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Abstract
This article introduces a review on implementations of various methods to perform cloud
detection and its related applications such as detection of cloud shadow, types of cloud
and cloud removal from multi-spectral satellite images. The cloud detection concept started
with the basic sensitive parameters of clouds. These parameters have been reported based
on albedo, spectral and textural parameters in the decade of 1980. With this parameters, a
new era of Neural Network (NN) approach has been stimulated from 1992 for cloud clas-
sification. A summary of their empirical results are provided for various published works
based on NN approach from 1970 to 2020. Moreover, the present article embodies exper-
imental analysis of cloud detection using NN based classifier on multi-spectral satellite
images with distinguish mathematical model of learning rules and number of hidden lay-
ers. The analysis is verified on L8, AVHRR, NOAA and GOES satellite images. The result
demonstrates improved performance of NN approach with two layer perceptron architec-
ture with Levenberg-Marquardt learning rule for cloud detection in terms of ellapse time.
However, potential of self-organizing feature map (SOFM), an unsupervised NN approach,
is observed in terms of accuracy over supervised learning architecture. The cloud detection
algorithm is further discussed with convolutional neural network (CNN) as a deep learning
algorithm to extract the local and global features from limited number of spectral bands to
raise the performance accuracy of the approach.
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1 Introduction

The open data policy under Copernicus programme from NASA has acquired extensive
attention in the field of remote sensing in 2008. The Copernicus programme began to pro-
vide the free Landsat satellite data. This is to combine the satellite data with the analytic
tools in order to increase the economic growth. However; inspite of having larger modified
softwares to pre-process the satellite data, there are problems where cloud covered regions
often trouble the analysis [73]. Therefore, cloud detection is found to be an important ini-
tial approach to get the information regarding climatic studies and different properties of
earth and atmosphere. This is due to the fact that change in cloud, affects the energy-
budget between earth and atmosphere and hence affects the water exchange that describes
the climate [12, 27, 108]. Moreover, cloud and its shadow obscures the specific scene
more brighter and darker, respectively which affects various tasks such as crop monitoring,
classification of marine habitats, land use region monitoring, environmental monitoring,
geographic mapping and target recognition. Therefore, it is a vital pre-processing step to
correctly and efficiently classify clouds, before satellite imagery used for further analysis.
For this reason that cloud’ statistics were utilized for atmospheric research since the first
remote sensing imagery came into picture [4, 180].

Most of the methods based on cloud’ statistics are observed to be focused around spectral
signature using pixel-to-pixel processing. Distinct spectral features of clouds are observed
in satellite imagery depend on its brighter and colder characteristics. This leads to mis-
classification of cloud with pixels having similar spectral signatures, for example, sand in
deserts and snow/ice. Moreover, clouds having diverse shape also hampers the accuracy of
its detection [31]. Therefore, various studies have been employed using physical parameters
of cloud like cloud density, shape of clouds, optical properties and brightness tempera-
ture. However, higher spectral heterogeneity of clouds and its larger temperature variability
with underlying surfaces cause difficult to extract cloud contaminated pixels from satellite
images. The main reason of this difficulty is the utilization of threshold based approach
which is sensitive in various atmospheric conditions for the detection and removal of dis-
tinguish characteristics of cloud. These characteristics of cloud are divided into low-level,
mid-level and high-level based on its height from ground level, represented in Fig. 1.

Cirrocumulus, cirrus and cirrostratus are high-level clouds. Cirrocumulus cloud can be
seen in winter indicates fair but cold weather. Its appearance is small rounded puffs, long
rows and usually find in white or gray in color. Similarly, cirrus cloud indicates fair weather
and can be seen as long, thin, wispy white stream. Whereas, cirrostratus cloud can be found
in 12 to 24 hours before rainfall or snowstorm. The another characteristics of cloud comes
under mid-level which includes altocumulus and altostratus. It generally extend over the
entire sky like a thin sheet of cloud. Altocumulus cloud produces in group as grayish-white
with 1 km thick and one portion darker as compare to other. It indicates warm or humid
morning and thunderstorm in late noon time. While altostratus indicates a storm with rain
or might be snow on its way. They can be seen as gray or blue-gray cloud and generally
expanded in the entire sky. Cumulonimbus cloud with vertical growth of 10 km high indi-
cates the thunderstorm which is associated with heavy rain, lightening, snow and sometimes
tornado. In the presence of cumulonimbus cloud, if rainfall hits to the earth’s surface then
it converts into nimbostratus cloud. Stratus, cumulus, and stratocumulus are the other cat-
egories that come under low-level cloud. Stratus cloud appears gray in color like fog and
cover almost entire sky and don’t reach the earth’s surface. It indicates fall of little mist or
drizzle. Cumulus cloud in the form of cotton balls with sharp outlines, flat base and with
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Fig. 1 Cloud chart based on their heights from the ground level [119]

vertical growth show fair or stormy weather. Stratus cloud with low and lumpy shape with
gray color indicates light rainfall [67].

The only problem in detecting distinguish characteristics of cloud is its responses towards
the change in climate are complicated and hence tough to compute the energy as well as
water balance [72, 108, 139]. Therefore, mechanism of cloud is an essential area of study
to incorporate more precise representation of its behavior. The number of analysis are done
over seasonal cloud patterns and weather conditions but their relativity to earth radiation
budget (ERB) calculation is limited [194]. The accurate understanding regarding mechan-
ics of cloud formation and its growth is still unresolved but many theories are suggested
by explaining the cloud structure using micro-physics of single droplets. Over sixty years
of review, satellite data has presented to us an abundance of learning for understanding
the atmosphere from space. Consequently, the approach of weather satellite technology
increases the possibility of accurate study of clouds. In addition to the type division, clouds
can further be classified in species, and sometimes divided further into varieties, which
define the special characteristics of the clouds, and are related to the cloud transparency and
the arrangements of the macroscopic cloud elements. Thus, with knowledge of cloud type,
size, motion and development, one can calculate and predict the presence of cloud over
underlying earth surfaces.

Literature reveals the huge number of cloud detection methods which are basically devel-
oped in two categories. The one is threshold based algorithm and another category depends
on classification based approach. Threshold based approaches are based on spectral and tex-
tural information of clouds which is captured through the available channels of the sensors.
But it is further observed that threshold method failed to give accuracy in the presence of
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complex underlying surfaces to distinguish various types of clouds. On the other side, due to
the breakthrough in the field of pattern recognition and machine learning algorithms, classi-
fication based approach started to apply on cloudy satellite images. These algorithms select
the favorable features of clouds to optimize the model parameters through training data.
However, these favorable features required to be extracted manually after large computa-
tion to gain better detection accuracy. Therefore, the use of neural network approach came
into the picture to extract features automatically in order to distinguish cloud contaminated
pixels in satellite images. Further, the researcher focused around the task of differentiating
thin clouds because the information of thin clouds mixes with the information of underlying
regions. Hence, the concept of super-pixel is used with the deep neural network approach
[143]; but the approach ignores the multistage con-textures during classification. Thereafter,
multi-scale deep neural network has been developed in order to extract both local as well as
global features of clouds and segment the cloudy regions.

In response of development and limitation of cloud detection algorithm discussed above,
present work discusses the various approaches on cloud detection with following major
contributions.

– Algorithmic advancement of cloud detection is discussed based on spectral and textural
parameters.

– Experimental simulation on existing neural network approaches with spectral and
textural parameters is employed as classifier for cloud detection.

– The growth of neural network approach is further extended towards deep neural
network for cloud detection in satellite images.

As a confine of research on cloud detection approaches, this paper aims to the growth
of cloud detection algorithm by sinking the knowledge from the literature review and clas-
sifying the articles from 1970 to 2020. The reason for selecting this duration is that the
information and communication technology of this era has played a vital role, not only in
the direction of remote sensing but also in the potential to accumulate data from online
databases. This literature review started on October 2016 and it was built on a search in the
keyword index, abstract and conclusion of articles under IEEE transactions on Geo-science
and Remote Sensing, Royal Meteorological Society, Monthly Weather Review, AGU Jour-
nals, Journal of Applied Meteorology, International Journal of Remote Sensing, Remote
Sensing of Environment, Journal of Geophysical Research, Journal of Climate and Applied
Meteorology, ISPRS Journal of Photogrammetry and Remote Sensing, Journal of the Atmo-
spheric Sciences and Journal of Climate. It was observed that limited number of research
articles was easy reach to the thematic point and hence additional sources are added in
this work. Based on the scope of approximately 200 selected journal, books and thesis
are collectively represented in a wider range of methodologies in algorithmic advancement
and experimental analysis on cloud detection approach. Suitable papers are summarized
and enable us to derive conclusions and recommendations for further investigations while
evaluating and comparing different methods.

The remainder of present article is arranged as follows. Section 2 presents the algorithmic
advancement on cloud detection in detail. Section 3 conducts a critical experimental analysis
with Existing Techniques on Cloud Detection. Section 4 presents the simulation results on
existing neural network approach to detect clouds using various supervised learning rules.
Section 5 discusses the algorithm that demonstrates the growth of neural network approach
towards deep neural network for cloud detection. Lastly, the concluding remarks are given
in Section 5.
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2 Algorithmic advancement on cloud detection

This section presents various studies that incorporate the algorithms which were not highly
customized; instead the focus was on cloud detection algorithm and its related works by
evaluating under a given parameters. Its result of literature is shown graphically using web
knowledge in Fig. 2.

2.1 Spectral parameters

The properties of cloud in terms of its spectral parameters like irradiance and reflectance
values demonstrate the thickness, height and amount of cloud [32, 114]. Bowker et al. [14]
studied spectral reflectance information of 156 targets using which classification algorithms
were designed to differentiate cloud against various earth’s surfaces. Similarly, different
studies has been observed where individual earth’s surface is taken into account against
cloud. For example, Greaves and Chang; Liljas; Crane and Anderson [29, 46, 100] assessed
the reflectivity at 3.7μm to distinguish water and ice crystal cloud. Raschke et al. [132]
used the spectral information to differentiate cloud against snow/ice in the polar region with
AVHRR data. Similarly, many efforts have been made to extract spectral parameters such
as,

– Ackerman et al. [1] assessed the analysis on cloud mask algorithm for MODIS data and
found that 0.86 μm is sensitive to detect all types of cloud in absence of sun-glint. The
algorithm found difficulty in detecting cloud during night time in polar region.

– Lo and Johnson; Kuhn [84, 105] evaluated the absorption region of water vapor over
Nimbus II satellite. The analysis found that the wavelength range of 6.4-6.9 μm is used
to recognize water vapor over clear atmosphere.

– The ratio of near-infrared (NIR) band to visible (VIS) band has been utilized to dis-
criminate land area with threshold values 1.6 and sea surfaces with 0.75. This is due to
the fact that VIS is more reflective than NIR band. However, this ratio technique was
found ineffective in the existence of sun-glint [11, 100, 137].

– Raschke et al. [29] observed the similar reflectance property of cloud and snow/ice in
VIS band and hence it is challenging to extract cloud contaminated region in this range.
However, more reflectance of cloud is observed in the water absorption band (1.5 μm)

Fig. 2 Growth of popularity of methods in cloud classification over the past decades
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whereas more absorption for snow pixel is seen in this band. Hence 1.5 μm can be used
to differentiate cloud against snow.

– Grant and Hunt [45] studied that ice cloud can be discriminated in 10-11 μm band
against water territory due to 10% difference in its refractive index.

– Crane and Anderson [29] used 1.6 μm channel of AVHRR satellite to discriminate
cloudy region over snow/ice.

– Hulley and Hook [65, 99] introduced new ASTER cloud mask algorithm (NACMA) to
differentiate cloud against snow/ice/deserts/or thin cloud from Landsat-7, MODIS, and
AVHRR data. To check the validity of the algorithm, normalized difference snow index
(NDSI) was used and found that its value greater than 0.4 shows the presence of snow
with reflectance greater than 0.11.

– Jedlovec et al. [71] used bispectral composite threshold (BCT) algorithm over GOES-
12 data using 11 μm and 3.9 μm channels. Better performance of the algorithm
is observed for day time cloud detection during summer season because sun-glint
produces better contrast between cloud and earth’s surfaces in the infrared channel.

– Shenk et al. [145] investigated that 2.3 μm is sensitive channel for cloud detection and
particularly cirrus cloud can be discriminated at 6.5-7.0 μm range of wavelength.

– Szejwach [153] observed that cirrus cloud is colder in 5.7-7.1 μm and 10.5-12.5 μm
ranges.

– Yang et al. [174] developed automated ground based cirrus cloud detection scheme
because of non-uniformity of cloud brightness in the presence of sun-glint. Hence back-
ground subtraction method is used named background subtraction adaptive threshold
(BSAT) method to detect cirrus cloud and eliminate illumination effect.

– Band ratio of Red channel to Blue channel is used which gives better results for thick
cirrus cloud but fail in case of thin cirrus. Hence combination of BSAT and adap-
tive threshold method is incorporated with band ratio method to extract cirrus cloud
accurately.

– Bell and Wong; Liljas [11, 100] found that thin cirrus cloud is detected by taking the
brightness temperature (BT) difference at 11 μm and 12 μm.

– The BT difference between 11 μm and 3.7 μm is used to detect low stratus cloud during
night time [11, 100, 137].

– Li et al. [96] used hybrid thresholding algorithm (HYTA) using band ratio technique
of blue to red band with minimum cross entropy thresholding. The challenge to the
technique is to discriminate cloud in the presence of sun-glint which required additional
thresholding techniques.

– On the same application, day time [55] and night time [56] cloud detection algorithm
was developed over FengYun (FY-3A)/VIRR polar-orbiting meteorological satellite
data using BT difference of 1.38 and 1.6 μm and 3.7 and 12 μm to differentiate high
and low cloud, respectively.

– Gupta and Panchal [52] realized day time cloud detection algorithm using decision tree
approach in the VIS band. The results were compared with FY-3A/VIRR official cloud
mask and achieved more accurate detection rate.

Surface albedo is the ratio of reflected radiation to its incident radiation on planet. The
amount of reflected radiation not only demonstrates the characteristics of surface but also
shows the spectral and angular distribution of irradiation [26]. Albedo parameters affect the
climate by knowing the absorption radiation of planet. The variation in albedo due to irregu-
lar heating effect among land and ocean territories drives the effect of climatic information.
Welch et al. [165] investigated that albedo is the cosine of solar zenith angle measured at
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each pixel and scaled the gray level from 0-255 corresponds to 0-100%, respectively. The
pixels appear brighter with more value of albedo and darker with less value of the albedo
parameter [151]. Few contribution on cloud detection based on this parameter are,

– Climate is hot and humid in tropical region and has heavy rainfall. Hence, Kazantzidis
et al. [78] estimated the effect of cirrus cloud with different solar zenith angles over
solar irradiance to predict tropical cyclogenesis. This increases the accuracy in the
tropical measurements as well as the impact of cirrus cloud on climate.

– The automatic cloud cover assessment (ACCA) has been proposed [54] for Landsat data
but false results for cloud edges and transparent clouds are observed due to the absence
of channel around 1.375 μm. Thus ACCA algorithm was improved by changing its
threshold parameter to minimize the error in cloud mask and improve the detection of
optically thin cirrus cloud and its edges [159].

– Zhong et al. [189] developed object-oriented cloud and cloud-shadow matching (OCM)
algorithm for charge-coupled device (CCD) sensors where the availability of channels
are not enough. The OCM method uses the concept of modified ACCA approach for
Landsat 7 image data to initialize the cloud map with omission error of 14.74%.

2.2 Textural parameters

Spectral features were used to evaluate the average brightness variation between the bands
while textural features include identification of different parameters (such as rough, chunk,
striped, ruffle, thin and many more contextual attributes) within a band in spatial domain.

Pickett [131] studied that color, appearance, orientation and size of a region can be
utilized to distinguish various textures within the region. Therefore, Gutman et al. [53] pro-
posed a focus on extension of spatial domain information into radiance information of VIS
to extract cloudy region. Moreover, Knottenberg and Raschke [79] observed many applica-
tions like cloud and its shadow detection using visible imagery by distinguishing textural
properties of clouds. However, Seze and Rossow [142] observed some situations like dust or
cirrus cloud over the desert where least information of spatial variance is observed in the VIS
channel. Similarly, various analysis is done for cloud detection using textural parameters
such as,

– Cheng et al. [24] developed cloud removal algorithm based on similar pixel replacement
from multi-temporal images using markov random field (MRF) [20, 34]. Better results
were seen over SPOT/HRV images.

– Shenk et al. [145] studied 13 different variety of features such as height, appearance,
albedo and fourier power spectrum (FPS) to obtain climatic conditions by discriminat-
ing various types of cloud till five years over Nimbus-3 medium resolution infrared
radiometer (MRIR) low-spatial resolution data.

– The classification of stratocumulus, cumulus and cirrus clouds using textural features
has been done over Landsat multi-spectral data [126]. However, stratocumulus misclas-
sified with cumulus cloud because of their least difference in size, position, number of
gaps and presence of different gaseous element across the radiation path.

– Chen and Pavlidis [138] investigated that magnitude spectrum is huge for smooth
texture analysis with high spatial frequency and low value for rough texture analy-
sis. Therefore, Kuenning et al. Rossow [83, 133] proposed a focus on extraction of
rough and smooth textural features using entropy of particular range of wavelengths at
low-level of altitude [43].

31853Multimedia Tools and Applications (2022) 81:31847–31880



– Seze and Rossow [142] observed difficulty in distinguishing various types of cloud
in the small inhomogeneous surface with low contrast case. This is due to the fact
that inhomogeneous surface consists large spatial variability and hence mis-classifies
as cloudy pixel. Therefore, various cloud detection techniques (e.g., [115, 134, 142,
150, 162]) have been discovered using threshold technique for low contrast region by
computing the various statistics of cloud.

– [163] employed GLDV method for texture analysis in order to generate multi-spectral
signature of various characteristics of cloud. Likewise, Welch et al. [164] used GLDV
to extract 9 texture features in unsupervised classification. The analysis demonstrates
decaying in classification accuracy while improvement is seen in run time storage
capacity by 40% and 87%, respectively.

– Welch et al. [164] proposed a focus on gray level co-occurrence matrix (GLCM) [58]
as texture analysis to classify different types of cloud to increase the accuracy of anal-
ysis over satellite images. It was investigated that GLCM saves 50% storage capacity
and 30% in run time. Further, sum and difference histogram (SADH) and gray-level
difference vector (GLDV) textural features which are developed from GLCM approach
for classification purpose. Over comparison, it is observed that the accuracy using
SADH and GLDV for cirrus cloud classification is not improved but the improvement
in accuracy is found for the discrimination of stratocumulus and cumulus cloud.

2.3 Other parameters

The studies based on few other parameters are,

– Emissivity in NIR band between 0.1 to 0.95 is utilized to measure variation in cloud
thickness [41, 66, 68, 101, 170]. Hunt [66] studied the emissivity of cloudy region and
observed its sensitive in 8.5-13 μm range as compare to the other channels of SWIR
band such as 2.3, 3.5, and 3.8 μm. For night time analysis, the difference of 12 μm and
3.7 μm ranges is used for mid-level cloud detection [11, 124, 137].

– Water cloud consists comparatively less water droplets than ice cloud. This information
helps to distinguish water cloud against ice cloud using cloud scattering parameters
(cosθ).

– Contrast parameter is calculated from blocked image to get the multiple optimal
threshold values and remove the thin cloud [190].

– Shen et al. [144] observed that thin cloud consist of low frequency information and
hence developed the frequency domain based algorithm using homomorphic filter. This
algorithm is applied over cloudy region of Landsat ETM+ and GaoFen-1 images in
order to reduce the false detection for clear pixel by removing thin clouds and recover
the ground information.

3 Experimental analysis with existing techniques on cloud detection

This section presents the work where the focus is on the evaluation of compared applicable
results between different techniques.

Table 1 demonstrates the experimental analysis of various cloud classification algo-
rithms. The content in the column of the table shows: (i) name of the satellite/ imager used
for the analysis, (ii) classification method (iii) publication year of the paper, (iv) average
accuracy of the classification method of all classes, (v) maximum accuracy obtained, (vi)
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minimum accuracy achieved and (viii) number of classes. All the information in the table
are grouped based on classifier and its accuracy. Here accuracy is subjective to human factor
because results are based on visual comparison. The parameter which affects the accuracy
of classifier is the number of output classes varying from 2 to 10 distinguish regions. Also,
the accessible channels and cost of equipments which tend to the use of final measure-
ments can also affect the accuracy of classifier. It is observed that different strategies have
been developed conceptually based on neural network (NN) method for cloud classification
application. The frequency growth of NN method is demonstrated in Fig. 3 for cloud clas-
sification application. Therefore, next section incorporates detailed study on NN approach
to improve the accuracy of cloud classification for multi-spectral satellite images.

4 Neural network approach

Neural network approach was utilized to improve classification accuracy in geophysical
data [91]. It can put the solutions of complicated problems by training the network on the
feature value. Therefore, NN is described as a possible alternative way to discriminate cloud
using simple components which function in a parallel manner [128].

4.1 Basic concept

A NN consists neurons which are represented as nodes. Nodes are defined by real values
which demonstrate the activity of neurons and are directly connected with the weighted
paths. Therefore, neural network layer is defined as weighted sum of the input nodes
which is passed through the activation function. The architecture of the neural network is
demonstrated here in Fig. 4.

Generally, NN consists three or more layers i.e. an input layer, an output layer and one
or more hidden layers between input and output layers. The nodes of the network consist
adder and non-linear function. The input (xl) and its output (al) are collectively written with
lth layers in (1)

[
n1l n2l n3l . . . nsl

]T =

⎡

⎢⎢⎢
⎣

w11l w12l w13l . . . w1Rl

w21l w22l w23l . . . w2Rl

...
...

...
. . .

...
ws1l ws2l ws3l . . . wsRl

⎤

⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎢
⎣

x1l

x2l

x3l

...
xRl

⎤

⎥
⎥⎥⎥
⎥
⎦

+

⎡

⎢
⎢⎢⎢
⎢
⎣

b1l

b2l

b3l

...
bsl

⎤

⎥
⎥⎥⎥
⎥
⎦

al = fl(nl) with nl = Wlxl−1 + bl (1)

where, fl demonstrates the activation function of lth layer in NN to introduce the non-
linearity and calculate nontrivial problems.

4.2 Advancement in cloud classification algorithms

Cloud classification application in remote sensing has recently found numerous work on
NN. For the review, we found approximately 55 relevant articles which are published in last
few 20 years (Fig. 2). This section summarizes NN advancements where papers are merely
compared NN performance with other algorithms or discusses the specific applications.

Probabilistic neural network (PNN) is a supervised classifier that classifies cloudy region
by estimating probability function of the input information. Bankert [8] proposed a focused
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Fig. 3 Frequency growth of NN method in cloud classification

on two layer PNN with spectral, textural, and physical input features and hold-one-out
training and testing method to differentiate the classes: cirrus, cirrocumulus, cirrostratus,
altostratus, nimbostratus, stratocumulus, stratus, cumulus, cumulonimbus and clear [149].
Lee et al. [91] proposed a focus on feed-forward network trained by back propagation (BP)
NN classifier with cloud textural input features. This algorithm worked for the discrimi-
nation of cirrus, stratocumulus and cumulus cloud as these clouds are important radiative
cloud types. Miller et al. [113] proposed a different classification scheme which worked
as an alternative to BP called CMAC algorithm. CMAC algorithm can improve interac-
tion between cloud and climate using prior knowledge of contextual information. Xie et al.
[168] proposed a focus on multilevel cloud detection algorithm using deep learning method.
CNN approach was used to differentiate thick cloud, thin cloud, and clear pixel using sim-
ple linear iterative clustering (SLIC) method. This approach is further used in [104] where

Fig. 4 Architecture of artificial neural networks to extract cloud contaminated pixels
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combination of SLIC and SEEDS has been utilized to distinguish the entire image into
super-pixels and classifies into thick cloud, thin cloud, building and other culture. Lee et al.
[91] presented similar approach on three layer NN to detect cirrus cloud and obtained 85%
accuracy. However, it has been observed that cirrus cloud was misclassified with cumulus
cloud. Therefore, four layer NN with nine texture features in the input layer was proposed
where cirrus cloud was detected with accuracy of 96%, stratocumulus cloud with 92% and
cumulus cloud with 90%. In a different approach, Walder and MacLaren [156] studied
ANN to design automatic cloud classification system by using textural and spectral features
extracted from AVHRR data.

Lewis et al. [92] integrated hopfield NN method to track the cloud in the visible and
infrared channels of Meteosat 5. Shape and spectral parameters have been used in this
method. Shape parameter includes area, perimeter, area to perimeter ratio, length, width,
and length to width ratio of cloudy region while visible spectral parameters include average
and maximum intensities of cloud contaminated pixels in the satellite images.

Self-organizing map (SOM) is the only unsupervised NN method that reduces the dimen-
sions of data by mapping it into two dimensional data space. Murao et al. [118] evaluated
a classification scheme emphasizing both SOM and three-layered feed forward NN trained
by back propagation method. SOM is used to extract texture features. This method is named
as hybrid NN which was applied over GMS infrared temporal data to estimate rainfall rate.
Peak and Tag [129] obtained the training data based on geographical information and pro-
cessed for Kohonen’s self-organizing feature map. Using Kohonen SOFM method, nine
patterns were differentiated correspond to dark part of forest, bare land, road, grassy place,
water region, farm, cloud, shadow of cloud and density inhabited district. Neural network
classifier was then compared with bayesian method and it was found that average accu-
racy is almost same using both the methods but in case of overall accuracy, NN gave better
results using nine neurons in the hidden layer.

Feijt et al. [38] designed neural network, named as mapping neural network (MNN) with
two hidden layers to achieve cloud parameters: mean optical depth, effective radius, rela-
tive cloud inhomogeneity, and fractional cloud cover of multispectral reflectance data (e.g.
MODIS) using NIR channels. Further, same authors have used MNN [36, 37] to measure
radiant flux (i.e. reflectance,transmittance, and absorption) of inhomogeneous cloud using
Monte Carlo method. Evaluation of method was done by using horizontal changes of optical
depth and not of radius of cloud particles with the inclusion of two solar zenith angle (i.e.
0o and 60o). It was also observed that results gave better outcome for the reflectance than
for the transmittance and absorption. The shadowing effect of neighboring pixels is found
in the transmittance of 60o while transmittance of 0o reflects the more photon penetration
into the optically thin cloudy pixels.

Jang et al. [70] observed difficulty in cloud detection using SPOT database because of
the absence of thermal bands. Hence ANN method was used with single sigmoid layer by
varying number of neurons and trained by Levenberg-Marquardt back-propagation (LM-
BP) method. Good performance was obtained in thick and thin clouds. Bankert and Wade
[10] improved neural network as cloud classifier by reducing the training databases using
fast condensed nearest neighbor (FCNN) rule discussed by Angiulli [3].

4.3 Classification learning rules for cloud detection

At the heart of weight update method, an expression for partial derivative of the cost func-
tion with respect to the weight of the network is present. The expression demonstrates the
change in cost function value correspond to change in weight and bias values. This method
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is termed as back propagation (BP) method. Hence BP is not only fast learning method for
the network but also detailed insight information of change in behavior of weights and bias
of the network are also obtained. Therefore the discussion in this section is only a onset of
thorough understanding of the various equations used by the researchers that are carried out
in Table 2.

4.4 Performance comparison of learning rules in NNmodel

Neural network has attracted many researchers over the last couple of decades to tackle
cloud-related problems. So this section provides a detailed discussion on binary cloud clas-
sification using NN approach with different texture features (or parameters). The core idea
of the method is to compute GLCM matrix of each pixel of multispectral databases. After
that texture feature is calculated from computed GLCM matrix and then input to the NN
system.

NN approach includes single Layer Perceptron (SLP), two Layer Perceptron (TLP) and
multi Layer Perceptron (MLP) schemes. MLP is computationally complex and is compared
for binary cloud classification. MLP is expected to be used for deep learning applications
and used to solve complex classification problems. But in case of binary classification,
they need long training time and produced correct classification accuracy similar to TLP
network. Hence, performance and execution time of SLP and TLP with different neurons
are compared and not compared with MLP in order to investigate the effectiveness of NN
learning rules. Number of neurons in hidden layers are selected based on the past work
which is provided in Table 3.

Various feature selection methods were discussed in order to select subset of features
from the textural and spectral feature bank. While evaluating methodology, principal com-
ponent analysis (PCA) is used in this article to reduce the dimensionality of the input and to
identify the most important features. These selected features aim to get more accurate day-
time cloud detection as well as capable to adapt different satellites. The following are the
important textural features which has been identified by PCA scheme to design input of the
network:

Correlation =
Ng−1∑

i=0

Ng−1∑

j=0

(i − μi)(j − μj )p(i, j)

σiσj

(2)

Contrast =
Ng−1∑

i=0

Ng−1∑

j=0

(i − j)2p(i, j) (3)

Equation (2) demonstrates the mathematical formulation of correlation that shows the joint
probability occurrence of the function, p(.,.) which returns the value of specified pair of
GLCM matrix. The mean and standard deviation are denoted by μi and σi , respectively
of ith row of matrix. Similarly, μj and σj are the mean and standard deviation of its
corresponding j th column. Contrast in (3) shows the local variations in luminance that dis-
tinguish the object. In order to validate the performance of various learning rules (provided
in Table 2), investigation is carried out on Landsat8 OLI/TIRS database. Table 4 enlisted
with real-life multi-spectral databases with their detailed information of training and testing
samples. All images of these databases are converted into 256 gray-level intensity value.
The simulation of the classification learning algorithm is carried out on MATLAB version
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Table 2 Mathematical model of learning rules in ANN model

Learning rule Characteristics Details References

Convolutional Explanation Back propagation method is used [135, 165]

NN (CNN) to determine weight iteratively to

minimize mean square error

Representation −→ω n+1 = −→ω n − η
−→�E−→�E = gradient of error function,

η = learning rate

Momentum Explanation Back propagation method is used [77, 175]

decent to determine weight iteratively to

algorithm minimize mean square error

Representation −→ω (n + 1) = −→ω (n) + ηδωij
(n)xj + αδωij

(n − 1)

δωij
=

{
(1 − yi)yi (yi − ti ), output layer

(1 − yi)yi

∑
ωkiδωki

, hidden layer

n= iteration step, α=Momentum constant

δωij
= back

propagation error

Noarl-Neural Explanation Learning trial is used to stabilize [127, 128]

weight adjustment.

Representation �ωij (n + 1) = η(δpi
apj

) + αδωij (n)

where, n = iteration, δpj
= error,

apj
= network output

Kohonen self- Explanation weight vector adjustment to minimize [6, 80, 102, 128, 178]

organizing Euclidean distance from neuron to

feature map input vector.

Representation ωj (t + 1) =
{

ωj (t) + η[x(t) − ωj (t)], jεNc;
ωj (t), otherwise

where, x = input vectors,

Nc = neighborhood nodes

Hopfield NN Explanation To minimize energy of a network [28, 60, 92, 93, 166]

E = 1
2

∑N
i=1

∑N
j=1 ωij xixj

where, xi , xj = binary state of two neurons.

Representation ωij =ωji ; ωii = 0

The weight matrix ω is symmetrical

and null on self feedback

connections

Self-organizing Explanation The training data is distributed

feature map into N clusters with ωj [59, 61–63, 118, 156]

(SOFM) center of j class data. The optimal

centers of clusters are defined

with minimum average

reconstruction error
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Table 2 (continued)

Learning rule Characteristics Details References

Representation Average Error is defined as,

E(ω) = ∑K
j=1

∫
Cj

||x − ωj (x)||P(x)dx

Where, P(x) = Probability

density function of input data x,

ωj (x) = cluster center of Cj ,

j = 1 · · · K,

Weight:

ωv(t + 1) = ωv(t) + d(u, v, t).η(t)(x − ωv(t))

where, t = iteration,

x= input sample, d(u, v, t)= distance

between u and v neurons, η(t)=

monotonically decreasing coefficient

R2015a on Intel(R) core (TM) i5processor 2.30 GHz CPU along with 4GB of inbuilt RAM
in Windows-7(64-bit).

To check the validity of different learning methods over different databases, demon-
strated in Fig. 5 and discussed in Table 4, binary cloud classification is considered for
comparison due to the differences in output classes, hypothesis and considered parameters.
Table 5 demonstrates the summary of effect of different training samples over classifica-
tion accuracy, performance and execution time of classifier. An empirical comparison of
the Landsat8 OLI/TIRS data with different percentage of training samples with respect to
different neurons is presented in Table 3. We have intentionally selected CNN learning
rule with Levenberg-Marquardt weight updating technique because it is a most widely used
technique to realize for practical application.

To validate the performance of NN as a classifier or predictor, it is found that use
of cross-entropy is better than other classification error (e.g., mean square error (MSE)).
Cross-entropy calculates a network performance using each pair of target (T ) and out-
put (y) elements. Minimization of cross-entropy leads to be a good classifier. Equation 4
demonstrates the calculation of cross-entropy for each t-y pair. N=1 is a special case where
classifier behaves as a binary classifier having 0 or 1 value with the target element. The
results show that NN approach with 10% training condition in case-e has achieved approx-
imately 69% accuracy with less execution time which is significantly sufficient than all

Table 3 Selection of number of hidden layer neurons in NN architecture

No. of Neurons No. of Neurons

First Layer Second Layer References First Layer Second Layer References

(SLP) (TLP) (SLP) (TLP)

4 [175] 6 6 [127]

11 – [70] 10 10 [35]

22 – [69] 40 20 [91]

41 – [148] 55 55 [165]
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Table 4 Multi-spectral data analysis with training and testing approaches in NN model

S. No. Databases Bands used Samples Train Test

i Landsat8 OLI/TIRS [85] 4 29480 2948 26532

ii AVHRR [85] 4 201285 20128 181157

iii GOES [42] 4 589824 58982 530842

iv NOAA [120] 4 32041 3204 28837

other cases. Meanwhile, features extracted have positive influence on the performance (here
cross-entropy) in case of TLP approach.

Cross entropy = −T log(y);K = 1

= −T log(y) − (1 − T )log(1 − y); K > 1 (4)

Two sets of comparison experiments with concluded TLP scheme are listed: one using the
supervised NN rules and other using the unsupervised NN rule. Table 6 demonstrates the
results of comparing the different supervised learning rules (discussed in Table 2) with TLP
NN having (6,6) neurons in hidden layers and 10% training samples. It is found that the

Fig. 5 Multi-spectral databases used to analyze the cloud detection performance with existing methods.: (a)
Landsat8 OLI/TIRS (b) AVHRR (c) GOES (d) NOAA
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Table 6 Comparison of supervised learning rules in NN model

Dataset Learning rule Accuracy Error Rate TPR FPR FNR TNR Prevalence

L-8 Gradient Decent 40.7 59.3 99.8 63.4 36.6 0.2 6.5

Gradient Decent Momentum 42.9 57.1 99.9 62.5 37.5 0.1 8.7

Levenberg-Marquardt 68.1 31.9 100 48.2 51.8 0 33.8

Hopfield network 65.8 34.2 0 34.2 65.8 0 65.8

AVHRR Gradient Decent 63 37 64 40.1 59.9 36 76.4

Gradient Decent Momentum 64 36 64 35.9 64.1 36 80

Levenberg-Marquardt 69.2 30.8 65.5 1.5 98.5 34.5 88.8

Hopfield network 58.4 41.6 0 41.6 58.4 0 58.4

NOAA Gradient Decent 55.2 44.8 80.1 62.9 37.1 19.9 42.2

Gradient Decent Momentum 63.1 36.9 100 55.3 44.7 0 33.3

Levenberg-Marquardt 54.7 45.3 79.9 63.3 36.7 20.1 41.7

Hopfield network 70.2 27.8 0 29.8 70.2 0 70.2

GOES Gradient Decent 88.1 11.9 88.9 14.3 85.7 11.1 74.8

Gradient Decent Momentum 53.8 46.2 70.2 70.1 29.9 29.8 59.1

Levenberg-Marquardt 80.3 19.7 78.1 0 100 21.9 89.9

Hopfield network 70.2 29.8 0 29.8 70.2 0 70.2

calculated cloud detection accuracy tolerates minor degradation while the minimum error
rate is noticed with the use of Levenberg-Marquardt learning rule.

In addition, it is observed that combination of TLP NN with Levenberg-Marquardt learn-
ing rule gives maximum value in true positive rate (TPR) and false negative rate (FNR)
while minimum value in true negative rate (TNR) and false positive rate (FPR). Hence
TLP with Levenberg-Marquardt learning rule is selected for comparison with unsupervised
SOFM learning rule (refer Table 2) for all the four databases to check the comparative per-
formance of each algorithm for binary cloud classification. The results in Table 7 are found
in favor of SOFM in terms of accuracy while it favors TLP in terms of ellapse time which
shows the time complexity of training and testing computation of the algorithm.

In a different approach, double-branch PCA Network (PCANet) architecture is designed
in combination with support vector machine (linear function of NN) classifier where bright
and thick clouds are separated by threshold method and then this information is combined
with SVM classifier to extract high-level of cloud information from multi-spectral satellite
images [23, 193]. Further, the neural network approach has been utilized to identify classi-
fication membership of cloud, cloud shadow, water, snow/ice and clear pixels in a Landsat
image [64]. With the similar approach, cloud detection algorithm in optical satellite imagery
enhanced towards deep learning model. Few works have been studied like model based
on U-net architecture which discriminate cloud against snow region in the visible range of
electromagnetic spectrum with minimum multi-spectral training samples [73, 136].

A deep learning model for detection of clouds in optical satellite imagery has been
observed, named as remote sensing network (RS-Net) which is based on the concept of U-
net architecture. The model is trained and validated on Landsat 8 and SPARCS images. The
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evaluated results indicate the better discrimination performance on hardly distinguishable
surfaces such as cloud over snowy and icy regions. In particular, the performance of deep
learning model with visible bands demonstrates promising outcomes of cloud detection with
multi-spectral satellite images [73, 141, 152]. Xie et al. Further, [169] designed a two layer
deep convolution neural network (CNN) to discriminate clouds into thick, thin, and non-
cloudy regions, but the network finds difficulty in distinguishing clouds in the presence of
snow region.

Further, Cerdena et al. [17] used ANN algorithm with MLP network having back-
propagation to get various cloud parameters like temperature of cloud, its optical depth
and its effective droplet radius. However, ANN has some important disadvantages like net-
work dependency on their architecture, characteristic parameters and training algorithms
due to which the solution stuck to the local solution of the error surface. Therefore, genetic
algorithm (GA) has been used to overcome this problem and get the global optimal solu-
tion. This indicates cloud detection implementations using artificial evolutionary algorithms
(EA) which is a promising machine learning algorithm. EA is particularly appealing in
cloud detection application because of their ability to reach the optimal solution in least
computation time and limited training samples. Therefore, Kaminsky et al. [77] suggested
an algorithm named optimized cloud detection index (OCDI) using GA. The analysis used
PCA method initially over MODIS database to get the optimal channel and then GA is
applied to optimize the OCDI parameters. Thus the probability of getting the global solu-
tion over error surface increases by overcoming the limitation of ANN approach. Earlier,
Lisens et al. [103] described an algorithm using GA to optimize the NN parameters in order
to design cloud mask. Therefore, it has been observed that amalgamation of NN and GA
decrease the computation time and increases the NN ability. The cloud detection study has
been further enhanced towards multi-dimensional objective space. Recently, Gupta et. al.
developed multi-objective social spider optimization technique to obtain label data for sin-
gle band using multi-spectral Landsat 8 satellite images. This label data is further utilized
to train the NN to get label data for rest bands comes under visible range. By combining the
decision of bands of visible range, cloud contaminated region is extracted against various
surface of earth [51].

5 Deep neural networks for cloud detection

The rapid growth of machine learning technology to solve complex problems acquires
attention towards deep learning methods in the past few years. The conventional machine
learning approaches require a domain expert to extract appropriate features for a targeted
problem. Deep learning approaches overcome this problem by extracting significant fea-
tures [122, 123] from the raw data [88]. It acquires a body of processing layers where it
can learn distinguish features of data by abstracting at multiple levels [87]. Therefore, deep
learning algorithm has emerged in various application such as face recognition [86], speech
recognition [57], image segmentation [147], signal processing [181], bio-activity prediction
[157] and so on.

It has been observed that deep learning algorithm is modeled with different types of
architectures like convolutional neural networks (CNN), deep belief networks and recurrent
neural networks. The CNN, usually named as ConvNet, has gained wide attention because
of its astonishing ability in classification application based on contextual information [107].
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5.1 Convolutional neural network (CNN)

The CNN structure is described in Fig. 6 in which the functionality of four processing layers
are discussed such as convolutional layer, pooling layer, fully connected layer and activation
function.

Convolution layer correlates the neurons of previous layer in the next layer which is tech-
nically termed as receptive field [121]. The functionality of receptive field of neurons is to
extract local features that is associated with a particular location of input image [88] and
forms a weight vector [86]. The receptive field of neurons share same weight to the next
layer due to which same features associated at different location of an image can be detected
which is demonstrated in Fig. 7.

Here, the weight vector acts as a kernel or filter which slides over targeted image in
order to map its significant features. This process is termed as convolution operation due to
which number of filters are mapped together to extract their corresponding features from the
input image [125] and reduces training parameters [183]. Thereafter, output in next layer at
particular location is computed as discussed in (1).

Pooling layer summarizes the extracted features in patched form. The main issue with
output feature map of convolution layer is that it reduces the importance of features location
once it has been detected [88]. One process to handle this sensitivity is to down sample
the feature map in order to detect the robust changes of location of features in the image
which is usually known as local translation invariance [183]. Therefore, Pooling layer is
incorporated to down samples the feature maps. The average pooling or max pooling are
the most common approaches that are used to significantly reduce the map-size [89].

Fig. 6 Architecture of convolutional neural network for cloud detection

31869Multimedia Tools and Applications (2022) 81:31847–31880



Fig. 7 Neuron receptive field towards next layer in NN architecture

Fully connected layer is equivalent to the concept that is used to describe the artificial
neural network (ANN). The output of convolution and then pooling layer is forwarded to
the fully connected layer. The output of the fully connected layer is computed as formulated
in Eq. 1. The limitation gap of this layer is high computational time complexity to train the
big data [183].

Activation function is introduced to incorporate the non-linearity in the deep learning
model. The rectified linear unit (RELU) is the most frequently used activation function
which returns 0 with negative input value whereas positive input is returned as it is in the out-
put side. This simple approach benefits the model to operate in the non-linear environment
[82].

5.2 Deep learningmodels

Cloud detection is a challenging pre-processing task in any applications of remote sens-
ing images with limited number of spectral bands. Therefore, deep learning algorithm has
acquired an immense breakthrough in the field of computer vision as an algorithm in artifi-
cial intelligence [30]. The convolutional neural network (CNN) as a deep learning algorithm
has raised the performance of applications such as image segmentation [75, 82, 184], object
detection, semantic segmentation and so on. [106, 172] proposed intensive predictor with
fully CNN (FCNN) without fully connecting the entire layers. Moreover, this structure maps
the segmented image of required size as well as enhances the processing speed over con-
ventional CNN method. The FCNN approach is observed further to discriminate cloud and
snow in the satellite image because of their similar low-level features such as color distri-
bution and textural pattern [106]. The low-level feature based conventional methods [188]
overlook the local textural pattern [185] and high semantic information which are the impor-
tant element to discriminate cloud over snow region [13, 158]. Moreover, conventional local
feature method difficult to model the semantic information such as cloud is enclosed with
its shadow or snow is extended along the hills. However, FCNN deep learning algorithm
has been used to learn their abstract pattern from its underneath layers [186]. Thereafter,
bidirectional independent recurrent neural network has been introduced to extract deep fea-
tures of images and perform the semantic segmentation; however the approach requires to
be modified for multi-modal scenario [179].
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Based on the principle of FCNN, the structure is modified, namely, multi-scale features
convolutional neural network (MF-CNN) to get the multi-scale global features to discrim-
inate the thick and thin clouds in Landsat 8 satellite images. This is due to the fact that
MF-CNN integrates the spatial information at the low-level whereas it provides semantic
information at high-level of its structure. This increases the accuracy to detect individual
clouds in the combination image [81, 117, 143]. Normally, the analysis of thin cloud is
in contrast over thick clouds such as in cloud removal and target detection application for
which multi-level cloud detection is required to be addressed [19, 167]. Therefore, a deep
CNN with two branches has been designed to get the multiscale features and to predict one
of the three classes in which thick clouds, thin clouds and clear pixels has been presented
[33, 169]. However, [182] proposed the dual branch CNN, named as multi-scale fusion
gated network (MFGNet) to fuse the features at various depths and scales for cloud detec-
tion in Gaofen-5 (GF-5) database. [155] used deep neural network approach with feature
fusing approach to extract cloud information by using temporal data of Meteosat second
generation (MSG) satellite. With the similar approach, [18] has used SegNet with 13 con-
volutional layers and 13 deconvolution layers to distinguish thick cloud, thin cloud, cloud
shadow and clear pixels in Landsat satellite images with multi-level spatial and spectral fea-
tures. Further, multilevel feature fused segmentation network (MFFSNet) [171] has been
proposed to discriminate cloud and its shadow information with the approach of pyramid
pooling module. Similarly, [97, 98, 173] has developed multi-scale convolutional feature
fusion (MSCFF) to map both local and global features of cloud and cloud shadow by incor-
porating encoder-decoder module. The identical encoder-decoder structure has been utilized
with CNN architecture in [47], named as Cloud-AttU model to fuse the multi-scale fea-
tures for cloud detection. Similarly, encoder-decoder architecture has been proposed in [48],
named as, CDnetV2 by incorporating adaptive feature fusing model (AFFM) at the encoder
side whereas decoder structure consists high-level semantic information guidance flows
(HSIGFs) to get information of cloud location.

Further, cloud-net algorithm has been designed and trained fully convolutional neural
network with local and global features of various blocks of Landsat 8 database [74, 109,
116, 176]. With the similar approach, [146] modified CNN model where input image is
divided into super-pixel [161] as sub-region and then features are extracted from each
sub-region with four convolutional layer and two fully-connected layers in CNN model to
extract deep features of thick and thin cloudy pixels. Identically, [94] proposes a weekly
supervised deep learning method for cloud detection (WDCD) on each block of images by
incorporating modified global convolutional pooling (GCP) operation. It is observed that
most of the algorithms are designed to handle multi-spectral satellite images. However, a
few deep learning algorithm extended the methodology to handle hyper-spectral satellite
images. Triple-attention Guided Residual Dense and BiLSTM networks(TARDB-Net) has
been introduced to select essential spatial and spectral features for classification in hyper-
spectral satellite images [16, 49, 50]. Further, CloudScout algorithm based on CNN has been
deployed for nano satellite payload where the approach detect the cloudy image directly in
on-board satellite and send only the cloud free images to ground station to develop the low
power embedded application [44].

The major advantage of deep CNN approach as compare to conventional machine
learning algorithms is that it can automatically detect the significant features for high dimen-
sional data. This study has discussed the basic model of deep convolutional neural network
and its extensive ability to use as a classifier to detect clouds in satellite images. Moreover,
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it is observed that the immense use of CNN approach in various applications such as high-
resolution data, medical images, speech recognition and so on. Therefore, present study is
expected to add a value in extending the knowledge of deep learning and provide a broad
understanding who like to venture more in these applications.

6 Conclusion

The effects of cloud on weather prediction made its detection an important pre-processing
task of remote sensing. This article discusses the important contribution of spectral and
textural parameters to detect cloud, its shadow, cloud removal and classification of dif-
ferent types of cloud from multi-spectral satellite images. The major issue is to optimize
the enhanced observational capacity of different radiometers using retrieved cloud parame-
ters. To investigate this problem, parameters associated with cloud are sorted into spectral,
texture, albedo and other features. From the algorithmic perspective there is a significant
discussion is done on feature selection and weight optimization in neural network (NN)
architecture. In NN based techniques, Levenberg-Marquardt, supervised learning rule is
found better in terms of ellapse time and SOFM, an unsupervised learning algorithm is
found better in terms of accuracy. Night time and day time simultaneous cloud detection
analysis are important challenging issue using NN based techniques. Genetic algorithm is
observed to fill the limitation gap of this techniques. Hence artificial neural network trends
with evolutionary algorithm was chosen to increase its ability of generalization with low
computation time and better accuracy. Further, the discussion on cloud detection algorithm
has been extended with deep neural network approach. This study has emerged as a promi-
nent approach towards classification method with contextual features. It is expected that
it will provide a broad understanding for various other classification based application to
various venture of this field.
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