al. [30] proposed a dynamic RA method based on Reinforcement learning and
genetic algorithm. It observes the traffic in the network continuously, collects the information
about each node, manages the incoming tasks, and distributes them between the available
nodes equally using DRA method. It is efficient in real-time systems in FC environment such
as in the case of smart healthcare system. Dubey Sh et al. [7] used Round Robin (RR) to list the
available nodes and assign the incoming processes equally to each node in order. It is simple
and easy to understand and implement. However, if the servers have different processing
capacities, one of them can become overloaded and crashed.

Gupta S et al. [13] used Weighted Round Robin (WRR) for resource allocation process. It
is similar to the RR in the cyclical assigning manner but it differs in that the node with the
higher weight will be given the highest number of requests. In WRR, each server is allocated
with a weight based on its capacity. Singh G, Kaur K [27] used Least Connection (LC) to

Table 2 Server characteristics table (SCT)

FS_ID Capacity RAM CPU_Usage AW Status

FS1 100 MB 7 MB 40 MHZ 1.2 Balanced
FS2 90 MB 8 MB 50 MHZ 1 Oveloaded
FS3 200 MB 5 MB 27 MHZ 2.5 Underloaded
FS4 240 MB 6 MB 50 MHZ 2 Underloaded
. … … . ... ...
FSx … … . ... ...

Fig. 5 Effective Resource Allocation Methodology (ERAM)

8242 Multimedia Tools and Applications (2022) 81:8235–8258



achieve the load balancing. It chooses the node with the least number of active transactions and
modifies its data periodically depending number of connections.

Q. Fan et al. [8] proposed a model to minimize the communication and processing time by
assigning the incoming process to the suitable source. Authors in [8] use the best Signal-to-
Noise Ratio (SNR) and distributed alpha algorithm to measure the load on each node to
achieve the load balancing. It reconstructs set of series of events and compares the SNR.
However, the disadvantage of this method is that it focuses on the delay of wireless commu-
nications. Wei Y et al. [36] use the Reinforcement Learning algorithm to find the best policy
for scheduling in nonhomogeneous networks to maximize the energy efficiency. Authors in
[37] used Multi-agent Reinforcement Learning to increase the network resource utilization.

Ashkan Yousefpour et al. [40] proposed a policy to minimize the latency of the IoT
services. They aimed to assign each task according to the response time. The proposed policy
in [40] divides the tasks to light and heavy. If the response time on a specific fog node is less
than the threshold, the task will be assigned to this node. Otherwise, the task will be forwarded
to one of the neighboring nodes or to the cloud. The limitations of this method are: (i) It
explores various scenarios in a distributed manner. (ii) It is not reasonable to decide whether to
assign task to fog or to cloud depending on the processing time.

The RA problem in CC has gained attention for several years. However, there are little
studies related to this issue in FC. Table 1 summarizes some of these related works highlight-
ing their strength and weakness.

Many researches about PM2.5 prediction are presented in many research papers such as in
[10, 19, 20]. Convolutional neural networks are frequently hampered by high computational

Fig. 6 PNN Layers

Fig. 7 PNN Architecture
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and storage needs. For several structural model pruning procedures and datasets (CIFAR-10
and ImageNet), the authors in [5] examine the accuracy-efficiency trade-off (TPUs).

2.1 Problem statement

Although, there are many RA algorithms they have many limitations such as i) most of them
depend on the response time to decide whether to assign task to fog or to cloud which is not
plausible. ii) They don't consider the task's requirements such as the priority of the task and the
number of tasks. (iii) Calculating the capacity is difficult in some cases such as in case with
varying packet size. (iv) They may cause network bottleneck.

2.2 Plan of solution

The proposed IoT-Fog system consists of three layers, namely: (i) IoT Layer, (ii) Fog Layer,
and (iii) Cloud Layer. The mission of the IoT layer is to monitor the patient symptoms. The fog
layer is considered with handling the incoming requests and forwards them to the suitable
server. The cloud layer is responsible for managing the transfer of data to and from the fog
layer. The user data is sent to the most appropriate resource to be allocated and processed. The
allocating resource is managed by a specific healthcare organization.

Table 3 Servers’ capabilities

Case Sens.1_P Sens.2_P Sens.3_P Probability

1 5 6 7 1
2 4 3 8 1
3 5 2 6 2
4 1 7 7 1
5 4 6 8 1
6 5 5 4 3
7 3 6 9 2
8 7 5 2 3
9 4 5 6 3
10 5 8 7 2

Table 4 Input Data Set for PNN

Sens.1_P Sens.2_P Sens.3_P Probability Count_1 Count_2 Count_3

5 2 7 1 4 3 3
4 3 8 1
3 4 7 1
4 3 8 1
5 2 6 2
3 2 8 2
5 4 7 2
5 3 8 3
4 2 6 3
4 4 6 3
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2.3 The proposed effective prediction and resource allocation methodology (EPRAM)

One of the most significant applications related to the aims of IoT is an efficient healthcare
system. In healthcare systems, many factors should be taken into consideration such as time,
privacy of data, and accuracy. The healthcare system should be reliable and available at any
time. Accordingly, this paper is concerned with designing an IoT-Fog based Healthcare
System as shown in Fig. 4. The proposed IoT-Fog system consists of three layers which
are: (i) IoT Layer, (ii) Fog Layer, and (iii) Cloud Layer. The IoT layer combines the IoT
devices (pulse oximeter, ECG monitor, etc.) to observe the user status. The fog layer is
considered with handling the incoming requests and forwards them to the suitable Fog Node
(FN). The fog layer is divided into set of fog regions. Each fog region has a Master Node (MN)
which manages and controls the whole nodes' data. Each FN's managing software sends its
characteristics information to the MN. The characteristics of the FN can be found by checking
the values in each Node Characteristics Table (NCT) which is located at the MS. The main
characteristics for each FN as shown in Table 2 are: (i) The cache size (capacity), (ii) The
RAM size (RAM), and (iii) the usage of the CPU (CPU_Usage). A new characteristic
(Adaptive Weight (AW)) will be calculated according to the mentioned parameters by (1) as:

AW ¼ �*
Capacity*RAMð Þ

CPUUsage

� �
ð1Þ

The cloud layer is responsible for managing the transfer of data to and from the fog layer.

2.4 A case study in smart healthcare

In Healthcare systems, the IoT devices are usually connected with smart phones. Examples of
these devices are; pulse oximeter, ECG monitor, smart watches, etc. They send the health
status of the patient via application module. The smart phones act as gateway node to
preprocess the IoT sensed data. If the available resources at the gateway node meets the
requirements, the process will be executed at the application. Otherwise it will be executed at
FN. The application gateway node selects the appropriate node to execute the process and
initiate actuators according to the result. The smart healthcare systems are useful in many cases
such as: (i) Reduce the incidence of a heart attack among those with a cardiac disease, (ii)
Early detection of symptoms of a particular virus, (iii). Detecting Parkinson’s disease. The IoT
based healthcare system architecture can be illustrated as 3-tier architecture as shown in the
Fig. 4. Layer 1 combines the IoT devices (pulse oximeter, ECG monitor, etc.), layer 2 contains
the fog nodes combined as set of regions, and layer 3 is the cloud datacenters.

2.5 The proposed EPRAM

This subsection introduces a new Effective Prediction and Resource Allocation Methodology
(EPRAM) for Fog environment, which is suitable for Healthcare applications. ERAM tries to

Table 5 Test example

Sens.1_T Sens.2_T Sens.3_T

4 3 7
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achieve effective resource management in Fog environment via real-time resource allocating
as well as prediction algorithm. The patient data is sent to the most appropriate server to handle
it. This server is administrated by a specific healthcare organization. The main goal of the
system is to achieve a low latency. The fog layer consists of three main modules as shown in
the Fig. 5, namely: (i) Data Preprocessing Module (DPM), (ii) Resource Allocation Module
(RAM) and (ii) Effective Prediction Module (EPM).

2.5.1 Data preprocessing module (DPM)

The DPM is responsible for sampling, partitioning, and balancing data to be in the appropriate
form for analyzing and processing. The DPM is divided into three sub modules, namely: (i)
Sampling Module (SM), (ii) Partitioning Module (PM) and (ii) Balancing Module (BM).

Sampling module (SM) In SM, the incoming data is divided into subgroups (or strata) which
share a similar characteristic using stratified sampling algorithm. In stratified sampling, it may
also be appropriate to choose non-equal sample sizes from each stratum. In SM, data is first
sampled according to the location it comes from. Then it will be sampled according to its type.
Data can be classified as the following: (i) Not or Low Critical: Examples are the logging of
training activity, weight or body posture. Such data can be examined by doctor when needed.
If the system fails to log some data points, the patient is still safe. (ii) Critical Data: data in
critical conditions. Examples are cardiac monitoring via ECG with automatic alarms once
critical situations are detected [9]. The criticality requires fast response time, i.e., real-time
response. Context Management merely observes patients, devices, or employees to figure out
their context and help by improving planning or taking proper decisions [32]. However, data in
this case is not urgent but it gains some degree of criticality due to real-time response need. (iii)
Very Critical Data Control: The detected events are not only used to alert personnel, but also to

Table 7 Training Calculations 2

Sum(S1) Sum(S2) Sum(S3) P1=Sum(S1) / Count_1 P2=Sum(S2) / Count_2 P3=Sum(S3) / Count_3

15.888 14.832 12.888 3.972 4.944 4.296

Fig. 8 Simulation of Fog Topology
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control devices. This kind of data needs a feedback and real-time response. An example is a
device that regulates the amount of oxygen provided to a patient [23].

Partitioning module (PM) PM splits the data into three samples. The model is built on the
training set, and the model is applied to the testing set to establish its credibility. However, the
testing set can then be used to further refine the model. If the performance of the model needs
improvement, the parameters can be changed, and the model is then rebuilt using the training
sample, after which the performance on the testing set is examined. The validation sample,
which unlike the training and testing sets played no role in developing the final model, is then
used to assess the model the model’s performance against unseen data.

Balancing module (BM) The BM achieves the balancing of the data by discarding (reducing)
records in the higher-frequency categories. The reason is that when you boost record you will
run the risk of duplicating anomalies in the data.

2.5.2 Resource allocation module (RAM)

The proposed RAM is based on Reinforcement Learning (RL) algorithm to achieve a high LB
for fog environment. In RL, an agent learns to interact with environment to achieve a reward.
RL is an Artificial Intelligence technique in which an agent takes an action in an environment
to gain rewards. The agent receives the current environment state and takes an action
accordingly. The taken action leads to a change in the environment state and then the agent
will be informed with the change through a reward. The RAM learns to select the best FN to
execute the incoming request. The overall steps of the Resource Allocation Module (RAM) are
shown in Algorithm 1.

Algorithm 1. (RAM) uses RL to achieve the lowest latency (the target of RL or the reward
is defined as the lowest latency). The reward of RL is defined by the user as we want the agent
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performs. We here define the reward as the low latency. It achieved that by training and
interacting with the environment [24]+.

2.5.3 Effective prediction module (EPM)

The EPM uses the PNN to predict a target field, using one or more predictors. In order to detect
the probability of the heart attack, PNN is trained using the training dataset. Then PNN will be
tested using the user's sensing data coming from the IoT layer to predict the probability of heart
attack and then take the most appropriate action accordingly. The architecture of PNN is

Table 8 MHEALTH dataset characteristics

Data Set
Characteristics:

Attribute
Characteristics:

Associated
Tasks:

Number of
Attributes:

Number of
Instances:

Missing
Values?

Multivariate,
Time-Series

Real Classification 23 161,280 N/A

Table 9 Used MHEALTH dataset

Heart_Attack_Probability 1 2 3

No. of Training Dataset Instances 180 175 205

Table 10 A sample of MHEALTH Dataset

chest sensor (X
axis)

chest sensor (Y
axis)

chest sensor (Z
axis)

electrocardiogram signal
(lead 1)

…… Heart_Attack_Probability

−9.7409 0.68291 0.7562 −0.06698 …… 1

Table 11 the Performance metrics to evaluate the proposed EPRAM scheme

Metric Definition Notes

Makespan It is the total execution time in which task get
scheduled or completely executed.

It can be called Completion Time (CT)
CT: is the time at which process completes its

execution.

Makespan always should be low
[31].

Turn Around Time
(TAT)

TAT: is the time difference between completion
time and arrival time.

Waiting Time (WT) WT: is the time difference between turnaround time
and burst time.

Average Resource
Utilization (ARU)

It is the complete utilization of each resource present
in fog environment.

For better performance, ARU
ratio should be high.

Load Balancing Level
(LBL)

For better performance, LBL
should be high [18].
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shown in Figs. 6 and 7. The steps of PNN based Prediction Algorithm (PPA) are shown in
Algorithm 2.

Illustrative example
Assume there are ten cases. For each case, we consider the values from three sensors

Sens.1_P, Sens.2_P, and Sens.3_P as shown in Table 3.
When new incoming sensing data arrives with values [2, 21, 22]. Count_1 is the number of

examples belongs to Probability 1. Count_2 is the number of examples belongs to Probability
2. Count_3 is the number of examples belongs to Probability 3 (Tables 4, 5, 6, 7).

As P2 has the largest value, incoming sensing data arrives with values [2, 21, 22] will be
detected as Probability 2.

3 Implementation and evaluation

FC runs applications in fog devices between cloud and end devices. This paradigm is used
benefits of cloud and edge for distributed data and low latency. IoT sensors which are located
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in the lower layer of the architecture, are responsible for receiving and transmitting data
through the gateways to the higher layer. The actuators in the lowest level, are also responsible
for system controls. In fact, FC provides filtering and analysis of data by edge devices. Each
application of fog network has a different topology.

3.1 Simulation tool

iFogSim [33] is a toolkit used for simulation and modeling FC environments. It is used for
evaluation of scheduling algorithms and resource management techniques in FC Environ-
ments. It can be used in different scenarios and it focuses on the effect on operational cost,
power consumption, latency, and network congestion. It simulates cloud data centers, network
links, and edge devices to measure performance metrics. iFogSim is available for download
from: https://github.com/harshitgupta1337/fogsim. NetBeans IDE 8.0.2 can be downloaded
from: https://netbeans.org/downloads/8.0.2/. Or Eclipse Modeling Tools from: http://www.
eclipse.org/downloads/packages/release/Mars/2. The iFogsim simulator has a Graphical User
Interface (GUI) module for designing custom and ready topologies [33]. Sensors, actuators,
fog, cloud, and link elements can be added to the topology via this GUI. We create a case study
with the new topology for healthcare environment and use a case study in iFogsim as shown in
Fig. 8. These topologies can be read and executed by other modules in the simulator.

The Resource Allocation Module (RAM) and the Effective Prediction Module (EPM) are
implemented using python.

Table 12 EPRAM vs. previous LB algorithms

Algorithm WT (in ms) TAT (in ms)

LC 5.5 10.75
RR 8.5 13.75
WRR 7 12
AWRR 5 10
EPRAM 4.27 8.65

Fig. 9 WT for EPRAM vs previous LB algorithms
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3.2 Mobile HEALTH dataset

The Mobile HEALTH (MHEALTH) (https://archive.ics.uci.edu/ml/datasets/MHEALTH+
Dataset) dataset contains vital signs and body motion recordings for 10 volunteers during
several physical activities. Sensors placed on the subject's chest, right wrist and left ankle are
used to measure the motion experienced by diverse body parts, namely, acceleration, rate of
turn and magnetic field orientation. The main characteristics of MHEALTH Dataset are shown
in Table 8.

In this paper, the MHEALTH is used to detect the possibility of heart attack. Hence, a new
extra column (column 24) is added to have the values of the probability of attack. Column 24
has three main values which are; (i) 1 for strong probability, (ii) 2 for average probability, (iii)
3 for low probability. In order to simplify the classification, only 560 instances are selected
from the MHEALTH Dataset for training and 240 instances are selected for testing. Number of
training dataset instances for each probability is shown in Table 9. A sample of MHEALTH
Dataset is shown in Table 10.

3.3 Performance metrics

The performance of LBOS vs. previous mentioned LB algorithms can be compared by
considering the following metrics shown in Table 11.

TAT: is the time difference between completion time and arrival time as calculated in (2).
WT: is the time difference between turnaround time and burst time as calculated in (3).

Fig. 10 TAT for EPRAM vs previous LB algorithms

Table 13 Makespan analysis (in ms)

Number of tasks Algorithm

LC RR WRR AWRR EPRAM

50 95.33 96 93.13 87.95 84.87
90 169.34 170.98 167.78 164.66 150.75
130 232.48 235.01 230.21 225.81 220.71
150 280.74 285.11 279.85 275.01 270.89
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TAT ¼ CT � AT ð2Þ

WT ¼ TAT � BT ð3Þ
Where, AT: is the Arrival Time which is the point of time in milli seconds at which a process
arrives at the ready queue to begin the execution. BT: is the Burst Time which refers to the
time required in milli seconds by a process for its execution.

ARU can be calculated as in (4) and LBL can be calculated as in (5).

ARU ¼ BS þ OLð Þ
FSs

*100% ð4Þ

LBL ¼ BS
FSs

*100% ð5Þ

Where, BS: is the number of Balanced FNs, OL: is the number of Overloaded FNs, and FNs: is
the number of all available FSs.

Fig. 11 Makespan for EPRAM vs Previous LB algorithms

Table 14 ARU Analysis (%)

Number of tasks Algorithm

LC RR WRR AWRR EPRAM

50 42.85 42.85 57.14 71.42 72.58
90 57.14 42.85 57.14 71.42 76.28
130 71.42 71.42 71.42 85.71 86.89
150 71.42 71.42 85.71 85.71 88.11
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3.4 EPRAM implementation

Comparing the performance of the proposed EPRAM algorithm and the previous LB algo-
rithms (LC, RR, WRR, and AWRR) is shown in Table 12. The value of WT for EPRAM
compared to previous LB algorithms is shown in Fig. 3. The value of WT for EPRAM
compared to previous LB algorithms is shown in Fig. 4.

From Figs. 9 and 10, it's observed that the EPRAM algorithm takes the lowest WT and the
lowest TAT because the RL develops an agent that can assign tasks fast and efficiently [24]. It
also uses the PNN for the prediction algorithm. It has achieved such acceptable performance
due to using deep RL and PNN. Deep RL has shown impressive promises in resource
allocation. PNN generates accurate predicted target and is much faster than multilayer
perceptron networks [17]. EPRAM algorithm has been compared with LC, RR, WRR, and
AWRR. The values of makespan are shown in Table 13 and in Fig. 11. The values of ARU are
shown in Table 14 and in Fig. 12. The values of LBL are shown in Table 15 and in Fig. 13.

Figure 11 explained that EPRAM algorithm gives lower Makespan as compared to
previous LB algorithms. Figures 12 and 13 explained that EPRAM algorithm gives better
result as compared to previous LB algorithms as it achieved the higher ARU and higher LBL.
Hence all the above results have shown that EPRAM algorithm performs better for makespan,
ARU and LBL as compared to LC, RR, WRR, and AWRR.

Fig. 12 ARU for EPRAM vs Previous LB algorithms

Table 15 LBL Analysis (%)

Number of tasks Algorithm

LC RR WRR AWRR EPRAM

50 28.57 28.57 42.85 57.14 59.04
90 42.85 28.57 57.14 71.42 72.45
130 57.14 57.14 71.42 71.42 73.45
150 71.42 57.14 71.42 85.71 86.14
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4 Conclusions and future work

This paper presented a new Effective Resource Allocation Methodology (ERAM) for Fog
environment, which is suitable for Healthcare applications. The proposed IoT-Fog system
consists of three layers, namely: (i) IoT Layer, (ii) Fog Layer, and (iii) Cloud Layer. The
mission of the IoT layer is to monitor the patient symptoms. The fog layer is considered with
handling the incoming requests and forwards them to the suitable server. The cloud layer is
responsible for managing the transfer of data to and from the fog layer. The user data is sent to
the most appropriate resource to be allocated and processed. The allocating resource is
managed by a specific healthcare organization. ERAM achieved an effective resource man-
agement in Fog environment via real-time resource allocating as well as prediction algorithm.
ERAM is composed of three main modules, namely: (i) Data Preprocessing Module (DPM),
(ii) Resource Allocation Module (RAM) and (ii) Effective Prediction Module (EPM). The
DPM is responsible for sampling, partitioning, and balancing data to be in the appropriate form
for analyzing and processing. The RAM learned to select the best FN to execute the incoming
request. The RAM uses Reinforcement Learning (RL) algorithm to achieve a high LB for fog
environment. The EPM used the PNN to predict a target field, using one or more predictors. In
order to detect the probability of the heart attack, PNN is trained using the training dataset.
Then PNN has been tested using the user's sensing data coming from the IoT layer to predict
the probability of heart attack and then take the most appropriate action accordingly. The main
goal of the system is to achieve a low latency while improving the Quality of Service (QoS)
metrics such as (the allocation cost, the response time, bandwidth efficiency and energy
consumption). Unlike other RA techniques, EPRAM employed deep RL algorithm in a new
manner. It also used the PNN for the prediction algorithm. It has achieved such acceptable

Fig. 13 LBL for EPRAM vs Previous LB algorithms
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performance due to using deep RL and PNN. Deep RL has shown impressive promises in
resource allocation. PNN generates accurate predicted target and is much faster than multilayer
perceptron networks. Comparing the EPRAM with the state-of-the-art algorithms, EPRAM
achieved the minimum Makespan as compared to previous LB algorithms, while maximizing
the Average Resource Utilization (ARU) and the Load Balancing Level (LBL). Accordingly,
EPRAM is a suitable algorithm in the case of real-time systems in FC which leads to load
balancing. Then EPRAM has been tested using the user's sensing data coming from the IoT
layer to predict the probability of heart attack and then take the most appropriate action
accordingly. In future work, we aim to test EPRAM using various datasets to calculate the
data transfer rate and compare it with the previous algorithms in different scenarios. In future
work, EPRAM will also be tested to be used at different hierarchical levels with current
investigations on how to make it more distributed.
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