Multimedia Tools and Applications (2022) 81:10469-10495
https://doi.org/10.1007/511042-022-12148-z

®

Check for
updates

Offline Odia handwritten character recognition
with a focus on compound characters

Raghunath Dey' @ . Rakesh Chandra Balabantaray' - Sanghamitra Mohanty2
Received: 4 June 2021 / Revised: 20 October 2021 / Accepted: 3 January 2022 /

Published online: 16 February 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Recognition of Odia character images is one of the ongoing applications of offline OCR.
An attempt has been made here to develop an efficient feature extraction procedure that can
assist the recognition of Odia handwritten digits, basic characters, and compound characters.
Three different kinds of strategies have been carried here for character recognition. First,
the various characters are recognized using three feature extraction procedures individually,
followed by a merged feature set with a set of standard machine learning algorithms. In the
second approach, the recognition of the characters is performed by popular RNN and CNN
by providing the same feature set instead of giving immediate images, unlike traditional
networks. The same feature sets, as well as classifiers, are applied to recognize different
categories of characters. The third task was to incorporate a set of Odia compound charac-
ters into our suggested character recognition framework. The dataset that has been created
for this purpose consists of numerals, basic characters, and compound characters. The pro-
posed method achieves a recognition accuracy of 86.56% on this dataset with 112 classes
of characters.

Keywords Bounding box - Median blur filtering - Odia compound characters - Machine
learning classifiers
1 Introduction and motivation

A machine can recognize handwritten text using optical character recognition (OCR). There
are two ways to recognize handwritten texts: online and offline. In the case of online, Some

P< Raghunath Dey
¢118003 @iiit-bh.ac.in

Rakesh Chandra Balabantaray
rakesh @iiit-bh.ac.in

Sanghamitra Mohanty
sangham1 @rediffmail.com

International Institute of Information Technology Bhubaneswar, India

Sri Sri University, Cuttack, India

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12148-z&domain=pdf
http://orcid.org/0000-0002-0295-8189
mailto: c118003@iiit-bh.ac.in
mailto: rakesh@iiit-bh.ac.in
mailto: sangham1@rediffmail.com

10470 Multimedia Tools and Applications (2022) 81:10469-10495

electronic devices can be used to trace the writing direction when the writing is going
on [24], such as online signature authentication [18]. On the other hand, offline handwriting
identification performs the identification of text from scanned textual images. It includes
the recognition of numbers from bank cheques [1], addresses from letters, etc. With the help
of this, it is possible to save both space and time. Here, there is no information available
about the movement of the pen tip, the trajectory, or the direction of the text line. Offline
OCR is, therefore, more critical than online OCR. Some of the essential processes involved
in the offline process are shown in Fig. 1.

Several scripts are used in India for various languages. There is considerably less amount
of research towards OCR present in the literature to support handwritten text identifica-
tion. Furthermore, it can be noted that most of the studies attempt to recognize Devanagari
and Bangla handwritten characters in comparison to other regional languages [41]. Odia
is an Indo-Aryan language. More than 35 million people in Indian states such as Odisha,
West Bengal, and Gujarat speak Odia. Assamese and Bangla languages are mostly related
to Odia. The Odia writing is originated from the Kalinga script and is one of the many off-
shoots of ancient India’s Brahmi script. Since ancient times, palm leaves have been used
in Odisha to record the state’s literature and history. Furthermore, since 1838, the printing
press has been available in Odisha. There are many historical events and manuscripts in Odia
by several renowned writers like ‘Fakir Mohan Senapati’, ‘Radhanath Ray’, ‘Madhusudan
Das’, Gopabandhu Das, etc. In recent decades, attempts have been made to preserve these
as digital files. Saving the contents as a text file form is a better choice than a scanned
copy of the pages to avoid running out of storage space. The manual conversion of this job
is impractical. It’s essential to automate the conversion of these image files to text files,
which necessitates the use of offline OCR for Odia characters. The lack of Odia databases
to train the OCR engine is the primary impediment. The performance of Odia OCR must be
improved to fulfill the requirements of real-time recognition. It motivates strongly to donate
a good quality of Odia characters and numeral dataset to the research community working
in this domain. Handwritten character recognition is among the several popular applications
of computer vision. Though, this job is not simple. Researchers are encouraged to enhance
recognition results using various pattern recognition algorithms, which helped the offline
text retrieval and digitization process.

In the early years of 2005, researchers began their research study on offline Odia OCR.
Odia has 10 numerals, 49 basic characters. More than 100 compound characters can be
formed with the help of these basic characters. This basic character consists of 12 vowels
and 37 consonants. These can be seen from Fig. 2, where all digits, basic characters, and
some of the commonly used compound characters in the handwritten form are presented.
Each of the character classes is represented by a green number at the top of the characters.

Gray level image

Character
segmentation

Filtering

Feature Extraction i
Recognized Text

Text Documents Scanning Offline OCR Classification

Fig. 1 Common steps involved in Offline optical character recognition

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495

10471

" "1 T2 T iw
O f 9 =\ 3
19 1 12
G @
20 21 22 2

32)\ 33 34 35
° 0 <

o

59 q;%l‘
C a1 § of «
6 e&] §u %Z] 59
78 s (/\\)
6% 6] &Il 3 &[] 5
e 651 @ G o g
&) 6]
A s e g 4
. 2 I (Z/”S’SS'QQ
£ & 9 g 53
5] & & § o %
4 g 2 & 9 9

S
9

96 97
104 105

AR
LVA%)
[ZE

519

5 6%
D

Y 69

Fig.2 Set of handwritten digits, basic characters and compound characters in Odia. Numbers mentioned in
green colour at top position of the characters are the respective class labels present in the ‘IIITBOdiaV2’

database

@ Springer

10472 Multimedia Tools and Applications (2022) 81:10469-10495

These class labels are the class sequence present in the newly developed ‘IIITBOdiaV2’
database created in IIIT Bhubaneswar. The character groups numbered from 0 to 9 are the
digit classes. The numbers 10 to 56 represent basic characters, and 57 to 59 represent special
modifiers. There are two characters between classes 56 and 57 that are ignored from the
list of basic characters in this database because they are very similar to classes 34 and 35,
respectively. The modified characters of ‘Ka’ are represented by the character classes 60 to
69. Some of the most common compound characters are 70 to 111, except for 80, 81, 82,
and 84. Class labels 80, 81, 82, and 84 are modified characters similar to class labels 60 to
69. Currently, the compound characters labeled 70 to 111 are present inside the database,
though there are more than a hundred compound characters in the script. These are not
included in this database due to insufficient collections of characters.

Though very little research has been conducted on the recognition of offline Odia char-
acters, most of them are on Odia printed character recognition out of the literature. The
recognition results in terms of accuracy of these printed characters are also very satisfy-
ing. The account of the research works becomes further smaller in the case of handwritten
Odia character recognitions. Again, the majority of them are on handwritten numerals, but
there are very few on handwritten characters. The recognition outcomes of the handwrit-
ten characters are truly very disappointing. Finally, it becomes zero in count in the case
of handwritten compound character recognition. Many factors contribute to this, including
allograph complexity, a scarcity of datasets, and a scarcity of commercial sectors. Smart-
phones in India are expanding exponentially in all the regions of India, which will lead
to heavy man-computer interactions in the future. OCR developments for Indian scripts,
including popular scripts such as Odia, will be in high demand. As a result of these fac-
tors, a high-quality Odia handwritten text with various modifiers and compound character
recognizers is now required. It necessitates the collection of a standard handwritten Odia
database consisting of different possible compound characters. The current study proposes
a character database as well as a hybrid feature extraction technique. The neural networks
models are designed to take extracted features as input instead of using direct images. It
would speed up the character recognition task because it would take less time to process the
extracted features than compared to immediate images.

1.1 Characteristics and complexities of Odia scripts

Unlike English, the Odia script does not have separate uppercase and lowercase characters.
The Odia script has a vast number of simple and complex characters. Each of the Odia
characters has various components with different characteristics. Most of them are circular
in their upper sections and have perpendicular straight lines on the right side of the letters.
The modified characters are of different shapes and sizes based on the ‘matras’ or ‘kaara’
used. Depending on the vowel, these characters can be small or big, and the ‘matras’ can
occur on any of the four sides of a consonant character. Some of them are shown in Fig. 2,
from class ‘60’ to ‘69’ and many more, which are not labeled here. When a consonant or a
vowel is combined with another consonant, then a compound character is formed. Some of
the formations of compound characters are shown in Fig. 3.

Several problems that an Odia character recognition device could face. Those are as
follows:

1. Due to roundish, identical, and sometimes similar characters, distinguishing character
class becomes difficult.

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495

10473

Q@ =@ +Q
Arde=a + ¢ + 2l
8 =8 +¢
Q& =8+ ¢

@ ¢=q+9
=g +9

100

q& =J+¢

102

§ =g+9

Fig. 3 Some examples of Odia compound characters using ‘juktas’ or ‘conjucts’. Numbers mentioned in
green colour at top position of the characters are the respective class labels present in the ‘IIITBOdiaV2’

database

2. There is no clear and fixed rule for the interference of modifiers with their base
character. It is a significant roadblock for word-to-character segmentation.

3. The structure of mirror images between two characters becomes one more challenge.
The flipping of one letter, may look like another character. The characters ‘Ga’ and
‘Ma’ become ‘Tha’ and ‘Dha’, respectively, when they are vertically flipped. It is shown

in Fig. 4.

4. The absence of benchmark databases is another weakness in recognizing Odia hand-
written characters. There are currently only three publicly accessible databases.
These are provided by, Indian Statistical Institute in Kolkata, NIT Rourkela, and IIT

Bhubaneswar.

The implementation of a handwritten character recognition system necessitates a massive
number of training samples. It’s also difficult to generate a dataset of this size because it
takes a lot of time and effort. Only three extensive handwritten datasets have been developed
in recent years. That includes a set of character images from handwritten Odia numerals and
basic characters only. That is why an attempt has been made to build a database for Odia
handwritten characters, including some widely used modified characters and compound

characters.

G‘ < VerticaIFIipping_) a

(Ga)

(Tha)

q < VerticaIFIipping_) CI

(Ma)

(Dha)

Fig.4 Two examples of characters when flipped vertically produce another characters

@ Springer

10474 Multimedia Tools and Applications (2022) 81:10469-10495

2 Related works done

There are around 35 papers in terms of conferences and journals are present in literature
for recognizing handwritten Odia characters in an offline manner. It is very little in com-
parison to other regional languages of India, like Gurumukhi, Bangla, Tamil, etc. All this
research was done within the last two decades. In most of the papers, authors have used
some synthetic handwritten character datasets by creating them on their own instead of
any benchmark datasets. It happens due to the lack of availability of benchmark datasets
in the public domain. Only three datasets are there which are made publicly available for
research purposes. However, all these datasets do not provide all the categories of characters
publicly. These are limited to digits and basic characters. Here in our literature study, we
have emphasized those papers which are based on evaluating a set of benchmark datasets.
Because using a benchmark dataset in the experiments is the best procedure to evaluate a
recognition mechanism.

In the initial portion of the literature of Odia handwritten character recognition, it was
found that some studies were performed on the ISI Kolkata numeral dataset. Tripathy
et al. 2003 [42] suggested a method to recognize the numerals, and the authors have used
threshold-based binarization as a primary preprocessing technique. Features are extracted
based on reservoir area and location, the path of water flow, the number of loops, the center
of gravity, ratio between reservoir and loop, profile-based features, on jump discontinu-
ity. Finally, using a binary tree classification approach, the accuracy obtained was around
97.74%. The paper Roy et al., 2005 [32] suggested computing region of interest (ROI) based
on bounding box and segmented the characters into blocks. The feature extraction was based
on a chain code histogram having a dimension of 400. By applying neural networks and
quadratic classifiers, an accuracy of 94.81% was reported in the study. Except for these pre-
processing techniques, few others like Gaussian filter, Roberts filter are applied in [29] and
accuracy of 98.54% was achieved using the same quadratic classifier.

In [4], the authors implemented binarization, thresholding, and normalization of the
digit images in the preprocessing phase. Applying the Hidden Markov model (HMM) on
extracted features like horizontal and vertical strokes, the accuracy of 90.50% was obtained.
In [20], only Gaussian filter and resize were performed inside the preprocessing phase. The
Zernike moment features were extracted and used on an ensemble of MLP based on Multi-
class Adaboost, and finally, the recognition rate of 97.10% was found. The Otsu threshold
and mean filter were implemented during the preprocessing step in the paper [9]. Following
that, all of the samples were resized to 72 x 72. The kirsch gradient operator and curvature
were used to extract features. The feature dimension was reduced using PCA. For classi-
fication, a modified quadratic discriminant function and its discriminative learning version
were used. It produced an accuracy of 98.5%. In [34] authors merged their own created
numeral dataset with the standard ISI Kolkata dataset. After this, LU factorization-based
feature and naive Bayes classifier were used for classification that helps to produce an
accuracy of 92.75%. Some preprocessing methods, such as filter-based noise reduction and
connected component analysis, were used in [11]. Following that, all of the digit samples
were resized to a 24 x 24 format. On SVM, HMM, Bayes classifier, quadratic discrimi-
nant function, and kNN classifiers, different features such as Slantlet, Stockwell, and Gabor
wavelet-based transformations were used. The highest level of accuracy was attained, with
a score of 98.8%. Binarization, thinning, size normalization, and dilation techniques were
used in the preprocessing phase on only 500 samples of the ISI Kolkata dataset by Sethy

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10475

et al. 2016 [36]. The discrete cosine transform was used to extract features, which were then
added to the ANN, resulting in 90% accuracy.

On the ISI Kolkata dataset, Majhi et al., 2018 [25] used preprocessing techniques such
as a median filter and canny edge detection. After that, all of the samples were resized
to 64 x 64. Using discrete Fourier, short-time Fourier, discrete cosine, discrete wavelet,
S-transform, and curvelet of digits transformations, features were extracted. Using PCA,
the feature dimension was reduced to 32. MLP, artificial neural network, radial basis func-
tion network, and probabilistic neural network were among the classifiers used. Finally, a
98.70% recognition rate was reported. In [6], only binarization and resize to 28 x 28 to
whole ISI Kolkata datasets was performed. The total number of inputs became 784-pixel
values for the suggested extreme learning machine. It gave an accuracy of 94.47%.

In [13], the only preprocessing added to the ISI Kolkata and IIT Bhubaneswar dataset
is segmentation. The feature, based on sparse concept coded tetrolets was applied to RF,
SVM, kNN, and modified quadratic discriminant function classifiers (MQDF). Finally, the
accuracy of IIT Bhubaneswar digits and characters was 98.72% and 93.24%, respectively.
Similarly, the ISI Kolkata dataset’s digit classification accuracy was found to be 99.22%.
In [40] also, the only preprocessing applied to the same datasets was size normalization.
Then the images are supplied to a CNN model. It achieved up to 98.4% on the ISI Kolkata
dataset and 97.71% on the IIT Bhubaneswar digit dataset.

Some preprocessing techniques, such as finding ROI using a bounding box and bina-
rization using the otsu threshold, were performed on digit samples of the IIT Bhubaneswar
dataset [10]. Following that, the samples were divided into nine zones. Non-redundant
Stockwell transforms, Slantlet coefficients were extracted and used in GA, PSO, and Dif-
ferential Evolution based optimization with kNN. Finally, on the ISI Kolkata and IIT
Bhubaneswar digit datasets, 99.1% and 98.6% accuracy were obtained, respectively.

In [12], Denoising, Size Normalization, Binarization, and Morphology based opera-
tions were applied to the IIT Bhubaneswar dataset. Features like Stockwell transform, the
weighted gradients were extracted and were studied on kNN and modified quadratic dis-
criminant function (MQDF). It gave an accuracy of 99.1% on numerals and 95.14% on basic
characters of the IIT Bhubaneswar dataset.

In [5], preprocessing techniques like Binarization, pruning, and dilation was applied to
the IIT Bhubaneswar digit dataset. After that, the samples were normalized to 40 x 40.
Features extracted through convolution layers whose weights are upgraded by JAYA opti-
mization. Then these are applied to the Random Forest classifier, which produced an
accuracy of 98.25%.

Only size normalization was used on the OHCSv1.0 (NIT Rourkela) and ISI Kolkata
datasets in [7]. Convolution layers with a multi-objective Jaya-based optimized network
were used to extract features. Then these are applied to SVM and Random forest. It pro-
duced an accuracy of 98.9% towards recognizing characters of the NIT Rourkela dataset
using RF and 97.70% on the ISI Kolkata numeral dataset using the SVM classifier.

In [39], Size normalization, median filter, skeletonization like preprocessing were
applied to ISI Kolkata and OHCSv1.0 (NIT Rourkela) dataset. Only 200 samples from each
character class and 300 samples from each digit class were taken. Features were extracted
using row symmetry and column symmetry chords. Then these were applied on the Deci-
sion Tree classifier and achieved a recognition rate of 96.2% on ISI Kolkata numerals and
95.6% on the OHCSv1.0 Character dataset. In [27], authors performed classification on 57
character classes of the OHCSv1.0 (NIT Rourkela) dataset. The functions like Binarizarion,

@ Springer

10476 Multimedia Tools and Applications (2022) 81:10469-10495

Table 1 Details of the publicly available Odia handwritten character datasets

Datasets Contents Labels Total Samples Dimension No of writers
IST Kolkata Numerals 10 5970 variable 356
IIT Bhubaneswar Numerals 10 5000 variable 500
IIITBOdiaV2 Numerals 10 2962 64 x 64 150
NITROHCS_V1.0 Characters 47 15040 64 x 64 150
IIT Bhubaneswar Characters 70 35000 variable 500
IIITBOdiaV2 Characters 102 13236 64 x 64 150

Skew Detection & Correction, and Segmentation are performed in the preprocessing phase.
Features based on the horizontal histogram and vertical histogram are collected and applied
to the classifiers like SVM, kNN, and BPNN. Finally, the highest accuracy achieved was
83.75%.

The authors of [38] in 2018, used normalization and dilation to preprocess the NIT
Rourkela dataset. From each of the 47 classes, only 150 specimens were taken. The discrete
wavelet transform was used to extract features, which were then reduced using PCA. The
feature set was provided to BPNN, and 94.8% accuracy was obtained. In 2019, the authors
of [37] implemented noise reduction, skew correction, and normalization towards prepro-
cessing on the NIT Rourkela dataset. All 350 samples are taken from every 47 classes.
The extraction of features was based on symmetric axis chords, mathematical features such
as Euclidean distance and Hamilton distance, and the feature dimension was then reduced
using PCA. These were applied to a Gaussian kernel with a radial basis function neural
network and achieved a recognition rate of 98.8%.

3 Database used for simulation

Experiments are carried out on the three preexisting benchmark datasets and one newly cre-
ated dataset. Compound characters aren’t present in any existing databases. As a result, we
have been motivated to create a new dataset with compound characters. ISI Kolkata' Digit,
NIT Rourkela’s NITROHCSV1.02, and IIT Bhubaneswar? are the only currently available
datasets. IIITBOdiaV2* is the name of our most recently created dataset. The following
sections provide an overview of each of the datasets. The details of the publicly available
datasets, including the recently created dataset, are elaborated in Table 1.

3.1 ISl Kolkata digit

The ISI Kolkata Odia database [3] contains 5,970 handwritten Odia numerals from 356
authors. The database was built using 105 emails, 166 job letters, and various forms. From
the available data, a training set of 4970 samples and a test set of 1000 samples were

Thttps://www.isical.ac.in/~ujjwal/download/OriyaNumeral htm]
Zhttps://www.iitbbs.ac.in/profile.php/nbpuhan/
3https://itrkl.ac.in/CS/Datasets.aspx
“https://www.iiit-bh.ac.in/academics/research/funded- projects/clia

@ Springer

https://www.isical.ac.in/~ujjwal/download/OriyaNumeral.html
https://www.iitbbs.ac.in/profile.php/nbpuhan/
https://nitrkl.ac.in/CS/Datasets.aspx
https://www.iiit-bh.ac.in/academics/research/funded-projects/clia

Multimedia Tools and Applications (2022) 81:10469-10495 10477

generated. Each character has 100 copies in the test set, while imbalanced units are there in
the training set. The samples come in a variety of sizes.

3.2 NITROHCSV1.0

One of the databases for handwritten Odia characters is NIT Rourkela’s NITROHCSV1.0 [27].
Binarization and segmentation were used to preprocess the samples. Each specimen was
archived after regular standardization. The samples of the dataset are developed by 150
people regardless of gender, age, and education level. They wrote 57 characters on a series
of formatted sheets, including ten numbers and 47 basic characters on each. Developers
have used many machinery equipments to eliminate paper clattering and bursting.

3.3 IIT Bhubaneswar

Samples from the IIT Bhubaneswar [12] database were obtained in several locations and
weather conditions. People were required to write in an unregulated environment in order to
realize typo variations. Papers were scanned at both 600 dpi and 300 dpi. Each handwritten
class of Odia numerals and characters has 500 entries in the database. There are a total of 80
classes, ten for numerals and 70 for characters. There are two types of written samples are
collected. The characters are written first on clean 70 GSM pages, and then on predesigned
grid arrangements of pages. The characters in the grid format are all the same height and
divided by a fixed width.

3.4 1lITBOdiaVv2

IIITBOdiaV2 is an Odia character database consisting of numbers and alphabets at the same
time. The grid design on the papers was made and supplied to the 150 volunteers. All the vol-
unteers’ ages range from 5 to 70 years old. All sample copies were scanned at 300 dpi at ITIT
Bhubaneswar using an HP scanner. After multiple preprocessing activities such as filtering
and threshing, the characters are segmented and isolated from the parent texts. They are then
fine-tuned to ensure that the samples for each class written by volunteers are spread evenly
during the development and processing of the dataset. In the IIITBOdiaV1, there were ten
numbers digit groups and fifty basic-character groups presented. In this study, a few popular
compound characters, as well as modified characters, are added, and it became IIITBO-
diaV2. There are currently 112 numbers of class labels present in the database. It includes
ten numbers digit classes, 50 basic characters, and the rest 52 class groups include com-
pound characters and modified characters. Through contacting the author by email, datasets
can be accessible to anyone, provided these should be used only for scholarly purposes.

4 Database preprocessing

In every character recognition scheme, preprocessing is important. It becomes much more
essential when we build a handwritten character recognition mechanism. A variety of
impediments can be seen, such as noise, paper quality loss after use, poor writing styles of
individuals, and so on. These are very common when recording a database of handwritten
characters. To remove these flaws, several stages of preprocessing are needed. In the first
step, we use preprocessing techniques like median blur filtering, bounding box, and dila-
tion to build the ‘IIITBOdiaV2’ database. Other preprocessing procedures like thresholds,

@ Springer

10478 Multimedia Tools and Applications (2022) 81:10469-10495

binarization, thinning and resize are carried out in the second stage before classification and
identification.

4.1 Median blur filter

The median blur filter [21] is popular among order statistical filters for its high efficiency
and effective rate in eliminating specific noise forms such as Gaussian and random salt and
pepper noise. It replaces the middle pixel of the corresponding P x P window with the
average value of each of the cells. The median differs considerably in the noisy regions
that are present in the images. Here the median blur filter from Python OpenCV has been
used with a ‘P’ value of ‘3’ to minimize the noise pixels on the character images before
segmentation. The requisite formula is shown in (1). Where, K, is the set of coordinates in
a rectangular sub-image window which has a center at (m, n). The D(m, n) is the restored
destination image, and S(p, g) is corrupted or source image and calculated area under the
dimension of K .

D(@m,n) = medianBlur {S(p,q)}, where(p,q) € Kq (D)
4.2 Bounding box with dilation

The sheets issued to the volunteers are set up with uniform grids so that the character font
sizes do not differ considerably. The next crucial step was to find a method that could
determine the locations of the characters on the grid paper in the proper alphabetical order.
The region of interest (ROI) was discovered using the bounding box technique [23]. How-
ever, the bounding box faces some flaws. The bounding box occasionally caught unwanted
degraded grid lines. Another few issues were the uncompromising styles of characters and
the construction of characters. Some of the characters are made up of many pieces. The
bounding box selects the broken characters as well as the fragmented pieces. That is why a
minimum contour length of ‘60’ was used as a threshold to fix these problems. These errors
can be corrected by the reduced threshold value, such as 60-pixel length, which includes
eroded left grid lines. As a result, a few main components of certain characters with widths
less than ‘60’ have been omitted. The matra ‘u” of the modified character ‘Ku’ has a contour
of less than 60. The bounding box assumed that these fragments were distinct characters
because their lengths were less than 60. Practically, these are not distinguishing charac-
ters; they are most likely to be letter fragments. The problem was solved by merging partial
character components using a morphological dilation technique with kernel size 10. The
bounding box considers these as a single entity and helps to find definite characters.

4.3 Thresholding and binarization

Character images must be correctly preprocessed before the recognition job to enhance its
accuracy. For a gray-scale segmented character image, the intensity values of the pixels
range from O to 255. In the text image, the values 255’ and ‘0’ signifies to ‘bright’ and
‘dark’, respectively. The intermediate values have a light-black or greyish appearance. A
high-dimensional storage technique is required to represent and execute these. Text pictures,
on the other hand, do not necessitate such representations. Text images typically have two
values. The first is the text line itself, and the second is the rest of the background. As a
result, when dealing with character images, only binary representations are required. The
‘Otsu global thresholding’ [28] method is used to generate this binarized version of the

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10479

samples. The breakpoint has been set at the “T” threshold. If the intensity value is more
than ‘T’, the updated value will be 255 or white; otherwise, it will be ‘0’ or black. All pixel
values were divided by their highest value to standardize the images. After passing through
the thresholding, the images are binarized [16], with ‘0’ representing a black or background
image and ‘1’ representing a white for the text line.

4.4 Thinning

The thinning operation [2] was carried out after the binarization phase. The line width of
the images varies from place to place, as the data is handwritten. Hence, a thin version of
the same character image becomes necessary. Throughout the skeleton or thinned version of
the character images, the thickness of the text line is one pixel everywhere. The thin version
of a character image is shown in Fig. 5. All the scanned images will be thinned and sup-
plied to the feature extraction procedure for further processing. However, the background
of samples has been resized before obtaining their thinner versions to remove the existing
unnecessary parts.

4.5 Resize

Initially, all of the samples from various datasets are variable in size and large. As a result,
it will be computationally expensive. To standardize the collections retrieved from the dif-
ferent repositories, they need to be resized to a fixed dimension. So that, the requirement of
time and space can be reduced to some extent. The image size cannot be so small that the
clarity of the image is compromised. As a result, the 64 x 64 and 64 x 128 pixel scales were
chosen as the best size for all samples from each dataset in various scenarios.

5 Feature extractions

Regardless of the writers, the extraction of features of handwritten text images should not be
affected hugely. A proper recognition framework is necessary that can be used by anyone.
In this case, a contour-based representation of the character is a preferably better choice.
Because a character written by any writer may be of various sizes but may have an immense
resemblance with respect to its structure. As a result of this, each recognition method’s
performance may improve. This section of the research gives a quick overview of three
different feature extraction methods. These are: (I) the angular motion of a character, (II)

Scanned Character Image Binarized Image Thinned Image

Fig.5 Thinned version of a character followed by its binary version

@ Springer

10480 Multimedia Tools and Applications (2022) 81:10469-10495

the distance between the character text lines and their centers, and (III) the five types of
slopes formed by the text line of a character.

5.1 AMS Feature

‘AMS’ is known as the Angular Motion of Shape base feature. This is an effective tech-
nique for finding features based on the shape or contour of a character. It believes that all
the different classes of characters in any script produce different structures. That is why the
AMS feature [15] for any class of characters must be unique. In such kind of feature extrac-
tion technique, all the images are fragmented into two zones. These are the upper zone and
lower zone. In most of the characters, the upper portion of the character looks completely
different than its lower portion. This helps in producing quite an identifiable feature from a
character. After extracting the required features from every character image, the algorithm
stores them in the AMS feature matrix. The necessary pseudo-code of the program is shown
in Algorithm 1. Initially, a 3 x 3 window that moves vertically across two zones of each
character image. This type of window is also called a sliding window [14]. For the upper
zone, the row-wise and column-wise range values are shown in (2). Similarly, for the lower
zone, the row-wise and column-wise range values can be seen in (3).

iupper = 0to [row/2] — 1 and jupper =0to col —1 2)

ilower = [row/2] to row — 1 and jipwer = 0to col — 1 3)

As the character images are converted from gray-scale to binary version, that is why the
images have two values, which are 1 and 0. In our case, ‘1’ signifies text, whereas the ‘0’
signifies background. When the sliding window moves throughout the thin version of the
character image and finds a ‘1’ in its center position, it looks after the other eight adjacent
cells. Otherwise, the window ignores the contents. The eight adjacent cells are named with
alphabets from ‘a’ to ‘f”. Depending on the presence of ‘1’ intensity value in the character
image fitting on the sliding window, it generates the code, as shown in Fig. 6. The number
of possible combinations of alphabets formed from the eight cells of the sliding window
is 28 = 256. This value is completely based on the concept of set theory. If there are 'n’
numbers of characters in a set, then the total number of combinations of characters that
can be formed is 2". These codes of alphabet combinations will be repeated as the window
moves throughout the shape of a character. One thing that can be noted is that the window
moves only from left to right in a vertical manner. That is why the number of codes will be
256/2=128, instead of 256. This value of 128 is only for one zone out of two zones. So for
two zones, this value will be 128 x 2 = 256. All these 256 alphabet combination codes were
stored in a matrix called "Headermatrix’. All of the codes from this matrix must be copied as
column headers to the AMS feature matrix. As a result, whenever an alphabet combination

¢ 73
) Generation of

Thinned image Sliding window of 3x 3 unigue code

Fig.6 Code generation using a sliding window of size 3 x 3

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10481

is matched to one of the column headers of the feature matrix, the frequency count of the
relevant code is increased. The final updated value for that column concerning the sequence
of rows occupied by the sample in the feature matrix is stored, as shown in Fig. 7. Hence, the
numbers shown in the table of Fig. 7 represent the frequency or the number of occurrences
of the alphabet combination present at the corresponding column header. The whole process
is shown in Algorithm 1. The algorithm confirms that getting the frequency for all codes
from two zones for all samples is an iterative process. There will be 257 columns in the final
version of the AMS feature matrix, including the last column for the class label. In the final
version of the AMS feature matrix, there will be 257 columns which include the class label
in the last column. The total number of rows will be the number of samples present in the
particular database.

Algorithm 1 AMS based Feature extraction.

Input: Img;...Imgy € DB
1: Initialize: The Header-matrix, a total of 256 number column headers with class.
2: 0«1

3: repeat
4: Divide each Img; into two zones, z1 and zo > z1 < upper zone and z» <« lower
zone

5 Jj <1

6 repeat

7: Check value ’v’ at each cell of z;

8 if v == 1 then

9 Check it’s adjacent cell value v,g;

10: if v,yj == 1 then

11: Generate Code as in Fig. 6

12: Increment code[frequency]

13: end if

14: else

15: Continue

16: end if

17: Update Header-matrix[code]

18: j++ > For each zone
19: until j <2
20: i++ > For each sample

21: untili < N

5.2 CTD Feature

This is also called the ‘Center to Text Distance’ feature [15]. Most of the characters of any
script have different shapes and distances from their centers. The characters that belong
to a particular class may have a similar amount of distance from the center of the text.
With regards to this fundamental idea, this CTD feature extraction is designed. There ‘8’
different distances are computed from the center based on ‘8’ different angles. The details of
these ‘8 distances {Ry, Ry, Rp, Ly, Ly, Lp, Ty, and By} can be understood from the Fig. 8.
After applying various preprocessing methods as discussed in Section 4, the final binarized
thin version of the samples was collected. These are supplied to the CTD feature matrix
computation program. The required pseudo code is shown in the Algorithm 2. Initially,

@ Springer

10482 Multimedia Tools and Applications (2022) 81:10469-10495

Sliding winJdow of 3 X 3

(-1, j-1)| G-1.3) | -1.5+1 upper zone
© | 0| © e
(ij-1 (i ij+1)

(d) : (h)
(i#1,j-1)|(i+1.5)| (i+1.j+1) \

c) | (b) (a)

-1, 5-1)]G-1) :-1.+'.‘|

(e) | (M (g) /

(i.j-1 i (ij+1

d : h

D) S Lower zone
(#1,j-1)|(i+1,j)| (+1,j+1)

b
s lio) £ Thinned image

ab |ac |ad |ae Class
3 |4 |12|0 1
0 [22]2 |1 1
g |1 |3 |2 2

Generation of AMSF

Fig. 7 Extracting AMS feature from two portion of character image using sliding window

the center of each character image is calculated. From this center, the controller will move
through these ‘8’ directions. Wherever there is a white text pixel fetched in any of the ‘8’
directions, the corresponding distance from the cross-section point to its center is computed.
These distances are calculated using the Euclidean distance method. These distance values
are all floating-point values and all are stored in the CTD feature matrix.

Algorithm 2 CTD based Feature extraction.

Input: Img;...Imgy € DB > 1Img;...Imgy are the thinned version of input images

1: for each Img; € DB do

COMPUTELENGTH(Ry, Ry, Rp, Ly, Ly, Ly, Ty, By)

: end for
: function COMPUTELENGTH(X)

if value(cell;)==1 then

length L= Euclidean_Length(cell;, Center)

: else
9: length L=0
10: end if
11: end for
12: return L

13: end function

2
3
4
5: for each cell cell; € Tmg; from Center to X position do
6
7
8

Output: Length from eight different positions on text line to the center of character

Thinned image

Distance in eight direction

Rb

o

4

Lx

=}

3

Lu

22

55

Lb

o

2

Tu By
45

5 |22

4 4

Generation of eight CTD Feature values

Fig.8 Eight directional distance values from center of characters

@ Springer

CLASS

Multimedia Tools and Applications (2022) 81:10469-10495 10483

5.3 FoG feature

This Five orientation gradient (FoG) based feature is based on the gradient or slope occupied
by a thin line of a text image. It also depends on the contour of a character, like the AMS
and CTD features. An image sample is a two-dimensional array, where each cell of all
rows and columns of the matrix consists of pixel intensity values. For this type of feature
extraction, a 2 x 2 window is used that will move horizontally from left to right. Initially,
the character image samples are binarized and resized to 64 x 128 followed by the median
blur filtering. There are four zones column-wise but eight zones row-wise. Hence, each
image sample is divided into 32 (8 x 4 = 32) equal zones, where each zone has the size
of 16 x 16. These 32 numbers of zones representation on a character is shown in Fig. 9
with an ordering of 1 to 32. When the window moves, then at least two cells are expected
to have a white or ‘1’ pixel value as their content. If at least two cells of the window have
white intensity, then the algorithm is designed to generate features for the characters. In this
scenario, a single pixel’s existence was ignored. Because, after an initial preprocessing with
the ‘median blur’ function, the appearance of a single-pixel vanishes inside the samples.
The addition of a one-pixel case to the feature set increases its dimension unnecessarily.
Hence this is eliminated.

It’s important to note that the maximum number of gradients or slopes that can be created
through the 2 x 2 window is five, as seen in Fig. 10. Two types of intensity values, such as
black and white, are present in the sliding window. A pixel of written text is represented by
white or ‘1’, while the backdrop is represented by black or ‘0’. In general, there are three
scenarios faced by the sliding window. (1) if only two cells have white pixels, (2) if all four
cells have white pixels, and (3) if only three cells have white pixels.

The four forms of potential slope or gradient variants are collected in Case 1. From the
four cells a, b, ¢, d, if ‘b’ and ’d’ are both ‘1°, a line with a forward 45° gradient is formed, as
shown in Fig. 10a. The backward gradient type with a 45° angle is formed if each of the ‘a’
and ‘c’ cells has an integer ‘1°, as seen in Fig. 10b. A horizontal gradient of 0° is generated

16

Fig.9 Dividing each character sample into 32 equal zones, where the size of each zone is 16 x 16

@ Springer

10484 Multimedia Tools and Applications (2022) 81:10469-10495

if the positions a, d, or b, c are ‘1, as seen in Fig. 10c. Similarly, cells a and b or d and c are
filled with ‘1’, resulting in a vertical line with a 90° gradient, as shown in Fig. 10d.

The feature is extracted when all the four cells of the window are filled with a white or
‘1°. This kind of representation belongs to case 2. All the cells of the window are completely
occupied by the thin text line of the character. It is also referred to as a “no gradient” state.
Figure 10e shows its illustration. Likewise, when three cells are filled with white color, it
belongs to case 3. Logically, this is the situation that arose by the merging of two differ-
ent representations from case 1. After that, for each respective zone starting from 1 to 32
sequentially, the frequencies are calculated by moving the window horizontally. Afterward,
all of the computed gradient frequencies are stored as a vector sequentially based on the
zone numbers. Finally, five simple gradient types, including one with no gradient, have been
considered in such a FoG type of feature representation. There are 32 regions in all. It is
why the feature matrix is of 160 dimensions, i.e. 32 x 5 = 160. The steps for obtaining the
Five Orientation Gradient (FoG) function are defined in Algorithm 3.

Algorithm 3 FoG based Feature extraction.

Input: Img;...Imgy € DB > 1Img;...Imgy are the thinned version of input images
1: Initialize: The FoG-Header matrix, a total of 160 number column headers with class.
2: for each Img; € DB do

3: resize Img; into 64 x 128

4: Split each Img; into 32 zones, of 16 x 16 each

5: j <1

6: repeat

7 for p <~ 1t0o 16 do > Move a 2 x 2 window horizontally
8 forg < 1to16do

9 Jf1=compute code of forward 45°
10: Jf>=compute code of backward 45°
11: Jf3=compute code of Horizontal 0°

12: Jfa=compute code of Vertical 90°

13: fs=compute code of No gradient region > f1, f2, f3, fa, f5 are

calculated using Fig. 10a, 10b, 10c, 10d, 10e, respectively

14: Update Frequency| f1, f2, f3, fa, f5]

15: end for

16: end for
17: V; < Frequencyl f1, f2, f3, f4, f5]
18: j++

19: until j < 32
20: Update FoG Matrix with the vectors Vi 4, 32
21: end for

6 Proposed character recognition model

An offline handwritten character recognition method for Odia characters, including the
compound characters, is suggested here. An offline handwritten character recognition
method for Odia characters, including the compound characters, is suggested here. In liter-
ature, few papers are there, based on handwritten compound characters [8, 33] of Bangla
language of India, where authors have decomposed the compound characters into their basic

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10485

Fig. 10 Representing the angular positions of the connecting pixels in a 2 x 2 cell and extracting the character
code from this

forms of characters and ‘matras’ [30]. Then they have used their recognition methodologies
to classify these. This logic may not be fruitful here because if a compound character of
Odia would decompose, then it would reform more than one character, as shown in Fig. 11.
Due to which the meaning of the particular text will be different. As a result, rather than
breaking compound characters to identify them in their simplest form, an attempt has been
made to recognize the complete compound characters at once. All the steps involved during
the identification process are shown in the block diagram, Fig. 12.

There are three fundamental tasks involved in this recognition process and can be identi-
fied from the block diagram. Those are: preprocessing, feature extraction, and classification
methods. Sections 4 and 5, previously addressed the preprocessing and feature extrac-
tion phases. After this, the most necessary task is to classify the test samples. It can be
achieved by giving the test samples appropriate class labels based on their extracted features.

@ <> '@and'N § = ¢ and'Q
qara=>"q' T"and'0' & <= '§" and'¢"
& = él and 9 ‘& &> '§' and '¢"

& <> 'd'and'e’ F< '§and'Q

Fig. 11 Decomposition of one compound character forms multiple other characters. Numbers shown in green
colour on top of the characters are the respective class labels present in the ‘IIITBOdiaV2’ database

@ Springer

10486 Multimedia Tools and Applications (2022) 81:10469-10495

=)

Training Set r—j
s
)
— DCTF > G:FB
SVM
—>| | Resize re¢
restng sot. s |)
Preprocessing Feature Extraction L J

Various Classifiers

Fig. 12 Block diagram for the proposed handwritten character recognition framework

Different experiments were carried out using six traditional machine learning algorithms
and two neural network models. The machine learning classifiers include Logistic Regres-
sion (LR) [35], Gaussian Naive Bayes (GNB) [26], Decision Tree (DT) [26], K-Nearest
Neighbors (kNN) [31], Random Forest (RF) [22], Support Vector Machine (SVM) [31],
Modified RNN, and the CNN [17]. The three feature sets, AMS, CTD, and FoG, are used
to compute and evaluate the accuracies obtained by these classifiers. After creating all these
three kinds of feature matrices, then the classifiers are applied, and the classification accu-
racy is computed. Except for these three types of feature matrices, one more feature matrix
has also been considered for conducting the experiments. That is the resulting merged
feature matrix of all three feature sets.

AMS = dimension is 256 and 1 more for the class labels.

— CTD = dimension is 8 and 1 more for the class labels.

— FoG= dimension is 160 and 1 more for the class labels.

AMS + CTD + FoG = dimension is 256+ 8+ 160 = 424 and 1 more for the class labels.

The Python sci-kit learning environment has been used to access the inbuilt classi-
fiers such as LR, DT, kNN, GNB, RF, and SVM. Most of the function parameters are set
to default depending on the classifier chosen. Wherever any tuning has been done, it is
mentioned here. Using solver=‘lbfgs’, multi class=‘auto’, and max_iter=10000 for Logis-
tic Regression. The solver is solely responsible for making the algorithm more effective.
Because the dataset contains a little large number of samples, the number of iterations is
increased to achieve successful convergence. The criterion="‘entropy’ and estimators="‘300’
have been set explicitly for Random Forest. The n_estimators determine the number of trees
to be built. To produce a better split point, an ‘information gain based entropy’ criterion was
used. To maintain a standard and neutral study, these standards are kept consistent for all the
conducted experiments. All the rest parameters for all the classifiers are set to the default
value. Instead of a conventional RNN and CNN, a tweaked version of RNN and CNN is
used in this research using Keras in python. Instead of providing a set of images, the feature
matrix is used as an input in these neural network architectures.

6.1 Modified recurrent neural network (RNN)

A recurrent neural network (RNN) is a form of neural network that operates similar to a
traditional neural network. The only difference here is the memory estimation takes a short

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10487

time. Multiplying the input weight and activation functions, the network model generates
results like a regular neural network. The RNN returns to this performance several times
itself. The LSTM model was designed using the Keras Deep Learning Library. The time-
step was named because the model requires time to generate results. A repeated value of
300 has been taken for a specific time step. After the data is loaded into memory, the LSTM
model can be designed, fitted, and checked. One hidden LSTM layer is used in this sug-
gested model. Since the AMS, CTD, and FoG features have been combined so that the
resulting feature matrix will have 84+256+160=424 dimensions. Depending on which, the
input layers in the experiments have a maximum of 424 neurons. A dropout layer is used to
remove the networks’ over-fitting during the training. The value of the dropout is taken as
0.05 in this case. The model is made up of three hidden layers. At the end of each fully con-
nected dense layer, the activation function ‘ReLU’ is used to maximize model efficiency.
The network is compiled with the ‘Sparse categorical loss entropy’ and the ‘Adam Variant
of Stochastic Gradient Descent’ loss function as the potential optimizers. Here, the batch
scale and the value of epoch, both are taken as 50. Based on the dataset’s output class labels,
the network output layer will have anything from 10 to 112 neurons. In the output layer,
an activation function such as Softmax is used to increase the model’s prediction to the
probability class.

6.2 Modified convolutional neural network (CNN)

A convolutional neural network is used in several applications, such as visual recognition,
object tracking, facial recognition, etc. CNN is a form of deep learning that is inspired by
the neuron signaling model of the animal visual cortex. The weight learning of CNN and
bias are very much close to the procedure of feedforward neural networks. We designed
a convolutional neural network with Keras environment under Python to achieve cutting-
edge efficiency. In this network architecture, the Keras sequential model was used. The
add() processes are used to stack layers. The rectified linear unit (ReLU) is one of the
best activation functions that have been used in the network, with three densely connected
convolution layers. The suggested feature vector is used as an input, whose dimensions are
8, 160, 256, or 424, depending on the selected feature set. The first input layer has nodes
based on the input feature dimension and 0.03 dropouts to reduce the overfitting effect.
Excluding this input layer, 3 more hidden layers are incorporated. The ‘adam’ optimizer is
used as a ’stochastic gradient descent (SGD)’ optimizer. The validation accuracy obtained
in the estimation process is dependent on ‘sparse categorical cross entropy’ loss. Both the
epoch and the batch size are given a value of 50 for these experiments. The set of output
neurons and the softmax multi-class activation function are presented in the final layer.
Based on the data set to be classified, the number of labels will vary from 10 to 112.

7 Experimental analysis

Here, various experiments have been conducted based on the datasets, feature sets as
well as classifiers. Four Odia handwritten character datasets were taken for the experi-
ments: ISI Kolkata, IIT Bhubaneswar, NITROHCS_V1.0, and IIITBOdiaV2. Though the
IIT Bhubaneswar dataset consists of digits, basic characters, and compound characters, here
we could collect only the digits and basic characters. The NITROHCS_V 1.0 dataset consists
of basic characters only. The IIITBOdiaV1 dataset initially had digits and basic characters

@ Springer

10488 Multimedia Tools and Applications (2022) 81:10469-10495

only. Later, we combined some commonly used compound characters with the existing ones
to create IIITBOdiaV2. Several experiments are conducted on these datasets. Then all the
results are represented in tabular form so that a small difference between the outcomes can
be identified clearly. The results displayed in this section except for ISI Kolkata is the aver-
age of k-fold cross-validation, where the k value is 5. The ISI Kolkata dataset has a separate
training and testing set, but the others do not.

In the first trial, all the three feature sets extracted from the different datasets are given to
the classifiers, then their obtained accuracy is compared. In the second trial, all the three fea-
ture sets were merged to have a larger dimension of the dataset and the same has been given
as input to all the classifiers that have been mentioned earlier. All the obtained accuracy
from different classifiers based on the feature set is compared. Tables 2, 3 and 4 represent
the outcomes of different classifiers on different features for ISI Kolkata, IIT Bhubaneswar,
and IIITBOdiaV2 digit dataset, respectively. More or less, all the classifiers are giving quite
better results using the merged set of all three features. Still, a clear comparison can be seen
that all the classifiers outperform on the FoG feature than AMS, though the FoG is a fea-
ture set with only 160 dimensions. This dimension is quite less than the AMS type feature,
which is 256 in dimension. Furthermore, when all of the features are combined into one and
then fed into the classifiers, the accuracy of all of the classifiers grows. It means that all the
feature sets are relevant towards the correct recognition of characters. In the merged dataset,
all the feature subsets have a clear contribution towards accurate character identification.

Tables 5, 6 and 7 present the outcomes of different classifiers on different basic char-
acter datasets from IIT Bhubaneswar, NITROHCSv1 and IIITBOdiaV2, respectively. Here
also the same fact happened to like the digit recognition. Always the neural network-based
models perform better than the other state-of-the-art classifiers. Out of the three datasets,
the recognition accuracy of IIITBOdiaV2 basic characters is quite low compared to the
other basic character datasets. It implies the basic characters present inside the IIITBO-
diaV2 dataset are a little complex and must be difficult to recognize by any recognition
methodologies.

Tables 8 and 9 represent the results obtained by the classifiers on IIT Bhubaneswar and
IIITBOdiaV2 datasets, respectively. Here these datasets consist of digits and basic charac-
ters only. Usually, if the number of classes increases, then the accuracy decreases. But here,
it does not happen because these datasets consist of characters as well as digits. Indeed,

Table 2 Recognition accuracy of

different classifiers on different Feature set

feature set of ISI Kolkata digit

dataset Classifier DCTF AMSF FoG DCTF+AMSF+FoG
GNB 65.32 91.37 93.47 94.12
DT 67.27 92.36 94.11 94.56
kNN 68.38 93.14 94.23 94.62
LR 69.39 93.8 94.45 95.1
SVM 70.54 94.28 95.81 96.37
RF 71.58 95.48 96.16 96.71
RNN 72.14 96.14 97.32 97.87
CNN 72.7 96.62 97.75 98.22

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10489
Table 3 Recognition accuracy of
different classifiers on different Feature set
feature set of II'T Bhubaneswar
digit dataset Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 63.7 91.28 92.49 93.84
DT 64.29 92.71 94.11 94.76
kNN 65.98 93.12 93.78 94.73
LR 66.29 93.4 94.32 95.88
SVM 67.76 94.22 95.14 96.1
RF 68.32 94.67 95.92 96.56
RNN 70.87 95.12 96.66 97.34
CNN 70.56 95.43 96.87 97.21
Table 4 Recognition accuracy of
different classifiers on different Feature set
feature set of IIITBOdiaV2 digit
dataset Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 62.65 88.3 90.41 91.77
DT 63.42 90.76 92.66 93.52
kNN 64.76 92.41 93.7 94.45
LR 65.84 93.49 94.87 95.69
SVM 66.38 94.83 95.42 96.43
RF 67.85 95.32 96.44 97.52
RNN 68.27 96.3 97.2 98.33
CNN 68.4 96.71 97.84 98.54
Table 5 Recognition accuracy of
different classifiers on different Feature set
feature set of II'T Bhubaneswar
basic character dataset Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 56.48 76.45 79.63 80.65
DT 58.19 79.23 81.24 82.56
kNN 60.17 79.72 83.94 84.63
LR 59.43 80.63 83.23 84.47
SVM 60.93 81.55 84.75 85.31
RF 62.4 83.24 86.52 87.38
RNN 66.86 85.91 87.12 88.15
CNN 67.56 86.11 87.47 88.23

@ Springer

10490

Multimedia Tools and Applications (2022) 81:10469-10495

Table 6 Recognition accuracy of
different classifiers on different
feature set of NITROHCSv1
basic character dataset

Table 7 Recognition accuracy of
different classifiers on different
feature set of IIITBOdiaV2 basic
character dataset

Table 8 Recognition accuracy of
different classifiers on different
feature set of IIT Bhubaneswar
(digit + basic character) dataset

@ Springer

Feature set

Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 61.34 81.44 85.21 86.34
DT 64.83 82.23 85.23 88.66
kNN 63.85 83.87 87.65 89.86
LR 65.93 84.86 88.97 90.35
SVM 66.34 85.62 89.34 91.46
RF 67.48 86.19 90.23 92.56
RNN 69.39 88.12 91.64 93.12
CNN 70.11 89.23 91.56 93.35
Feature set
Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 50.53 75.54 76.83 77.32
DT 52.35 77.33 78.45 79.44
kNN 51.86 76.35 78.3 79.23
LR 52.87 76.56 79.76 80.97
SVM 53.73 78.23 80.25 81.34
RF 54.63 80.34 81.34 82.63
RNN 55.23 80.75 82.32 83.27
CNN 56.25 81.62 82.65 83.56
Feature set
Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 63.49 82.34 84.7 84.87
DT 66.79 84.89 86.1 88.23
kNN 66.23 85.23 87.82 88.98
LR 66.72 85.73 88.12 89.34
SVM 67.28 86.43 89.53 90.76
RF 68.29 87.52 90.23 91.86
RNN 69.23 90.23 91.32 92.12
CNN 70.34 89.23 91.59 92.45

Multimedia Tools and Applications (2022) 81:10469-10495 10491

Table9 Recognition accuracy of

different classifiers on different Feature set

feature set of IIITBOdiaV2 (digit

+ basic character) dataset Classifiers CTD AMS FoG CTD+AMS+FoG
GNB 59.76 79.82 82.45 84.2
DT 62.98 81.98 84.34 86.11
kNN 64.62 83.05 85.87 86.26
LR 65.32 83.03 85.34 86.73
SVM 66.52 84.93 85.83 87.23
RF 67.09 85.82 87.29 88.98
RNN 68.12 86.24 88.21 89.76
CNN 68.34 86.84 89.57 90.23

the recognition result of numerals is always better than character recognition. So when
the digits are mixed with alphabets, it helps to enhance the recognition accuracy. In both
IIT Bhubaneswar and IIITBOdiaV2, the number of classes is 60, and IIITBOdiaV2 has
fewer samples. Nonetheless, the recognition accuracy is low. So it can be inferred that the
IIITBOdiaV2 dataset has more complex specimens than the II'T Bhubaneswar dataset.

Tables 10 and 11 display the recognition rate in terms of accuracy for characters that
include compound characters. Table 10 displays the results where the features are extracted
from 102 classes because it consists of basic characters and compound characters. Whereas
Table 11 presents the results for all the classifiers applied on features that are extracted from
112 numbers of classes because it consists of digits, basic characters as well as compound
characters. It should also be noted that the number of classes in Table 10 is less than that in
Table 11, but its recognition accuracy is lower. Because, in Table 11, the digit samples are
merged, which helps to enhance its recognition.

7.1 Comparison

Images can be used to train and evaluate a neural networks models. A comparison has been
performed on the neural networks based on the input provided, first by providing immediate

Table 10 Recognition accuracy

of different classifiers on Feature set

different feature set. Samples are

taken from 102 classes (basic Classifiers CTD AMS FoG CTD+AMS+FoG

character + compound character)

of IITBOdiaV2 dataset GNB 48.42 73.28 74.98 75.72
DT 50.69 75.52 76.23 77.83
kNN 51.09 75.29 76.62 79.1
LR 50.34 76.46 77.32 78.23
SVM 52.69 77.42 78.52 79.7
RF 52.84 78.62 79.76 80.24
RNN 54.72 80.23 81.12 82.74
CNN 55.24 80.73 81.56 82.45

@ Springer

10492 Multimedia Tools and Applications (2022) 81:10469-10495

Table 11 Recognition accuracy

of different classifiers on Feature set

different feature set. Samples are

taken from 112 classes (digit + Classifiers CTD AMS FoG CTD+AMS+FoG

basic character + compound

character) of IIITBOdiaV2 GNB 53.67 74.54 80.05 80.74

dataset DT 55.58 76.43 81.3 81.58
kNN 55.38 77.35 81.49 81.84
LR 55.95 78.39 82.74 82.68
SVM 57.26 79.38 83.29 83.52
RF 58.36 80.37 83.73 84.49
RNN 61.19 82.18 84.25 86.26
CNN 60.25 82.62 84.84 86.56

images and secondly by providing the extracted features. The efficiency of the character
recognition approach using both methods can be compared using two different parame-
ters: accuracy and execution time per epoch. The accuracy and execution time per epoch
of the CNN and RNN depending on the input are shown in Table 12. Although the tradi-
tional CNN and RNN had a marginally higher accuracy when images were used as input,
it did so at a substantial cost in terms of execution time. Here, the two main factors which
influence the increase in the execution time of traditional CNN are sample count and input
sample resolution (in pixels). The number of layers of CNN has been kept constant in both
scenarios. The suggested feature extraction method, on the other hand, provides the classi-
fiers with a constant feature dimension regardless of the image size. Thus, the conventional
CNN and RNN will always take more time to execute than the proposed approach. This
study not only emphasizes accuracy but, at the same time, the execution time is also being
considered. As a result, further experiments with basic characters and compound charac-
ters based on the direct images as input to the classification system have been ignored here.
Table 13 represents a comparison of our proposed approach with the others present in the
literature based on the accuracy obtained. It can be seen that our suggested approach, as
well as feature extraction technique, is unable to reach the peak as others have performed,
but the results are very much closer. This study is the first attempt towards the handwritten
Odia compound character recognition. As a result, it is confirmed that the suggested feature
extraction techniques are fruitfully working on a different category of Odia characters while
also successfully supporting numerous machine learning algorithms.

Table 12 Comparison of recognition accuracy of RNN and CNN classifier on different digit dataset based
on the input provided

Traditional RNN Modified RNN Traditional CNN Modified CNN
Dataset Accuracy Time Accuracy Time Accuracy Time Accuracy Time
ISI Kolkata 98.06 41 Sec. 97.87 2.5Sec. 98.73 76 Sec. 98.22 4 Sec.
IIT Bhubaneswar 97.45 36 Sec. 97.34 2 Sec. 97.67 70 Sec. 97.21 3.5 Sec.
IIITBOdiaV2 98.66 24 Sec. 98.33 1 Sec. 98.72 45 Sec. 98.54 3 Sec.

@ Springer

Multimedia Tools and Applications (2022) 81:10469-10495 10493

Table 13 Comparison of recognition accuracy achieved by different researchers present in literature with the
proposed recognition model on Odia handwritten datasets

Literature dataset samples Method Accuracy
Das et al., 2019 [6] ISI Kolkata Digit ELM 94.47
Sethy et al., 2020 [40] ISI Kolkata Digit CNN 98.4
Das et al., 2020 [7] ISI Kolkata Digit SVM 97.7
Dash et al., 2020 [13] ISI Kolkata Digit MQDF 99.22
Proposed IST Kolkata Digit CNN 98.22
Dash et al., 2017 [12] IIT Bhubaneswar Digit kNN,MQDF 99.1
Sethy et al., 2020 [40] IIT Bhubaneswar Digit CNN 97.71
Proposed IIT Bhubaneswar Digit RNN 97.34
Dash et al., 2017 [12] IIT Bhubaneswar Basic chars kNN,MQDF 95.14
Dash et al., 2020 [13] IIT Bhubaneswar Basic chars MQDF 93.24
Proposed IIT Bhubaneswar Basic chars CNN 88.23
Sethy et al., 2019 [37] NITROHCSV1.0 Basic chars rbf NN 98.8
Das et al., 2020 [7] NITROHCSV1.0 Basic chars RF 98.9
Proposed NITROHCSV1.0 Basic chars CNN 93.35

8 Conclusion and future work

Odia is one of the most popular languages in India, used by more than 50 million people
in the whole world. There is a considerable need for an Odia offline handwritten character
recognition mechanism to identify numerals, basic characters, and compound characters.
Though the number of users is increasing every day due to the digital involvement of
computers and smartphones, still very little research has been done on handwritten char-
acter recognition in the literature. Here, in this study, the issue regarding the offline Odia
handwritten character recognition has been addressed. One of the major issues was the
unavailability of the Odia character dataset publicly that includes compound characters.
With this in mind, a dataset IIITBOdiaV2 has been created at IIIT Bhubaneswar. The dataset
currently has 16198 numbers of characters in total from 112 character classes. To date, the
development process of this dataset is going on, and these numbers are increasing day by
day. Here, 52 categories of compound characters were incorporated, which are very popular
and widely used by most users. It is a fact that deep learning models are always a leader in
the case of pattern recognition. Generally, it takes the images as input directly. The compu-
tation takes a long time when the image size and the number of samples are large. We have
used deep learning networks, with the input as a set of features (AMS, CTD, and FoG) with
a much lower dimension than the size of original character images. These extracted features
of the images are not only small in size, but they are also more functional because they
help in the character identification across many classes. At the same time, these feature sets
also support various machine learning classifiers by giving a consistent recognition result in
terms of accuracy under k-fold cross-validation. We are trying to append some other possi-
ble compound characters of the Odia script to this existing dataset so that the quality of the
character recognizer can be enhanced. It should also be noted that the proposed approach’s
recognition accuracy is not as high as those found in the literature. In the future, some new

@ Springer

10494 Multimedia Tools and Applications (2022) 81:10469-10495

feature extraction approaches could be used to yield better recognition results with fewer
feature dimensions. Nowadays, most documents are available in a distributed environment,
and in such cases, new techniques like edge computing [19] can also be used in the future
for the offline handwritten character recognition task.

Declarations

Conflict of Interests The authors declare that there are no conflicts of interest.

References

12.

13.

. Agrawal P, Chaudhary D, Madaan V, Zabrovskiy A, Prodan R, Kimovski D, Timmerer C (2021) Auto-

mated bank cheque verification using image processing and deep learning methods. Multimed Tools
Appl 80(4):5319-5350

. Baruch O (1988) Line thinning by line following. Pattern Recogn Lett 8(4):271-276
. Bhattacharya U, Chaudhuri B (2005) Databases for research on recognition of handwritten characters of

indian scripts. In: Eighth international conference on document analysis and recognition (ICDAR’05).
IEEE, pp 789-793

. Bhowmik TK, Parui SK, Bhattacharya U, Shaw B (2006) An hmm based recognition scheme for hand-

written oriya numerals. In: 9th international conference on information technology (ICIT’06). IEEE,
pp 105-110

. Das D, Dash R, Majhi B (2018) Optimization based feature generation for handwritten odia-numeral

recognition. In: 2018 fourteenth international conference on information processing (ICINPRO). IEEE,
pp 1-5

. Das D, Nayak DR, Dash R, Majhi B (2019) An empirical evaluation of extreme learning machine:

application to handwritten character recognition. Multimed Tools Appl 78(14):19495-19523

. Das D, Nayak DR, Dash R, Majhi B (2020) Mjcn: Multi-objective jaya convolutional network for

handwritten optical character recognition. Multimed Tools Appl 79(43):33023-33042

. Das N, Acharya K, Sarkar R, Basu S, Kundu M, Nasipuri M (2014) A benchmark image database of

isolated bangla handwritten compound characters. Int J Doc Anal Recog (IJDAR) 17(4):413-431

. Dash KS, Puhan N, Panda G (2014) A hybrid feature and discriminant classifier for high accuracy

handwritten odia numeral recognition. In: 2014 IEEE region 10 symposium. IEEE, pp 531-535

. Dash KS, Puhan NB, Panda G (2015) Handwritten numeral recognition using non-redundant stockwell

transform and bio-inspired optimal zoning. IET Image Process 9(10):874-882

. Dash KS, Puhan NB, Panda G (2015) On extraction of features for handwritten odia numeral recogni-

tion in transformed domain. In: 2015 eighth international conference on advances in pattern recognition
(ICAPR). IEEE, pp 1-6

Dash KS, Puhan NB, Panda G (2017) Odia character recognition: a directional review. Artif Intell Rev
48(4):473-497

Dash KS, Puhan NB, Panda G (2020) Sparse concept coded tetrolet transform for unconstrained odia
character recognition. arXiv:2004.01551

. Dey R, Balabantaray RC (2019) A novel sliding window approach for offline handwritten character

recognition. In: 2019 international conference on information technology (ICIT). IEEE, pp 178-183

. Dey R, Balabantaray RC, Mohanty S (2021) Sliding window based off-line handwritten text recognition

using edit distance. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-10988-9

. Dey R, Balabantaray RC, Piri J (2020) A robust handwritten digit recognition system based on slid-

ing window with edit distance. In: 2020 IEEE international conference on electronics, computing and
communication technologies (CONECCT). IEEE, pp 1-6

. Guo Y, Liu Y, Bakker EM, Guo Y, Lew MS (2018) Cnn-rnn: a large-scale hierarchical image

classification framework. Multimed Tools Appl 77(8):10251-10271

. Huh JH (2020) Surgery agreement signature authentication system for mobile health care. Electronics

9(6):890

. Huh JH, Seo YS (2019) Understanding edge computing: Engineering evolution with artificial intelli-

gence. IEEE Access 7:164229-164245

. Jindal T, Bhattacharya U (2013) Recognition of offline handwritten numerals using an ensemble of mlps

combined by adaboost. In: Proceedings of the 4th international workshop on multilingual OCR, pp 1-5

Springer

http://arxiv.org/abs/2004.01551
https://doi.org/10.1007/s11042-021-10988-9

Multimedia Tools and Applications (2022) 81:10469-10495 10495

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

. Justusson B (1981) Median filtering: Statistical properties. In: Two-dimensional digital signal prcessing

II. Springer, pp 161-196

Kaur RP, Kumar M, Jindal MK (2019) Newspaper text recognition of gurumukhi script using random
forest classifier. Multimed Tools Appl:1-14

Lempitsky V, Kohli P, Rother C, Sharp T (2009) Image segmentation with a bounding box prior. In:
2009 IEEE 12th international conference on computer vision. IEEE, pp 277-284

Maalej R, Kherallah M (2020) Improving the dblstm for on-line arabic handwriting recognition.
Multimed Tools Appl 79(25):17969-17990

Majhi B, Pujari P (2018) On development and performance evaluation of novel odia handwritten digit
recognition methods. Arab J Sci Eng 43(8):3887-3901

Maswadi K, Ghani NA, Hamid S, Rasheed MB (2021) Human activity classification using decision tree
and naive bayes classifiers. Multimed Tools Appl:1-18

Mohapatra RK, Mishra TK, Panda S, Majhi B (2015) Ohcs: A database for handwritten atomic odia
character recognition. In: 2015 fifth national conference on computer vision, pattern recognition, image
processing and graphics (NCVPRIPG). IEEE, pp 14

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern
9(1):62-66

Pal U, Sharma N, Wakabayashi T, Kimura F (2007) Handwritten numeral recognition of six popular
indian scripts. In: Ninth international conference on document analysis and recognition (ICDAR 2007),
vol 2. IEEE, pp 749-753

Pramanik R, Bag S (2018) Shape decomposition-based handwritten compound character recognition for
bangla ocr. J Vis Commun Image Represent 50:123-134

Rehman A, Naz S, Razzak MI (2019) Writer identification using machine learning approaches: a
comprehensive review. Multimed Tools Appl 78(8):10889-10931

Roy K, Pal T, Pal U, Kimura F (2005) Oriya handwritten numeral recognition system. In: Eighth
international conference on document analysis and recognition ICDAR’05). IEEE, pp 770-774

Roy S, Das N, Kundu M, Nasipuri M (2017) Handwritten isolated bangla compound character
recognition: a new benchmark using a novel deep learning approach. Pattern Recogn Lett 90:15-21
Sarangi PK, Ahmed P, Ravulakollu KK (2014) Naive bayes classifier with lu factorization for
recognition of handwritten odia numerals. Indian Jo Sci Technol 7(1):35-38

Sebti A, Hassanpour H (2017) Body orientation estimation with the ensemble of logistic regression
classifiers. Multimed Tools Appl 76(22):23589-23605

Sethy A, Patra PK (2016) Off-line odia handwritten numeral recognition using neural network: a com-
parative analysis. In: 2016 international conference on computing, communication and automation
(ICCCA). IEEE, pp 1099-1103

Sethy A, Patra PK (2019) Off-line odia handwritten character recognition: an axis constellation model
based research. Int J Innov Technol Exploring Eng (IJITEE) 8(9S2):788-793

Sethy A, Patra PK, Nayak DR (2018) Off-line handwritten odia character recognition using dwt and pca.
In: Progress in advanced computing and intelligent engineering. Springer, pp 187-195

Sethy A, Patra PK, Nayak S, Jena PM (2017) Symmetric axis based off-line odia handwritten charac-
ter and numeral recognition. In: 2017 3rd international conference on computational intelligence and
networks (CINE). IEEE, pp 83-87

Sethy A, Patra PK, Nayak SR (2020) Offline handwritten numeral recognition using convolution neural
network. Mach Vis Inspection Syst Image Process Concepts Methodologies Appl 1:197-212

Singh PK, Sarkar R, Das N, Basu S, Kundu M, Nasipuri M (2018) Benchmark databases of handwritten
bangla-roman and devanagari-roman mixed-script document images. Multimed Tools Appl 77(7):8441—
8473

Tripathy N, Panda M, Pal U (2003) System for oriya handwritten numeral recognition. In: Document
recognition and retrieval XI, vol 5296, pp 174—181. International Society for Optics and Photonics

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Offline Odia handwritten character recognition with a focus on compound characters
	Abstract
	Introduction and motivation
	Characteristics and complexities of Odia scripts

	Related works done
	Database used for simulation
	ISI Kolkata digit
	NITROHCSV1.0
	IIT Bhubaneswar
	IIITBOdiaV2

	Database preprocessing
	Median blur filter
	Bounding box with dilation
	Thresholding and binarization
	Thinning
	Resize

	Feature extractions
	AMS Feature
	CTD Feature
	FoG feature

	Proposed character recognition model
	Modified recurrent neural network (RNN)
	Modified convolutional neural network (CNN)

	Experimental analysis
	Comparison

	Conclusion and future work
	References

