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Abstract
For recent decades, the increasing volume of multimedia data has been witnessed, and
the data is required technical methods to assure the security for storage and transmis-
sion. Chaos-based encryption is one of promising approaches to keep large volume of data
confidential. Most of chaos-based algorithms were proposed for single image encryption.
Recently, several schemes were proposed for multiple image encryption, and all of them
are designed to work in a single round of encryption. In addition, the dynamics of chaotic
maps therein are stationary, so it does not provide advantage of uncertainty of chaotic orbits
for the security. Moreover, a chaotic map being realized in digital platforms can produce a
large number of bits, and so far those bits have not been used efficiently to encrypt larger
volume of data. In this paper, a novel design of chaos-based multiple image encryption is
proposed using the permutation-diffusion architecture for the first time. Any chaotic map
can be employed for the proposed design. Chaotic dynamics are non-stationary by means of
perturbation on state variables and control parameters in bit level. Amounts of perturbation
are constructed from the coordinate of pixels and the content of plain images respectively in
the pixel permutation and diffusion processes, so the proposed design provides the property
of authentication. Values of chaotic state variables are represented in fixed-point number,
and bits generated by chaotic maps are thoroughly exploited to encrypt multiple images
at the same time. The specific example will demonstrate the effectiveness of the proposed
design by means of the statistical and security analyses. The simulation results will show its
resistance from the attacking method of differential analysis, and those are also compared
with those of other existing algorithms.
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1 Introduction

Since chaos theory were introduced by E. Lorenz, it has been intensively researched in vari-
ous fields of science and engineering [23] such as physics, chemistry, biology, etc. Besides,
chaos has been interested in different areas of engineering applications e.g. information
security [33], communications [65, 73], electronic circuits [30]. In the application of infor-
mation security, chaotic systems are employed in two main aspects, i.e. cryptography and
stenography. Similar to general approaches of stegnography, chaos-based steganographic is
with the use of chaotic sequences in hiding the secret data under a cover image in either the
spatial domain or the transform domain. For the spatial domain, the secret data is embed-
ded in least significant bits of pixels of the host image with the support of chaotic sequence
(e.g. [27, 45, 60]). In another way with the transform domain, chaotic sequences play a
role to locate transformed coefficients (e.g. [57, 71, 72]) or together with the secret data
in modulating transformed coefficients [55, 69]. Many algorithms were reported in order
to improve the quality, performance and security of image steganography. With the use
of chaotic sequences, two prominent types of techniques are to improve the security, i.e.
the combinations of chaotic sequences and other techniques, such as transformation, DNA
computing, and neural networks, etc. Chaotic values are used for encrypting the secret data
before introducing into the cover image in transform domains e.g. [55, 69] or for identi-
fying the coordinate of pixels where the secret data elements being embedded, e.g. [27].
Chaotic sequences assist to determine variable bit embedding in sub-bands of transform
domains [15] or it can be combined with DNA computing in construction of steganographic
algorithms, e.g. [17, 28, 43]. According to recent report by Alan A. Abdulla et al. [2],
there are four main requirements for a steganography which must be met, i.e. (i) stego-
image quality, (ii) hiding capacity, (iii) secret detectability, and (iv) robustness. However,
most of chaotic steganography schemes have not been thoroughly examined for all require-
ments. The embedding efficiency as defined in [2, 20] is very important for a steganography
scheme. It is conversely correlated with first three requirements and related to the perfor-
mance of a steganography scheme. There are very few dedicated methods focusing on the
embedding efficiency. Recently, the embedding efficiency has been improved by exploiting
similarities between the secret and cover images as presented in [2], by using non-adaptive
LSB technique [31], or by increasing amount of transmitted data [7].

Since the first work about chaotic encryption published by Robert Matthews [42], a
huge number of chaos-based algorithms have been proposed for the image encryption with
two main approaches, i.e. based on a pre-defined architecture and non-structural ones. For
the first approach, a chaos-based cryptographic algorithm is designed by following one
of certain well-known architectures such as Feistel and substitution-permutation network
(SPN) [29, 41]. Ciphers employing the architecture of SPN can be implemented in the form
of permutation and diffusion or substitution-diffusion for the chaos-based image encryp-
tion, and the security level is easily controlled by number of encryption rounds. In 1998,
Fridrich proposed the permutation-diffusion architecture using chaotic maps [19] for the
first time. Thereafter, the chaos-based image encryption has been developed extensively [10,
80, 82]. For chaotic ciphers using the architecture of Feistel, chaotic functions are involved
in generating secret keys [11, 38], and in designing round functions [44, 51, 58, 62, 74, 89,
90]. For the second approach, a chaos-based cryptographic algorithm is not based on any
specific architecture, but it is designed so that the security level is assured by means of com-
plexity such as DNA encoding [22, 47, 76, 96, 100], transform domain [14, 26, 83], neural
networks [52, 77, 87], quantum information processing [81, 101, 102] and their combina-
tions [46, 94]. In any way, a cipher must have the confusion and diffusion properties as
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suggestion given by C.E. Shannon [59]. Confusion is obtained by making a relation between
the ciphertext and the secret key, and it can be obtained by substitution or permutation.
Diffusion is achieved by spreading the dependence of the ciphertext itself and the secret key.

For a chaos-based image encryption employing the SPN, there are two main ways to use
a chaotic system in order to achieve the confusion property: chaotic substitution box and
chaotic permutation. For the chaotic substitution, a psuedo-random sequence generated by
a chaotic system is used for constructing a substitution table (called a chaotic S-box) and
values of plain pixels are substituted by values given in a chaotic S-box, e.g. [22, 104]. Based
on the sensitivity on initial values of chaotic system, dynamical S-boxes were proposed and
reported e.g. [53, 66, 103]. For the chaotic permutation, pixels are permuted one another
under a rule generated by a chaotic system, i.e. value of a pixel or bits of a pixel at certain
location is exchanged with that of another pixel at different location. In order to get the
diffusion property, chaotic values can be used for manipulating values of pixels in different
ways. In most of chaotic image encryption, chaotic values, values of plain and ciphered
pixels are directly involved in equations to calculate new values of pixels, and it is performed
sequentially to make the diffusion.

Recent algorithms of chaos-based image encryption were proposed with two significant
innovations, i.e. the image-content sensitivity encryption and fast/efficient encryption algo-
rithms. Firstly, for the image-content sensitivity encryption, the image content is sensitively
involved in the encryption process. Hash values are generated by the image data and used
as initial values for chaotic maps such as in [9, 88, 91], where the encryption key does not
change during the encryption process. In [10, 21], values of parameters of chaotic maps are
updated and dependent on values of pixels of intermediate ciphertext during encryption of
a single image. As a result, the final ciphertext is much more sensitive to the image content.
However, values of only parameters of chaotic maps are changed, while the state variables
are not perturbed. The final ciphertext must be most sensitive to the plaintext if both state
variables and control parameters of chaotic maps are perturbed after every iteration.

Secondly, fast and efficient encryption algorithms can be achieved by several ways, i.e.
combination of permutation and diffusion [12, 80], multiple image encryption [22, 34, 40,
48, 49, 56, 63, 67, 78, 79, 95, 97–101], selective or partial encryption [6, 13, 32, 64, 86],
algorithms using high dimensional chaos [70], or encryption dealing with blocks of data [1,
18]. Among them, the chaos-based multiple image encryption (MIE) has been most inter-
ested recently because that performs encrypting multiple images at the same time. In fact,
the MIE is also very useful for the application of multi-party authentication that requires
all ciphertexts for the successful decryption. However, there are some flaws in the existing
schemes as presented in Section 2.1. The designs of existing algorithms of MIE are not in
the form of SPN for taking advantage of controlling the security level by means of adjusting
number of encryption rounds.

Nowadays, most of images are digital, therefore algorithms of chaos-based image
encryption must be implemented in digital platforms. In any digital platform, values of state
variables and control parameters of chaotic map must be represented by a limited number
of bits. Consequently, chaotic dynamics is deteriorated by the rounding or truncating errors,
and there exists a finite cycle [36] in the sequence of values generated by digital chaos. A
chaotic map with poor dynamics must not be used for the chaotic encryption [3, 4]. So,
this leads to recent proposals in enriching dynamics of digital chaos for the chaotic encryp-
tion in order to lengthen the cycle in the sequence of values generated by digital chaos.
As described in [85], there are several approaches to reduce the deterioration of dynamics
of chaotic maps, i.e. expansion of the precision, combination of multiple maps, and per-
turbation to a chaotic map. The feedback control method is considered as the perturbation

26537Multimedia Tools and Applications (2022) 81:26535–26589



by an internal source. Under the perspective of hardware implementation, the approaches
by expanding the precision in representing fractional numbers and by combining multiple
chaotic maps require more hardware and computational resource than the approach of per-
turbation does. Under the view of perturbation, a perturbed chaotic map (PCM) with the
source of perturbation coming from another chaotic map must be seen as combination of
chaotic maps [8, 35, 39].

Theoretically, the perturbation on state variables makes chaotic dynamics stochastic,
while that on control parameters pushes the dynamics of chaotic map into a non-stationary
behavior. The most complicated dynamics is obtained with the perturbation on both state
variables and control parameters. A chaotic map is perturbed in the form of feedback, that is,
values of state variables are utilized to perturb on the control parameters, at the same time,
values of control parameters are used to perturb back on the state variables as shown in [36,
68]. The perturbation can be a feedback in a way that a delay state variable is introduced to
control parameters [37]. As presented in [16, 61, 68], state variables of a chaotic map are
perturbed by external sources that makes the cycle length of the chaotic sequence extended.

In recent works by T.M. Hoang et al. [24, 25], the models of perturbed chaos at the bit
level have been proposed for the chaos-based image encryption. The perturbation can be
made to state variables, control parameters, or to both. Perturbation amounts come from
either values of state variables (i.e. feedback) or external sources. In any scheme of pertur-
bation, the value ranges of state variables and control parameters must be kept in the valid
ones to ensure the exhibition of chaotic behavior. Chaotic values are represented in the for-
mat of fixed-point number. Statistical distributions of bits “0” and “1” are uniform for low
significant bits. Such low significant bits are extracted and used for the encryption. Logi-
cally, perturbation makes chaotic dynamics more complicated, and if the PCM is used, the
security of chaos-based encryption must be enhanced.

In fact, chaotic values of state variables consist of large number of bits. From chaotic
bit sequences, high quality bit sequences in terms of randomness can be generated and
those are tested and confirmed random enough to be used for the cryptographic application,
e.g. [54, 75]. However, most of chaos-based encryption use chaotic values in computation
with pixel values. Values of pixels are normally represented by either 8-bit integers for
grayscale images or three times of 8-bit integers for RGB color images. For existing algo-
rithms of chaos-based image encryption, many bits in values of state variables are not used
for increase the efficiency of chaos-based encryption.

This paper presents a new design of chaos-based multiple image encryption with the
architecture of permutation-diffusion network. Therein, a chaotic map is perturbed by the
location information of pixels in the permutation, and another chaotic map is perturbed by
values of plain and intermediate ciphered pixels in the diffusion. All perturbations to chaotic
maps are made at the bit level after every iteration. Two main contributions are as follows:

– For the first time, the chaos-based multiple image encryption is designed with the
structure of permutation-diffusion network, in which PCMs are employed. With the
proposed design, any chaotic map can be used in the design of encryption. Bits of values
of state variables produced by PCMs are thoroughly exploited for the MIE.

– In both the permutation and diffusion processes are designed such that dynamics of
chaotic maps is perturbed after every iteration. The source for amounts of perturba-
tion is switched between the image content and values of state variables. Therefore, the
encryption possesses the property of authentication. With the perturbation, the dynam-
ics of chaotic maps is more complicated, and the dynamical degradation is reduced. As
a result, the merit of perturbed chaos enhances the security logically.
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The example is demonstrated and the simulation result shows the effectiveness of the
proposed design of MIE.

The rest of the paper is organized as follows. In Section 2, the related works about the
existing MIEs and the PCM are reviewed. Then, the detail about the proposed design of
MIE using PCMs is presented in Section 3. Section 4 shows the exemplar simulation and
detailed results of analysis. Finally, Section 5 gives the discussions and conclusions of the
work.

2 Related works

In this section, the existing chaos-based multiple image encryption (MIE) is reviewed
and then the drawbacks of existing algorithms of MIE are pointed out. Recent models of
perturbed chaotic maps are also presented.

2.1 Multiple image encryption

As presented in [97], the big image is obtained by merging multiple smaller images,
k = K1 ∗ K2 images and each image sized M × N . The permutation is carried out at
blocks of pixels with the size M1 × M1 (e.g. 8 × 8 pixels) with the rule generated by
sorting a chaotic sequence. The scrambled blocks of pixels are merged to become a big
image and then the big image is segmented into images with the original size. It is a
lack of diffusion effect in the encryption. A similar method of multiple image encryp-
tion is presented in [98] by the same group of authors, in which the diffusion process is
inserted into the encryption by XORing between scrambled images and the same chaotic
matrix.

Inspired by the magic cube game, a 3D permutation model using the rule generated
by chaotic sequence was proposed and presented in [99] to encrypt k images with the
same size. There, the permutation is carried out with the internal-row, internal-column
modes for rows and columns of pixels in individual images, and then with the exter-
nal mode for all plain images. The XOR operation is used as the diffusion between
permuted images and the same chaotic image. A similar idea to this work is pre-
sented in [56]. A limited number of original images are arranged into the form of cube
image with the size 128 × 128 × 128 for the pixel permutation in three directions. The
XOR operation is performed between the scrambled cubic image and the cubic chaotic
image. The resultant cubic image after XORed is rearranged to produce the encrypted
images.

As presented in [100], the DNA computing is employed in the design. Multiple images
with the same size are merged to become a big image for scrambling. Then, the big scram-
bled image is segmented into multiple smaller images for diffusion. The DNA operation
is used for encoding. The DNA XOR operation between matrices does not make domino
effect in the diffusion and all the scrambled images are masked with the same chaotic
image.

In [95], the multiple image encryption deals with significant bit planes in order to reduce
the volume of plaintext to be encrypted. The XOR operation between the scrambled images
and the same chaotic image is performed to produce the encrypted images. In that work,
four most significant bits of plain images are extracted, and bits in each plane are permuted.
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Then, the scrambled bit planes are combined with four least significant bits by another
permutation. Lastly, the scrambled images are XORed with the chaotic image to produce
the ciphertexts.

In [67], the multiple image encryption is presented, in which plain images are decom-
posed into bit planes and from that bit blocks are formed. Bit blocks are swapped and then
XORed with the chaotic matrix. Four plain images with the same size are demonstrated.
The Henon map is employed for determining pattern of bit blocks and the Logistic map
is used for generating the chaotic matrix. The disadvantage is that the random size of bit
blocks makes the duration for the encryption uncertain.

The novel quantum multi-image encryption was proposed by Nanrun Zhou et al. as
presented in [101]. There, the quantum representation model for multiple images and the
quantum multi-image encryption scheme were devised by combining the quantum 3D
Arnold transform and quantum XOR operations with the scaled Zhongtang chaotic system.
There are two stages of diffusion and permutation for single round of encryption. However,
a large number of computational operation are required with a series of summation and
multiplication for quantum transformations.

In [49], K Abhimanyu Kumar Patro et al. proposed the multiple image encryption with
various sizes, and that operates the permutation and diffusion on m blocks of pixels with the
size of 2×2 and rem size remaining pixels. Then, the shuffled blocks and pixels are XORed
sequentially with chaotic values, and finally the combination is performed to produce the
ciphertexts.

In the similar idea in [49] by the same group of authors, the multiple RGB-image encryp-
tion is presented in [48], but the difference is that the plain images are not divided into
blocks. k plain RGB images with the same size are considered, and three color channels
of each image are separately encrypted. The k components of the same color are concate-
nated horizontally for pixel permutation. Next, combinations of pairs of color images are
concatenated vertically for pixel-row permutation and then horizontally for pixel-column
permutation. Finally, the diffusion is performed by sequential XORing operation hopping
over shuffled components of different colors. Multiple grayscale images are also encrypted
in a similar way as presented in [50].

In [40], multiple RGB images with the equal size are merged to become a big image, and
then pixels in the images of three color channels are scrambled using three sorted chaotic
sequences generated by the 3D Lorenz chaotic system. The XOR operation is performed
between the scrambled image and the chaotic image to produce the encrypted images.

In [22] the method of multiple image encryption using the DNA encoding is presented.
Multiple RGB images are merged and the images of color channels are encrypted separately
and parallel. Several S-boxes are generated using chaotic sequences. The permutation rules
are generated by chaotic sequences, then the XOR operation is performed to produce the
images of color channels before merging into encrypted RGB images.

In 2019, M. Zarebnia et. al. reported in [93] about the algorithm of fast multiple-image
encryption for grayscale images. Each image are divided into four equal non-overlapped
sub-images. Sub-images are permuted within an image and then a big image is obtained
by combining all images together. Such the sub-blocks are relocated, and then pixels of
big image are permuted. Bits in pixels of the permuted big image are XORed with bits of
chaotic values, and after that the column values of resultant big image is cyclic shifted. The
XOR operation and the cyclic shift are carried out two times to create the diffusion in the
encrypted images. However, it is noted that chaotic values for the XOR operation and the

26540 Multimedia Tools and Applications (2022) 81:26535–26589



rules of sub-images, and pixels permutation are produced by chaotic maps. It is clear that
the diffusion is obtained by the cyclic shift of pixels combining with the XOR operation.

In conclusion, there are three drawbacks in the existing methods of multiple image
encryption. First, all of the above-mentioned methods of MIE are designed to work for a
single round of encryption. The security level in terms of statistical analysis of ciphertext
can not be changeable by changing number of encryption rounds. Second, most of above
researches for the MIE use the XOR operation for diffusion. In fact, the XOR operation
in [40, 56, 67, 95, 98–100] does not bring the mean of diffusion or an avalanche effect in
pixel values does not exist. It is simply considered as a masking process between the scram-
bled images and chaotic images. However, the truly mean of diffusion property with the
domino fashion only exists in [48–50]. Third, in order to resist from the known-plaintext
and chosen-plaintext attacks, some of encryption algorithms use hash values from plain
images (e.g. SHA-3 in [92], SHA-256 in [48–50, 95, 98–100], or SHA-512 [56]), and those
values are used as initial values for chaotic systems or for other processes but those are
kept constant throughout encryption. This means that the dynamics of chaotic maps in those
algorithms is stationary with fixed values of initial conditions and parameters. The security
of chaos-based encryption must be significantly enhanced if the dynamics of chaotic maps
is non-stationary.

These drawbacks in the existing algorithms of MIE are overcome in our proposed design
which is based on the architecture of permutation-diffusion network using perturbed chaotic
maps.

2.2 Perturbed chaotic map

2.2.1 Bit arrangement

In this research, there are two functions operating at the bit level, i.e. bit manipulation and bit
arrangement. These operations are to construct models of perturbed chaotic map as reported
in [25].

The bit arrangement consists of two activities, i.e., bit extraction and bit permutation.
Let us consider matrices of bits A and B with the sizes IA × JA and IB × JB , or A =
[aij ]1≤i≤IA, 1≤j≤JA

and B = [bij ]1≤i≤IB , 1≤j≤JB
, with aij , bij ∈ {0, 1}. The matrix B

is constructed from bits of the matrix A by a rule defined by Y (denoted by ◦) as a bit
arrangement operator, that is

A = Y ◦ B. (1)

where Y is the rule defining the way that bits of matrix A being extracted for the
matrix B. Specifically, the rule of bit extraction is an array of 2-tuples as Y =
[(y(row)

ij , y
(col)
ij )]1≤i≤IA, 1≤j≤JA

, and the value ranges are y
(row)
ij ∈ [1, IB ] and y

(col)
ij ∈

[1, JB ]. A bit of A is taken from that of B as aij = b
y

(row)
ij ,y

(col)
ij

. In case that a bit of A is

deliberately fixed at a status ‘0’ or ‘1’, then the 2-tuple (y
(row)
ij , y

(col)
ij ) is expressed by B0

or B1 for bit ‘0’ or ‘1’, respectively.
In this work, the matrix B is obtained from an array of bit sequences, in which each

bit sequence represents for values of a chaotic state variable. The matrix A is used for
constructing an array of IA bit sequences for perturbation. Each bit sequence is collection of
bits in the same row of A, i.e. Ai = ||JA

j=1aij , where || denotes for the concatenation of bits.
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For example, a positive value is represented in the format of fixed-point number with
eighteen bits as a whole and sixteen bits from the least significant position for the fractional
part (denoted as 〈18, 16〉). Thus, the value of X = (0.135, 2.634) in binary is

Xbin =
(

00.0010001010001111
10.1010001001001110

)
. (2)

Matrix B is obtained from Xbin is

B =
[

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1
1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0

]
. (3)

If the rule of extraction is

Y =
[

(1, 14), (2, 8), (1, 6), (2, 3)

(2, 4), (2, 9), (1, 7), (1, 13)

]
, (4)

and the bit arrangement as given in (1), then matrix A is

A =
[

0 0 0 1
0 1 0 0

]
. (5)

Arrays of bit sequences are achieved by concatenating bits in rows of A is A1 = 0001
and A2 = 0100. Figure 1 illustrates the bit arrangement. In fact, any bit of B can be used
multiple times to construct A.

Let us consider the number of distinct rules Y constructed from a certain size of B.
Assumed that the number of bits in B chosen to construct Y is LB = I ′

B ∗J ′
B and the number

of 2-tuples (y
(row)
ij , y

(col)
ij ) in Y is LY = IA ∗JA. It is noted that if some of bits of B are used

to construct A, so I ′
B ≤ IB and J ′

B ≤ JB . Also, if any bit from B is not repetitively chosen
for A, then the number of distinct variants of Y is considered as LY -permutations of LB or

NY = LB !
(LB − LY )! . (6)

In case that a bit from B is chosen multiple times for constructing A, NY is much larger and
dependent on how many times a bit of B is allowed being chosen. However, because the
number of bits in A is IA ∗ JA, so the number of distinct bit patterns of A is 2IA∗JA . The bit
arrangement will be used for bit extraction for perturbation in the PCM.

2.2.2 Bit manipulation

The function of bit manipulation is to lengthen or shorten a bit sequence dependent on the
relative length of the input and the output. Note that |X| returns the number of bits or the

Fig. 1 Example of bit arrangement
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length of bit sequence X. Let us consider a bit manipulation of two bit sequences (E1 and
E2 with the lengths |E1| and |E2|, respectively) and produce bit sequence E with the length
|E|. There are two cases of relative lengths, i.e. |E| < |E1| + |E2| and |E| ≥ |E1| + |E2|.
In this work, two simplest ways to deal with two cases of lengths to get E.

BM-1: For |E| ≥ |E1| + |E2|, the bit sequence E is simply constructed by E = E1||E2.
BM-2: For the second case |E| < |E1| + |E2|
Step 1: Find an integer n such that (n − 1) ∗ |E| < |E1| + |E2| < n ∗ |E|.

Step 2: Separate the sequence E into n portions, i.e. Ti i = {1...n}, such that first n − 1
portions are with the same length |E| and the last portion Tn is with the length |Tn| < |E|.
Step 3: Pad the sequence of bit zeros ‘0...0’ with the length of |E| − |Tn| into the sequence
Tn to become Tn||0...0.
Step 4: XOR n sequences of bits Ti to have the output sequence E.

The step 4 of BM-2 is shown in Fig. 2. � and � are chosen to denote for the operator of
BM-1 and BM-2 in the later equations. In fact, more complicated bitwise operations can be
applied to generate the output bit sequence.

2.2.3 Description of perturbed chaotic map

Let us consider a chaotic map realized in a digital platform and its state variables and param-
eters are perturbed at the bit level as illustrated in Fig. 3. The function of PCM F(.) is
expressed by ⎧⎨

⎩
Xn+1 = F(X̂n, �̂n),

X̂n = Xn ⊕ �Xn,

�̂n = �n ⊕ ��n .
(7)

where the vectors are of state variables Xn and control parameters �n; and the pertur-
bation vectors at a certain iteration are �Xn and ��n . Assumed that the chaotic map

has D dimensions and G control parameters, so Xn = [x(D)
n x

(D−1)
n ... x

(2)
n x

(1)
n ]T ,

�n = [γ (G)
n γ

(G−1)
n ... γ

(2)
n γ

(1)
n ]T , �Xn = [δ

x
(D)
n

δ
x

(D−1)
n

... δ
x

(2)
n

δ
x

(1)
n

]T and ��n =

Fig. 2 The bit manipulation
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Fig. 3 The perturbed chaotic map (PCM)

[δ
γ

(G)
n

δ
γ

(G−1)
n

... δ
γ

(2)
n

δ
γ

(1)
n

]T . Amounts of perturbation to the chaotic map can be either from
external source E or internal source Xn decided by the switches as

��n =
{

Y1 ◦ E for n = 0,

Y2 ◦ Xn for 1 ≤ n ≤ R,
(8)

and,

�Xn =
{

Y3 ◦ E for n = 0,

Y4 ◦ Xn for 1 ≤ n ≤ R.
(9)

The bit arrangements Yi are described in Section 2.2.1. Assumed that values of E are
represented by k1 bits, and values of state variables and control parameters are represented
by D × m1 and G × m2 bits, respectively. In addition, values of state variables and control
parameters are represented in the format of either integer or fixed-point number dependent
on the definition of original chaotic map. In the case of fixed-point number, m1 bits of state
variables are composed by the most significant bit for the sign, m(int)

1 bits for integer portion,

and m
(f rac)

1 bits for fractional portion, i.e. m1 = m
(int)
1 + m

(f rac)

1 + 1. That is similar for

the control parameters as m2 = m
(int)
2 + m

(f rac)

2 + 1. In practical, m1 and m2 are adopted
for the desired precision to avoid the degradation of chaotic dynamics and for the desired
space of secret key.

To ensure that chaotic dynamics is retained without disrupting the model of chaotic map,
values of perturbed state variables as well as perturbed control parameters, X̂n and �̂n in
(7), must be constrained in its valid ranges as defined by the original chaotic dynamics.
Therefore, a number of selective bits at specific positions in Xn and �n may be kept its
states fixed, while states of other bits can be flippable by the perturbation. In fact, the state
variables and control parameters can be interpreted by arithmetic operations as

X̂n = Xn ± �Xn,

�̂n = �n ± ��n,
(10)

where �Xn and ��n are seen as amounts of perturbations and those are considered
as vectors of instant noise interfering the original orbit of chaotic map, i.e. �Xn =
[θ

x
(D)
n

θ
x

(D−1)
n

...θ
x

(2)
n

θ
x

(1)
n

]T and ��n = [θ
γ

(G)
n

θ
γ

(G−1)
n

... θ
γ

(2)
n

θ
γ

(1)
n

]T . The sign “+” or “–”
in (10) is dependent on the relative difference between values of Xn and �n before and after
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perturbed. Values of θ
x

(i)
n

and θ
γ

(i)
n

are dependent on the status of the most significant bit

being changed before and after perturbation in x
(i)
n and γ

(i)
n , respectively.

According to the statistical analysis [25], the distribution of bits at low-weight positions
in chaotic values is uniform. Therefore, low-weight bits in values of Xn should be chosen
to perturb high-weight bits in the feedback, or those should be used for making up amounts
of perturbation �Xn and ��n .

3 Proposed design of multiple image encryption based on perturbed
chaos

Figure 4 illustrates the proposed design of MIE for k images. Figure 4a presents the encryp-
tion with two stages, i.e. chaotic pixel permutation (CPP) and chaotic diffusion (CD).
Respectively, P , P ′ and C are sets of k plain images, permuted images and ciphered images.
The CPP and CD are performed Np and Nd rounds, respectively. Both the CPP and CD are
iterated Ne rounds. The secret key consists of Sp and Sd . The decryption as displayed in
Fig. 4b consists of the inverse chaotic pixel permutation (iCPP) and inverse chaotic diffu-
sion (iCD). The order of the permutation and the diffusion is reversed in compared with that
in the encryption. Here, the PCM presented in Fig. 3 is employed for the permutation and
diffusion.

Fig. 4 The abstract design of multiple image cryptosystem
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3.1 Chaotic pixel permutation for MIE

It is known that the pixel permutation is to exchange values between a pair of pixels within
the spatial range of image. Here, the coordinate of destination pixels is produced by the
chaotic map in the CPP.

Figure 5 displays the structure of CPP for the MIE, in which the PCM produces the
destination coordinates for pixels. There, �

(p)

0 and X
(p)

0 are vectors of initial values. It is

assumed that all k plain images are with the same size of M ×N ; M = 2k
(x)
1 and N = 2k

(y)
1 .

In the case of multiple image permutation, there are two possible schemes as shown
in Fig. 6, i.e. intra-image permutation and inter-image permutation. A pixel of an image
can be shuffled with another pixel either of the same image as the scheme of intra-image
permutation in Fig. 6a or of another image as the scheme of inter-image permutation in
Fig. 6b. Therefore, the single coordinate of k original pixels is represented by bit sequence
XYorig as the input of the CPP for perturbation. For simplicity, the bit sequence XYorig

is obtained by concatenating bit sequences what represents for row number X and column
number Y , i.e. XYorig = X||Y as shown in Fig. 7a.

The bit sequence XYorig with the length k
(p)

1 = k
(x)
1 + k

(y)

1 at the input is converted to

the bit sequence Ep with the length k
(p)

1 by the block Bit Manipulation using the function
BMp . The bit sequence Ep is used for perturbing the PCM. After Rp iterations, chaotic
values of state variables of PCM, XRp , are produced and utilized for figuring out destina-
tion coordinates kXYdes for k original pixels corresponding to the same original coordinate
XYorig of k images. kXYdes is achieved by

kXYdes = Yp ◦ XRp . (11)

where Yp is the function of Bit arrangement that defined similarly to Yi in the PCM.
For the scheme of inter-image permutation, the array of bit sequences kXYdes repre-

senting for the destination coordinates of pixels is given in Fig. 7b. There, the destination
coordinate for an original pixel at XYorig of image Pi is the i-th row of kXYdes . Each row
of kXYdes is a bit sequence that comprises of the destination coordinate represented by
k
(x)
1 and k

(y)

1 bits and the index of destination image encoded by Log2k bits. Therefore, the

array of bit sequences for the destination coordinate kXYdes has k ∗ (k
(x)
1 + k

(y)

1 + Log2k)

bits. However, for the scheme of intra-image permutation, the bit portion for the destination
image is not necessary.

It is noted that the CPP is carried out for pixels in the images from left to right and row
by row. The structure of inverse chaotic permutation (iCPP) in the decryption is exactly

Fig. 5 The proposed structure of chaotic pixel permutation (CPP) for the multiple image encryption
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Fig. 6 Two options of pixel permutation

Fig. 7 Array of bit sequences encodes the original and destination pixels in the permutation
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the same as that of the CPP, except that the scanning order of pixels is in reverse way
in compared with that in the CPP. The block Bit Manipulation with the function BMp

manipulates its input XYorig to become Ep for the perturbation to the PCM. In case that

Log2(M ∗N) ≥ k
(p)

1 , BMp shortens Log2(M ∗N) bits into k
(p)

1 bits. However, if Log2(M ∗
N) < k

(p)

1 , the bit lengthening operation can be carried out by Y1 and Y2 in the PCM. In
any case, the bitwise operations can be optionally used by BMp .

Let us consider the contribution of the permutation to the secret key of cryptosystem.
Due that the PCM is perturbed by the coordinate information of pixels, only flippable bits in
values of state variables and control parameters are counted for the secret key. The number
of bits that contributes to the secret key is Sp = |�(p)

n |f lip +|X(p)
n |f lip; where |.|f lip returns

the number of flippable bits.

3.2 Chaotic diffusion for MIE

Figure 8 illustrates the proposed structure of chaotic diffusion (CD) and inverse chaotic
diffusion (iCD) using the PCM for the MIE. In both of the CD and iCD, initial values for
the PCM is X

(d)
0 and �

(d)
0 , and initial values of plain and ciphered pixels are kP0 and kC0.

However, 2 ∗ k ∗ k2 bits of E1 and E2 are transformed to k
(d)
1 by the function BMd . The

value of each pixels is represented by k2 bits. In the CD and iCD, the scanning order for
pixels is from left to right, row by row, and top to bottom.

bits

bits

bits

Bit 
Manipula�on

bits

bits

bits

Bit 
arrangement

bits

bits

bits

PCM

Fig. 8 The proposed structure of (CD) and iCD using the PCM
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The CD in Fig. 8a shows that the array of bit sequences kPxy is with the size k ∗ k2
bits representing for values of k pixels from k images. With the perturbation Ed , the PCM
iterates Rd times to produce XRd

. The array of bit sequences kCxy that represents for values
of ciphered pixels of k images is extracted from XRd

. The equations describe the operation
of the CD as follows

E1 =
{

kC0 for (x, y) = (1, 1);
kCxy for (x, y) �= (1, 1),

(12)

E2 =
{

kP0 for (x, y) = (1, 1);
kPxy for (x, y) �= (1, 1),

(13)

and
kCxy = kPxy ⊕ Od,

= kPxy ⊕ (Yd ◦ XRd
).

(14)

For the iCD in Fig. 8b, the process to recover plain pixels is almost identical to that of
the CD, except that the block Z−1 is to delay the data to match with the operation in the
CD. The equations for the operation of the iCD are

E1 =
{

kC0 for (x, y) = (1, 1);
kC−1

xy for (x, y) �= (1, 1),
(15)

E2 =
{

kP0 for (x, y) = (1, 1);
kP −1

xy for (x, y) �= (1, 1),
(16)

and
kPxy = kCxy ⊕ Od,

= kCxy ⊕ (Yd ◦ XRd
).

(17)

It is noted that values of plain pixels are utilized not only for calculating the cipher pixels
in the CD and for recovering the plain pixels in the iCD, but also perturbing to the PCM.
This makes the diffusion double dependent on the plain pixels.

The block Bit Manipulation in the CD is identical to that in the iCD, and its function
BMd is generally to manipulate the inputs E1 and E2 with the length 2 ∗ k ∗ k2 bits to
become k

(d)
1 -bit Ed for the PCM.

The number of bits that the diffusion contributes to the secret key as Sd = |�(d)
n |f lip +

|X(d)
n |f lip + |kP0| + |kC0|. Therefore, the total number of bits of the secret key in the pro-

posed design is S = Sp + Sd . Next, the specific example will demonstrate the performance
of the proposed design.

4 Exemplar simulation

Let us consider the example using the perturbed Standard map for both the permutation and
diffusion with the equations as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x
(1)
n+1 = (x̂

(1)
n + x̂

(2)
n ) mod 2π,

x
(2)
n+1 = (x̂

(2)
n + γ̂

(1)
n sin(x̂

(1)
n + x̂

(2)
n )) mod 2π,

x̂
(1)
n = x

(1)
n ⊕ �x

(1)
n ,

x̂
(2)
n = x

(2)
n ⊕ �x

(2)
n ,

γ̂
(1)
n = γ

(1)
n ⊕ �γ

(1)
n ;

(18)

where the vectors of state variables Xn = [x(2)
n x

(1)
n ]T and control parameter �n = [γ (1)

n ]
are respectively perturbed by �X̂n = [�x̂

(2)
n �x̂

(1)
n ]T and ��̂n = [�γ̂

(1)
n ]. The PCM is
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with D=2 and G=1. The value range of x
(1)
n and x

(2)
n is [0,2π ] as in the original Standard

map. Let us choose the value range for the control parameter of the chaotic map as 1.0 ≤
γ

(1)
n <8.0. The values of state variables and control parameters are represented in the format

of fixed-point number with 32 bits for fractional portions. The chosen bit patterns and the
corresponding value ranges are given in Table 1. The bits with the state ‘x’ are flippable by
the perturbation while other ones are fixed with the state ‘1’.

The simulation is carried out with a set of eight plain images, i.e. Lena, Cameraman,
House, Boat, Clock, Black and White. All of the images are with the same size of 256×256
and with the 8-bit grayscale, thus kPn and kCn are the array of 8-bit numbers. According
to the size of chosen images, the values of parameters in the CPP and CD are adopted as
k
(x)
1 = 8, k

(y)

1 = 8 (or k
(p)

1 = 16), k = 8 and k2 = 8. In the following text, the notations
with the superscripts (p) and (d) are to indicate the state variables and parameters of the
PCMs in the permutation and diffusion, respectively.

As shown in Table 1 and Fig. 5, the PCM in the CPP has 102 bits at maximum what can
be perturbed by 16 bits, i.e. X and Y , representing for row and column numbers as illustrated
in Fig. 7a. Therefore, BM-1 as described in Section 2.2.2 is chosen for BMp to produce

Ep = X||Y . Respectively, Y
(p)

1 , Y
(p)

2 , Y
(p)

3 and Y
(p)

4 are equivalent Y1, Y2, Y3 and Y4 in the
PCM of the CPP, and those are chosen as shown in Table 2. It is noted that B0 is denoted
for the bit at that position in state variables and control parameters not being perturbed. The
CPP gives Sp = 102 bits to the secret key.

Similarly, the number of flippable bits in the PCM of the CD is 102 bits, and the number
of bits in initial values of kP0 and kC0 is 128. Therefore, the number of bits that the diffusion
contributes to the secret key is Sd = 230 bits. The total number of bits of the secret key is
S = Sp + Sd = 102 + 230 = 332 bits.

Table 3 shows the rules that bits are extracted for kXYdes , kCxy and kPxy as explained
in Section 3. Yp shows that eight sequences of bits kXYdes are extracted from XRp as
illustrated in Fig. 7b. Each sequence consists of 16 bits representing for the destination
coordinate Xdes and Ydes , and 3 bits indicating the index of destination image Pdes for the
scheme of inter-image permutation as shown in Fig. 6b. Similarly, Yd displays that eight
sequences of bits Od are obtained from XRd

, and each sequence is of 8 bits representing for
a chaotic value used in (14) to produce a diffused pixel.

The initial values of the cipher are chosen for the simulation as shown in Table 4. Due
that eight images are encrypted at the same time or k = 8, the initial values of eight plain
pixels and eight cipher ones for the diffusion are also given.

4.1 Simulation results

The set of test images consists of six natural images (Lena, Cameraman, House, Peppers,
Boat and Clock) and two special ones (Black and White) as shown in the first column of
Fig. 9. The simulation to verify the effectiveness of the proposed design is carried out in
two phases.

In the first phase, the simulation is performed separately for the permutation and diffu-
sion with respect to various number of iterations (R) applied to the PCMs for every pixel
and with respect to various number of permutation and diffusion rounds for images (Np and
Nd ). From the intensity analysis of permuted and diffused images, suitable values of R, Np

and Nd are adopted for the simulation of encryption.
In the second phase, the encryption with the structure of the permutation and diffusion as

shown in Fig. 4a is simulated with various number of encryption rounds (Ne) and the result
will be presented.
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Table 4 Chosen initial values of state variables and control parameters

State variables The permutation The diffusion

x
(1)
0 0.1234567890 0.9876543210

x
(2)
0 0.0987654321 0.0123456789

γ
(1)
0 1.9753186420 2.8642097531

kP0 [64 154 37 73 17 56 72 68]

kC0 [123 11 27 88 33 211 97 63]

4.1.1 Simulation result of permutation

A pixel of an image is shuffled with another pixel of either itself or another image in
the scheme of inter-image permutation as illustrated in Fig. 6b. The permutation does not
change the value of pixels regardless to number of iterations Rp as well as that of permu-
tation rounds Np . Therefore, the intensity of each permuted image approaches to the mean
intensity of test images (called a saturation value) after a number of permutation rounds.
Here, the saturation value of intensity is 137.175 for the chosen set of test images.

Firstly, in order to choose a suitable value for iteration number Rp applied to the PCM of
the CPP for each pixel, the permutation is simulated with varying number of Rp while fixed
Np = 1. Figure 9 displays the permuted images for Rp = 1..4 in each row for each image.
Intuitively, the permuted images with Rp = 1 in the second column retain the intensities
of original ones. Even the intensities among permuted images are unbalanced, the objects
in the original images can not be recognized. For Rp = 2..4, the permuted images look
random and their intensities get balanced. Table 5 and Fig. 10 show the change of intensity
in the permuted images with respect to number of iterations Rp = 1..9. It is clear that,
starting at Rp = 2, the intensities of permuted images approach to and fluctuate around
the saturation value, 137.175. Number of iterations applied to the PCM should be chosen
as Rp ≥ 3 to guarantee the randomness and balance in the intensities of permuted images.
Therefore, Rp = 4 is adopted for all the later simulations.

Then, the permutation is simulated with various number of permutation rounds while
iteration number is fixed at Rp = 4. Figure 11 illustrates the permuted images with varying
number of permutation rounds Np = 2...5 in rows. Visually, the structural elements in
the original images are replaced by the noise-like pattern. Table 6 and Fig. 12 show the
intensity of permuted images with respect to Np. It is clear that the intensities of permuted
images are diminished to 137.175, the mean intensity of original images. The deviation of
the intensities of permuted images is reduced significantly for Np ≥ 3, thus Np = 4 is
chosen for the later simulations of encryption.

It is noted that the most significant change in the intensities of the original images is
observed with two special images (Black and White).

4.1.2 Simulation result of diffusion

Similar to the simulation of permutation, the diffusion is simulated with various number
of iterations (Rd ) applied to the PCM of the CD and with that of diffusion rounds Nd .
Figure 13 illustrates the diffused images with various number of iterations Rd = 1...4 and
fixed number of diffusion round Nd = 1. It is clear that the noise-like pattern is observed
in the diffused images even at Rd = 1. The intensities of diffused images for Rd = 1..9 are
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Fig. 9 Permuted images with various number of iterations Rp = 1...4 with a single permutation round at
Np = 1
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Fig. 10 Intensity of original and permuted images with various number of iterations, Rp = 1...9 and fixed
Np = 1

shown in Table 7 and Fig. 14. The intensities of diffused images fluctuate around 127.5 with
small deviation for Rd ≥ 1. The value of 127.5 is the ideal one for 8-bit grayscale images,
or the central value of the range [0,255]. The number of iterations should be larger than 2,
and Rd = 4 is chosen for all the later diffusion simulations.

Furthermore, the diffusion is simulated with various number of diffusion rounds Nd and
fixed number of iterations at Rd = 4. Figure 15 shows the diffused images with various
number of diffusion rounds Nd = 1...4. It looks all diffused images random and independent
from number of diffusion rounds, Nd . More specifically, Table 8 and Fig. 16 show that the
intensities of diffused images rapidly approach and fluctuate around ideal value (127.5). The
fluctuation is low and obtained even at Nd = 1, thus the encryption should adopt Nd ≥ 2.
Nd = 4 is chosen for the simulations of encryption later.

4.1.3 Simulation result of encryption

According to the simulation results for the permutation and diffusion given above, the
encryption is simulated with the parameters chosen at fixed Rp = Rd = 4 for the PCMs
in the CPP and CD, and Np = Nd = 4 for the permutation and diffusion, while number of
encryption rounds is varying as Ne = 1..5.

Figure 17 displays the simulation result of encryption for Ne = 1..4, where original
images and corresponding ciphered ones are presented in rows. Intuitively, the encrypted
images have good randomness and balanced intensities.

4.2 Statistical analyses

Let us quantify the randomness of the encrypted images by means of histogram, information
entropy and correlation of two adjacent pixels. The encryption performs on multiple images
at the same time, so the mean values of the measures are considered for the effectiveness of
the encryption.
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4.2.1 Histogram analysis

The histogram of an image provides the distribution of pixel values. Let us consider the
statistical analysis of histogram by means of χ2 for a 8-bit grayscale image as

χ2 =
255∑
i=0

(Oi − Ei)
2

Ei

, (19)

where the expected occurrence frequency Ei for the image with the size of M × N is M∗N
256 ;

observed occurrence frequency Oi is the number of pixels with the value i. The significance
of histogram is considered if it is conformed a uniform distribution by means of a hypothesis
test. Here, the hypothesis test is accepted if χ2 ≤ χ2

α(255); α is the significance level. It is
chosen as α = 0.05, so χ2

0.05(255) = 293.247. This means that the histogram is considered
as a uniform distribution if χ2 ≤ 293.247.

Table 9 shows the χ2-test results for the encrypted images with various number of
encryption rounds. Remarkably, italicized numbers indicate that χ2 tests are not passed. For
Ne ≥ 3, all encrypted images pass the χ2 test with the values less than 293.247. In other
words, the distribution of pixel values of encrypted images is uniform for Ne ≥ 3.

4.2.2 Information entropy

Information entropy of an image indicates the probability of values of pixels vi , p(vi), for
a 8-bit grayscale image and it is computed by

IE = ∑255
i=0 p(vi)log2

1
p(vi )

(bits). (20)

It is expected that an encrypted image has IE as close to the ideal value (8 bits for a 8-bit
grayscale image) as possible. Table 10 displays the information entropy of plaintext images
and that of corresponding encrypted ones with various number of encryption rounds. The
information entropy of individual encrypted images and its averages are greater than 7.99
for any number of encryption rounds. Figure 18 presents the entropy approaching to 7.9972

Table 6 Intensity of original and permuted images

Intensity

Original Permuted image with

Np = 1 Np = 2 Np = 3 Np = 4 Np = 5

Lena 98.677 129.608 132.090 134.249 135.131 135.677

Cameraman 166.942 145.197 142.859 141.069 139.850 139.249

House 137.985 137.231 136.873 137.061 137.127 136.843

Peppers 123.104 134.768 135.681 136.168 136.672 136.733

Boat 129.712 134.346 135.028 135.874 136.021 136.310

Clock 185.980 144.011 141.249 139.631 138.460 138.609

Black 0.000 121.265 127.585 131.416 133.490 134.649

White 255.000 150.975 146.036 141.932 140.649 139.331

On average 137.175
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Fig. 11 Permuted images with various number of permutation rounds, Np = 2...5 and fixed Rp = 4
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Fig. 12 Intensity of original and permuted images with various number of permutation rounds Np = 1...5
and fixed Rp = 4

as the increase of Ne. This means that pixel values of the encrypted images are almost
random for Ne ≥ 2.

4.2.3 Correlation of two adjacent pixels

It is well-known that the equation for the Pearson correlation coefficient of two sequences
X and Y is

ρX,Y =
∑Npair

i=1 (xi − X)(yi − Y)√(∑Npair

i=1 (xi − X)2
) (∑Npair

i=1 (yi − Y)2
) , (21)

where xi and yi are values of elements in the sequences X and Y , respectively; It is assumed
that X and Y are the same length, Npair ; X and Y are the means of X and Y , respectively.
The lower correlation coefficient is, the higher independence of a sequence from the other is.
In the case of 2D image, the correlation coefficients of adjacent pixel pairs are measured to
quantify the visual structure of images. Specifically, the pairs of adjacent pixels are chosen
in three directions, i.e. horizontal (H ), vertical (V ) and diagonal (D). Here, xi and yi are
values of adjacent pixels in a specified direction, and the number of pairs Npair is adopted
by all possible pairs over the image.

Table 11 shows the correlation coefficients of the original images and corresponding
encrypted ones. The correlation coefficients of encrypted images are very small in compared
with those of original images. As seen in Table 12, the average correlation coefficients
over all images in each direction are also small. It means that the micro visual structures in
the original images are almost completely removed and replaced by the random pattern to
become the encrypted images, even after a single round of encryption.
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Fig. 13 Diffused images with various number of iterations, Rd = 1...4, with a single diffusion round at
Nd = 1
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Fig. 14 Intensity of original and diffused images with various number of iterations Rd = 1...9 and fixed
Nd = 1

4.3 Security analyses

4.3.1 Space of secret key

It is obvious that the secret key of the cipher is constructed by the number of flippable bits
in the CPP and CD, and those of initial values of kP0 and kC0. Table 1 displays the number
of bits from each parameter contributing to the secret key, i.e. 102 bits by the permutation
and 230 bits by the diffusion. Therefore, the total number of bits of the secret key is 332, or
the space of secret key is 2332. That is large enough to resist the type of brute force attack
on the nowadays computer.

4.3.2 Sensitivity of secret key

The sensitivity of secret key is considered by the difference in two versions of encrypted
images which are produced by the cryptosystem using two value sets of secret key, i.e. the
original one and modified one. To evaluate the sensitivity of secret key on a parameter,
the value of a single interested parameter of the secret key is slightly modified to have a
modified value set of secret key. The original and modified value sets of secret key are used
for encrypting the same set of test images. The difference in two sets of encrypted images
given by the tolerance in the secret key is estimated by the ciphertext difference rate (Cdr),
the number of pixels change rate (NPCR), and the unified averaged changed intensity
(UACI ).

The ciphertext difference rate (Cdr) quantifies the sensitivity of secret key. It is
calculated by

Cdr = Diff (C,C1) + Diff (C,C2)

2M ∗ N
100%, (22)

where M and N are the number of rows and columns of pixels; Respectively, C, C1 and C2
are three ciphertext images what are produced by the encryption with the use of three value
sets of secret key K , K + �K and K − �K . The difference between corresponding pairs
of images is measured by the difference function Diff (A,B), which returns the number of
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pixels in the image A with values different from those in B. It is expressed by

Diff (A,B) =
M∑

x=1

N∑
y=1

Difp(A(x, y), B(x, y)), (23)

where Difp(.) is considered by a pair of pixels at the position (x, y) as

Difp(A(x, y), B(x, y)) =
{

1, for A(x, y) �= B(x, y),

0, for A(x, y) = B(x, y).
(24)

In this work, the original value set of secret key is as given in Table 4. The amounts of
tolerance �K to evaluate the sensitivity for interested parameters of secret key are adopted
as small as possible. Here, those are chosen as equal to the precision of value representation
for parameters presented in Table 13. It is noted that the names of interested parameters are
showed in the subscript and those belonging to the permutation and diffusion are indicated
in the superscript. To evaluate the sensitivity of a specific parameter, the simulation is car-
ried out with a modified value of only single interested parameter while the value of other
parameters is unchanged as it is in the original value set of secret key. Therefore, there are
eight modified value sets of the secret key corresponding to eight parameters as given in
Table 14. It is noted that the tolerances kP0 and kC0 are only applied to the last elements,
i.e. kP0(8) and kC0(8). The plain images are encrypted using the original value and eight
modified value sets of secret key for estimation of the sensitivity.

Table 15 displays Cdr for the sensitivity on parameters of secret key. For Ne ≥ 2, a
slight difference in the value of secret key makes, on average, the value of more than 99.5%
pixels changed in encrypted images. This means that the encryption is very high sensitivity
to every parameter of the secret key.

Besides, the sensitivity of secret key can be analysed by using the NPCR and UACI

between a pair of encrypted images C and C1 using the original value of secret key K and
its modified version K + �K . The equations for NPCR and UACI are as

NPCR = Diff (C,C1)

M ∗ N
100%, (25)

Table 8 Intensity of original and diffused images

Intensity

Original Diffused image with

Nd = 1 Nd = 2 Nd = 3 Nd = 4 Nd = 5

Lena 98.677 127.902 127.358 127.002 127.461 126.887

Cameraman 166.942 127.167 127.357 127.561 127.232 127.748

House 137.985 127.486 127.448 127.447 127.533 127.412

Peppers 123.104 127.436 128.002 126.794 127.467 127.543

Boat 129.712 127.486 127.618 127.673 127.690 127.860

Clock 185.980 128.015 127.428 127.043 127.383 127.708

Black 0 127.904 127.333 127.278 127.581 127.237

White 255 127.706 127.918 127.749 127.472 127.287

On average 142.675 127.638 127.588 127.319 127.477 127.460
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Fig. 15 Diffused images with various number of diffusion rounds, Nd = 2...5 and fixed Rd = 4
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Fig. 16 Intensity of original and diffused images with various number of diffusion rounds Nd = 1...5 and
fixed Rd = 4

and

UACI = 1

M ∗ N

[∑
x,y

|C(x, y) − C1(x, y)|
255

]
100%, (26)

where C(x, y) and C1(x, y) are pixels at location (x, y) of encrypted images C and C1,
respectively; the difference function Diff (.) is as shown in (23).

However, the question is that how high the sensitivity of secret key is enough that a
cryptosystem can resist from differential attacks. The statistical hypothesis for the NPCR

and UACI tests is employed to answer this question. The critical values of tests for
NPCR and UACI were estimated at a significance level α as presented in [84]. For 8-bit
grayscale images with the size of 256 × 256, the critical value at α = 0.05 for NPCR

is NPCR∗
0.05 = 99.569% and that for UACI is in the range of UACI ∗−

0.05 = 33.282%
and UACI ∗+

0.05 = 33.644%. The NPCR and UACI scores what are calculated from the

Table 9 Histogram analysis

χ2 Test (χ2
0.05(255) = 293.247)

Image Plaintext Encryption round (Ne)

1 2 3 4 5

Lena 30577.7 10579.453 517.094 292.859 245.680 272.906

Cameraman 161271.9 262.094 293.289 259.734 251.633 283.320

House 299789.2 11844.953 494.414 238.570 250.570 200.359

Peppers 36777.5 281.234 245.539 229.086 237.078 258.672

Boat 100674.9 263.625 178.438 283.094 256.906 270.914

Clock 282061.6 263.039 274.719 255.297 239.781 241.984

Black 16711680 2584.398 313.969 258.453 258.352 249.633

White 16711680 229.148 222.086 282.133 276.711 255.813

On average 4291814.1 3288.493 317.443 262.403 252.089 254.200
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Fig. 17 Encrypted images with a number of encryption rounds Ne and fixed Np = Nd = 4

26567Multimedia Tools and Applications (2022) 81:26535–26589



Table 10 Information entropy (IE)

Information Entropy

Image Plaintext Encryption round (Ne)

1 2 3 4 5

Lena 7.5327 7.8957 7.9944 7.9968 7.9973 7.9970

Cameraman 6.9046 7.9971 7.9968 7.9971 7.9972 7.9969

House 6.4971 7.8834 7.9946 7.9974 7.9972 7.9978

Peppers 7.5330 7.9969 7.9973 7.9975 7.9974 7.9971

Boat 7.5691 7.9971 7.9980 7.9969 7.9972 7.9970

Clock 6.7057 7.9971 7.9970 7.9972 7.9973 7.9973

Black 0 7.9714 7.9965 7.9972 7.9972 7.9973

White 0 7.9975 7.9975 7.9969 7.9970 7.9972

On average 5.2960 7.9670 7.9965 7.9971 7.9972 7.9972

simulation are sufficient to resist from differential attacks if NPCR ≥ NPCR∗
0.05 and

UACI ∈ [UACI ∗−
0.05, UACI ∗+

0.05]
The simulation results for NPCR and UACI are shown in Tables 16 and 17, respec-

tively. For Ne ≥ 4 all the individual values of NPCR and UACI pass the tests of statistical
hypothesis. In other words, values of NPCR are larger than the critical one NPCR∗

0.05
and those of UACI are within the range of [UACI ∗−

0.05, UACI ∗+
0.05], respectively. In other

words, the tests for the sensitivity of secret key are passed for every parameters of secret
key. Moreover, all the average values of NPCR and UACI pass the tests for Ne ≥ 3. In
consequence, a small change in the secret key makes large change in the ciphertexts, and it
can resist from differential attacks based on the analysis of secret key for Ne ≥ 4.

Fig. 18 Entropy of encrypted images with various number of encryption rounds Ne = 1...5 and fixed Rp =
Rd = 4, Np = Nd = 4
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Table 11 Correlation coefficients of original images and their encrypted ones

Encryp. round Correlation coefficient ρX,Y

(Ne) H V D H V D

Lena Cameraman

Plaintext 0.93998 0.96934 0.91793 0.91957 0.95494 0.89619

1 0.00004 -0.00219 -0.00391 -0.00173 -0.00228 -0.00104

2 0.00262 0.00471 0.00182 -0.00598 -0.00016 -0.00240

3 0.00246 -0.00367 0.00412 0.00306 -0.00050 0.00235

4 -0.00351 0.00115 0.00239 -0.00204 0.00571 0.00229

5 0.00307 0.00675 0.00038 0.00990 -0.00034 0.00240

House Peppers

Plaintext 0.93998 0.96934 0.91793 0.91957 0.95494 0.89619

1 -0.00334 -0.00034 0.00264 0.00186 -0.00091 -0.00098

2 0.00635 0.00112 0.00460 -0.00475 0.00555 -0.00308

3 0.00400 -0.00309 0.00025 0.00366 -0.00679 -0.00353

4 -0.00054 -0.00305 0.00305 0.00291 0.00553 0.00159

5 0.00530 -0.00016 0.00303 0.00040 0.00140 -0.00526

Boat Clock

Plaintext 0.93998 0.96934 0.91793 0.91957 0.95494 0.89619

1 0.00253 -0.00213 -0.00066 -0.00366 -0.00111 -0.00463

2 -0.00126 0.01044 -0.00280 -0.00492 -0.00747 0.00017

3 -0.00157 -0.00005 0.00022 -0.00117 0.00391 -0.00463

4 -0.00240 -0.00072 -0.00464 -0.00806 0.00496 0.00297

5 -0.00133 -0.00022 -0.00168 0.00299 0.00096 0.00504

Black White

Plaintext 0.93998 0.96934 0.91793 0.91957 0.95494 0.89619

1 0.00273 -0.00116 -0.00494 0.00445 -0.00117 -0.00444

2 -0.00369 0.00326 -0.00385 0.00127 0.00247 0.00540

3 0.00402 0.00336 -0.00001 0.00330 -0.00198 -0.00566

4 -0.00398 -0.00565 -0.00343 -0.00510 0.00315 -0.00797

5 -0.00132 0.00047 -0.00494 0.00276 0.00537 0.00272

4.3.3 Analysis of differential attacks

Differential attack is based on analysis a pair of ciphered images produced by encryption of
a pair of plain images for the purpose to learn about the secret key used in the encryption. It
is noted that a pair of plain images are used in which one of them is slightly different from
the other. In fact, the analysis of differential attack is to measure the plaintext sensitivity,
and it is characterized by the NPCR and UACI of a pair of ciphered images.

For the multiple grayscale-image encryption, the set of eight original images are
encrypted using the secret key as given in Table 4 to achieve the set of eight encrypted
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Table 12 Average correlation coefficients ρ̄X,Y of original and encrypted images

Encryption round (Ne) On average

H V D

Plaintext NaN NaN NaN

1 0.00036 -0.00141 -0.00225

2 -0.00130 0.00249 -0.00002

3 0.00222 -0.00110 -0.00086

4 -0.00284 0.00138 -0.00047

5 0.00272 0.00178 0.00021

images, each encrypted image is denoted by C. Then, one of original images is modified
slightly and that together with the other original images are encrypted to produce another
set of eight ciphered images, each encrypted image is named C1. The analysis of NPCR

and UACI as given in Eqs. (25)-(26) is carried on every pair of ciphered images C and
C1. To analyse the sensitivity of each plaintext, eight sets of modified images are encrypted
individually using the same value of secret key. NPCR and UACI are calculated for every
pair of ciphertexts and their averages are obtained for each of sets of modified images.
Similar to the analysis of the sensitivity of secret key, NPCR and UACI are compared
with the critical value and the critical range to evaluate the randomness tests for image
encryption [84].

Normally, a modified image is obtained by choosing a random pixel from the plain image
and slight change applied to adopted pixel value. In this example, the last pixel of image at
the position (255,255) is chosen deliberately to minimize the affect of pixel selection to the
result encrypted images due that the diffusion is carried out in the forward direction. The
value of chosen pixel is added 1 to if it is less than 255, or subtracting 1 if it is equal to 255.
With this modification, the sensitivity of plaintext is lowest in the first round of encryption,
and it is increased with larger number of encryption rounds.

Tables 18 and 19 show the result of NPCR and UACI measured for the sensitivity of
plaintexts with various number of encryption rounds. The individual values of NPCR and

Table 13 The value of �K for Cdr , NPCR and UACI

Stage �K Value of tolerance

Permutation �K
(p)

x
(1)
0

2−32

�K
(p)

x
(2)
0

2−32

�K
(p)

γ
(1)
0

2−32

Diffusion �K
(d)

x
(1)
0

2−32

�K
(d)

x
(2)
0

2−32

�K
(d)

γ
(1)
0

2−32

�KkC0 1

�KkP0 1
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Table 15 Sensitivity of the secret key by means of Cdr with various encryption rounds Ne

Ne Image Cdr (%) on

The permutation The diffusion

x
(2)
0 x

(1)
0 δ

(1)
0 x

(2)
0 x

(1)
0 δ

(1)
0 kC0 kP0

1 Lena 99.571 99.535 98.412 98.460 99.578 98.469 98.462 98.425
Cameraman 99.626 99.588 99.593 99.612 99.635 99.604 99.619 99.603
House 99.557 99.524 98.425 98.508 99.513 98.405 98.469 98.454
Peppers 99.634 99.652 99.594 99.590 99.619 99.585 99.623 99.599
Boat 99.611 99.635 99.594 99.626 99.632 99.616 99.621 99.614
Clock 99.621 99.586 99.590 99.608 99.622 99.596 99.628 99.635
Black 99.615 99.604 99.218 99.220 99.622 99.181 99.231 99.228
White 99.629 99.621 99.603 99.596 99.609 99.619 99.613 99.608
On average 99.608 99.593 99.254 99.278 99.604 99.259 99.283 99.271

2 Lena 99.604 99.631 99.421 99.399 99.619 99.391 99.420 99.406
Cameraman 99.575 99.620 99.593 99.582 99.581 99.597 99.586 99.630
House 99.626 99.598 99.476 99.427 99.592 99.467 99.480 99.467
Peppers 99.628 99.625 99.631 99.622 99.594 99.619 99.587 99.605
Boat 99.596 99.610 99.591 99.606 99.641 99.609 99.589 99.593
Clock 99.612 99.601 99.625 99.614 99.613 99.592 99.625 99.614
Black 99.632 99.590 99.525 99.519 99.590 99.544 99.560 99.553
White 99.607 99.652 99.601 99.622 99.588 99.609 99.594 99.609
On average 99.610 99.616 99.558 99.549 99.602 99.553 99.555 99.559

3 Lena 99.646 99.616 99.580 99.568 99.593 99.610 99.605 99.567
Cameraman 99.584 99.615 99.590 99.609 99.583 99.581 99.629 99.606
House 99.626 99.622 99.623 99.566 99.643 99.591 99.577 99.568
Peppers 99.637 99.622 99.615 99.616 99.624 99.597 99.609 99.617
Boat 99.620 99.618 99.596 99.591 99.639 99.590 99.615 99.596
Clock 99.602 99.622 99.625 99.631 99.580 99.616 99.614 99.628
Black 99.615 99.596 99.621 99.645 99.628 99.604 99.579 99.601
White 99.597 99.610 99.606 99.585 99.592 99.599 99.612 99.629
On average 99.616 99.615 99.607 99.601 99.610 99.599 99.605 99.601

4 Lena 99.637 99.619 99.602 99.626 99.592 99.594 99.605 99.619
Cameraman 99.591 99.616 99.613 99.593 99.638 99.583 99.625 99.593
House 99.609 99.615 99.619 99.601 99.591 99.625 99.644 99.588
Peppers 99.612 99.590 99.622 99.620 99.615 99.596 99.599 99.592
Boat 99.601 99.612 99.596 99.635 99.591 99.635 99.624 99.582
Clock 99.618 99.603 99.603 99.612 99.614 99.620 99.580 99.588
Black 99.617 99.596 99.573 99.592 99.611 99.571 99.599 99.624
White 99.596 99.604 99.606 99.570 99.625 99.631 99.607 99.618
On average 99.610 99.607 99.604 99.606 99.610 99.607 99.610 99.601

5 Lena 99.603 99.602 99.587 99.619 99.597 99.600 99.589 99.596
Cameraman 99.615 99.614 99.625 99.629 99.603 99.602 99.590 99.606
House 99.579 99.614 99.606 99.584 99.627 99.594 99.612 99.596
Peppers 99.599 99.601 99.600 99.617 99.605 99.629 99.640 99.596
Boat 99.608 99.596 99.610 99.644 99.594 99.608 99.635 99.609
Clock 99.614 99.616 99.662 99.614 99.635 99.629 99.593 99.609
Black 99.571 99.603 99.592 99.603 99.602 99.585 99.594 99.578
White 99.606 99.625 99.593 99.607 99.616 99.618 99.617 99.618
On average 99.599 99.609 99.610 99.615 99.610 99.608 99.609 99.601
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UACI pass the tests of statistical hypothesis for Ne ≥ 4. The average values of NPCR

pass the tests for Ne ≥ 4 while those of UACI meet the critical range for Ne ≥ 2. It means
that a small change in the plaintext results large change in the ciphertexts, or the encryption
is highly sensitive to the plaintext for few number of encryption rounds. It is clear that a
number of individual values of NPCR and UACI are increased significantly from the
first to the second round of encryption. That is due to the last pixel of plain images being
modified. In fact, with the scanning order of row by row and left to right, the diffusion will
makes the value of more pixels changed if the modified pixel is permuted with the one at
lower row number. However, for the second round of encryption and beyond (Ne ≥ 2), the
sensitivities on the plaintexts are equal for every plaintext.

4.4 Comparison with existingmethods

In this section, the simulation result of the example employing the proposed design is com-
pared with very recent methods regardless to their structures, plaintext images and the size
of images. The simulation results in our example are obtained at Ne ≥ 4 and Np = Ne = 4
for the comparison. In addition, the simulation results of existing methods are re-interpreted
by calculating the average for the context of multiple images, except for those in qual-
itatively presentation. Table 20 presents the measures for the statistical and the security
analyses in which V/D and N/A stand for visual demonstration and not available. The visual
demonstration means that the result is considered as a qualitative measure rather than quan-
titative one. H , V , and D are denoted for the horizontal, vertical, and diagonal directions
of pixels in the calculation of correlation of an image. Here, the range is used for either dif-
ferent encryption round in our example or different encryption algorithms in the compared
works.

The histogram of encrypted images is measured and its distribution is analyzed by χ2-
test for the homogeneous. All the tests of encrypted images in this example are passed for
Ne ≥ 3 as given in Table 9. It indicates that the gray level of all the encrypted images are
with the uniform distribution. Whereas, all the referral works only qualitatively demonstrate
by plotting. The information entropy of the encrypted images in this example is comparable
with that given in most of referral works. Specifically, it is better than that obtained in [97]
and [101]. The correlation of adjacent pixels is computed and presented in most of reports,
except for [97], and the result of this example is as good as those in the existing methods in
all directions.

In fact, as one of advantage of chaos-based image encryption is that the space of secret
key is large, and it can be easily adjusted for the desire of applications. It shows that the
space of secret key in the example is as large as that in the referral works, and it is large
enough to resist the brute force attack running on the nowadays computer. The sensitivity of
secret key is usually considered by means of Cdr , NPCR, and UACI for two encrypted
images what are produced by using two slightly different values of secret key. NCPR and
UACI pass the test of statistical hypothesis with the significance level α = 0.05 for Ne ≥ 4.
Also, the range of Cdr in this example are overlapped with that in other referral works. It
means that the encryption in this example has as good sensitivity of secret key as that in
other works. Similarly, the result of sensitivity of plaintext in this example shows that the
encryption is also comparable with those in other referral works.

In summary, it is clear that the exemplar encryption using the proposed design is as good
as those in the existing works.
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5 Discussions and conclusions

The proposed model has some advantages in compared with the existing methods. First,
the architecture of the model is based on the permutation-diffusion network. Therefore, the
statistical properties of ciphered images and the level of security can be adjusted by either
number of permutation, diffusion, and encryption rounds (Np , Nd , and Ne), or number of
iterations applying to chaotic maps in the permutation and diffusion (Rp and Rd ). For a spe-
cific configuration using the proposed model, the procedure for choosing parameters is as
follows. For the permutation, the number of iteration Rp for the PCM in the permutation is
chosen at what the statistical properties of output images are saturated while Np = 1. Then,
at a chosen value of Rp , the simulation for various number of permutation rounds Np is per-
formed and the value of Np is chosen at what the statistical properties of permuted images
are with small fluctuation. The same process is carried out to choose the value of Rd and Nd

for the diffusion. With chosen value of Rp, Rd , Np , and Nd , the encryption is simulated to
choose number of encryption rounds, Ne, such that the criteria to choose Ne is based on the
statistical properties of final ciphered images. The above example has demonstrated these
processes, and the simulation results show that, with the perturbed Standard maps chosen
for both the permutation and diffusion, the value of encryption are chosen as Rp = Rd = 4,
Np = Nd = 4, and Ne ≥ 4.

Second, the PCMs in the proposed design are perturbed on both state variables and
control parameters, so its dynamics is non-stationary. It is dependent on the coordinate of
pixels in the permutation and on the value of pixels in the diffusion as shown in Figs. 5
and 8, respectively. The proposed design possesses the property of authentication. There-
fore, the attack is successful only if the secret key of S bits is fully known. In the example,
the numbers of chaotic orbits of PCMs in the permutation and diffusion are 2102 and 2230,
respectively. The dynamics of PCMs are hopping among such huge numbers of orbits during
encryption.

Third, with the fixed-point representation for values of state variables and control param-
eters, the space of secret key can be larger by increasing the number of bits in the fractional
portion. However, the loss is that computation time is longer. Moreover, the value ranges of
control parameters as well as state variables are dependent on the patterns of bits chosen to
represent fractional numbers, and those can be segmented like control parameters given in
Table 1 of the example. In that case, values of parameters are hopping on such the ranges.

Forth, it is clear from Fig. 8 that the proposed design of MIE is with the strong depen-
dence on the content of images by means of the perturbation on the control parameters
and state variables during the diffusion. Therefore, it makes the chosen-plaintext and
known-plaintext attacks hardly successful in applying to the proposed design.

In fact, there are some extents to the proposed design. First, the proposed design can
encrypt k images with k unequal to the power of two. Also, the images can be with different
sizes and even with the size of images being unequal to the power of two. In the case
of k �= 2i (i is an integer), the number of bits in the third portion in Fig. 7b must be
k
(img)

1 = ceil(log2k) (the function ceil(.) rounds a number up to the nearest integer). The
index of the destination image for the pixel permutation is calculated by using the function
mod(k) applying to the value for the index represented by the corresponding sequence of
bits in kXYdes . For the case of M �= 2j or N �= 2t (j and t are integers), the coordinate of
destination pixels can be identified in the same way.

Second, the proposed design can be used for the RGB images in one of two ways. In one
way, each color channel of a RGB image can be dealt as a grayscale image in the encryption.
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In another way, each pixel of a RGB image is considered as normal, in which its number of
bits are equal to sum of bits from all channels.

Third, there are two options of pixel permutation, i.e. intra-image and inter-image ones.
Similarity, for the diffusion, it is carried out on the pixels only within individual images
in the example. However, the diffusion in the proposed design can be developed for inter-
image one by additional consideration of the destination image for a pixel as the same way
in the pixel permutation. In the proposed model, if the encryption using the intra-image
permutation together with intra-image diffusion, the encryption performs for each image
independently and all images are encrypted in parallel.

In conclusion, the proposed design allows to encrypt more than one image at the same
time by thoroughly exploiting a large number of bits generated by chaotic maps. Intu-
itively, chaotic maps are used more efficiently in compared with single image encryption.
In addition, the security of the proposed design is enhanced by using the perturbed chaotic
map and high sensitivity on the content of images. Also, it can be adjusted by the use of
permutation-diffusion architecture.
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