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Abstract
Predicting passenger hotspots helps drivers quickly pick up travelers, reduces cruise
expenses, and maximizes revenue per unit time in intelligent transportation systems. To
improve the accuracy and robustness of passenger hotspot prediction (PHP), this paper
proposes a parallel Grid-Search-based Support Vector Machine (GS-SVM) optimization
algorithm on Spark, which provides an efficient methodology to search for passengers in a
complex urban traffic network quickly. Specifically, to effectively locate passenger hotspots,
an urban road network is gridded on the Spark parallel distributed computing platform.
Moreover, to enhance the accuracy of PHP, the grid search (GS) approach is employed to
optimize the radial basis function (RBF) of the support vector machine (SVM), and the
cross-validation method is utilized to find out the global optimal parameter combination.
Finally, the SVM optimization algorithm is implemented on Spark to improve the robustness
of PHP. In particular, the proposed GS-SVM algorithm is applied to successfully predict
passenger hotspots. By analyzing seven groups of data sets and comparing with serval
state-of-the-art algorithms including autoregressive integrated moving average (ARIMA),
support vector regression (SVR), long short-term memory (LSTM), and convolutional neu-
ral network (CNN), the results of an empirical study indicate that the MAPE value of our
GS-SVM algorithm is lower than that of comparative algorithms at least 78.4%.
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1 Introduction

It is generally noticed that taxicab imposes positive influences on the travel of residents.
However, it is difficult to pick up passengers timely for drivers owing to the greater flexi-
bility of route and time [20]. Experienced taxi drivers can pick up passengers continuously,
while those lacking experience cannot find the fastest route, leading to problems including
low taxi usage, huge income gap among drivers, aggravation of traffic congestion, and waste
of energy in the process of locating passengers. Consequently, it is important to construct
an effective model to help taxis quickly find passengers by analyzing historical trajectory
data. With the popularity of the global positioning system (GPS), taxis in most cities are
equipped with GPS sensors sending real-time geographic information and operating condi-
tions of taxis, which ensures the authenticity and reliability of the data. For this reason, many
researchers have paid extensive attention to the analysis, mining, and application of taxi
GPS trajectory data (e.g., urban planning [2, 5, 24], urban visualization [3, 36], residents’
travel characteristics [8, 40], and traffic flow forecasting [1, 4, 16, 29, 41, 47].

When it comes to searching passengers, experienced taxi drivers quickly and accurately
arrive at the destination rather than locate passengers blindly. That is why they have higher
incomes than inexperienced ones. However, inexperienced ones cannot look for passengers
timely, which causes high cost per unit time and low profitability. To address the problems
mentioned above and achieve accurate prediction, the historical taxi GPS trajectory data are
employed to model creation and data analysis, which have significant practical applications.
On the one hand, accurate and effective passenger location can not only reduce the time
and cost of seeking passengers and maximize benefits but also improve taxi service quality
according to the needs of passengers. On the other hand, accurate positioning lays a solid
foundation for reducing energy consumption and environmental pollution, providing greater
accessibility through more direct traffic routes, and improving urban road networks.

Recently, existing studies on passenger location prediction have mainly focused on: (1)
Linear models, such as ARIMA and Kalman filtering (KF) [10, 15, 31]; (2) Nonlinear mod-
els, such as CNN, SVM, and LSTM [12, 13, 18, 22, 27, 44]. Most of the aforementioned
investigations are implemented in the traditional stand-alone environment. However, dealing
with the exponential growth of the taxi trajectory data set can easily cause problems, such
as time-consuming data transmission and low computational performance. Therefore, we
present a parallel GS-SVM algorithm on the Spark distributed computing platform to pre-
dict passenger hotspots in this paper. Specifically, our algorithm employs the GS approach
to optimize the C (penalty factor) and γ (core parameter) of RBF, and particularly the
memory overflow, memory consumption, and other problems that are compensated in the
Spark-based parallel distributed environment. Meanwhile, the speed of data transmission
and the computing performance are improved in the proposed algorithm.

The main contributions of this paper are summarized as follows:

• A gridding method of the road network is proposed on the Spark parallel comput-
ing platform to locate the passenger position in a complex transportation network
efficiently and accurately.

• A parallel GS-SVM algorithm on Spark is presented to predict passenger hotspots accu-
rately. This proposed algorithm uses the GS approach to optimize the RBF function of
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SVM and employs the leave-one-out cross-validation method to verify the algorithm’s
global optimal parameters, so that the optimized SVM algorithm has a better gener-
alization ability and higher prediction accuracy than the traditional SVM algorithm in
passenger hotspot prediction.

• With massive taxi GPS trajectory data, the parallel GS-SVM algorithm is applied to
predict passenger hotspots successfully. Results demonstrate that the accuracy of GS-
SVM is significantly superior to that of ARIMA, SVR, LSTM, and CNN.

The remainder of this article is organized as follows. Section 2 reviews existing works on
passenger hotspot prediction. The GS-SVM algorithm and its implementation on Spark are
illustrated in Section 3. Section 4 reports the extensive experiments and the result analysis,
and Section 5 describes the conclusion and the future work.

2 Related work

In this section, we briefly introduce the related works that predict passenger hotspots and
then analyze existing problems.

Finding passengers has always been one of the hot topics in intelligent transportation
systems, and it has also attracted mounting researchers in recent years. Li et al. presented an
optimized calculation approach based on a watershed algorithm to divide hotspots in cities
and to predict the spatiotemporal variation of passenger hotspots based on the improved
ARIMA model [15]. Jamil et al. utilized the automatic ARIMA model to conduct time-
series analysis and forecast the hotspot areas for passengers with the spatiotemporal taxi
data [10]. Qu et al. developed an effective taxi route recommendation approach, adaptive
shortest expected cruising route (ASER), to forecast pick-up probability and capacity of
each location using KF [31]. Niu et al. put forward a new neural network, L-CNN (combin-
ing with CNN and LSTM), and developed a robust model to predict potential passengers
in real time [27]. Yang et al. proposed a novel Wave-LSTM model based on LSTM and
Wavelet to predict the passenger flow [44]. Kuang et al. conducted feature embedding by
attention-based LSTM and captured the correlations between pick-up and drop-off of taxis
using 3D ResNet [13]. Li et al. considered the historical order demand, travel time rate, the
demand of neighboring regions, day-of-week, time-of-day, weather, and point of interests,
and a combined model based on WT-FCBF-LSTM (Wavelet Transform, Fast Correlation-
based Filter, and Long Short-term Memory) was proposed to predict the passenger demand
in different regions for different time intervals [18]. Kim et al. aimed to systematically
design an explainable deep learning model being capable of assessing the quota system
and balancing the demand volumes between two modes. A two-stage interpretable machine
learning modeling framework was developed by a linear regression (LR) model, coupled
with a neural network, and layered by long short-term memory (LSTM) [12]. Luo et al.
introduced a multi-task deep learning (MTDL) model to predict short-term taxi demand at
a multi-zone level [22]. To promote efficiency while reducing the emission of hybrid elec-
tric buses (HEB), Li et al. proposed a novel predictive energy management strategy with
passenger prediction and exhaust emission optimization [17]. Mridha et al. proposed a two-
step method predicting the taxi pickup hotspots, during various road closure incidents, by
utilizing data of past taxi pickup trends [25]. Huang et al. developed a robust model based
on hypertext-induced topic search (HITS), which flawlessly described the relationships of
hotspots and drivers’ experience [9]. Ou et al. put forward a novel deep learning framework,
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STP-TrellisNets, which for the first time augmented the newly-emerged temporal convo-
lutional framework (TrellisNet) for spatial-temporal prediction to accurately predict metro
station passenger (MSP) flows [28]. Liu et al. put forward a new density peaks cluster-
ing (DPC) approach to finding demand hotspots from a low-frequency and low-quality taxi
dataset [19]. Based on an improved DBSCAN algorithm, Mu et al. introduced a taxi pickup
recommendation system that analyzed taxis in hotspot areas according to distinct factors
[26]. Ke et al. developed a new deep learning (DL) method, fusion convolutional LSTM
network (FCL-Net), to deal with these three dependencies within an end-to-end learning
framework [11]. Hao et al. put forward an end-to-end DL architecture that can make multi-
step predictions for all stations in a large-scale underground system [7]. Markou et al. built a
multi-task learning component, and the prediction of getting in a taxi and taxi arrivals were
regarded as two related events to extract the characteristics of space and time [23].

Furthermore, Zhang et al. adopted a method to obtain primary positive spatial rela-
tionships between POIs from DOPs to represent and model spatial dependencies using
multivariate point pattern analysis and presented the MKDE method to predict the service
range from the perspective of taxi drivers because temperature sometimes plays an essen-
tial role [46]. Saadallah et al. proposed an approach named BRIGHT, and it is a supervised
learning framework with the function of predicting demand [32]. The goal of BRIGHT is
to offer precise predictions for short-term demand via an innovative time series analysis
method, which can address distinct types of concept drift. Zhou et al. put forward an ST-
Attn model based on a DL method with a spatiotemporal attention mechanism for MsCPDP,
which followed the general encoder-decoder structure for serial data modeling, yet adopted
a multiple-output policy without RNN units [49]. Yu et al. developed a deep-learning frame-
work combining an altered DBSCAN and a conditional GAN model, and the spatiotemporal
and external dependencies were considered [45]. Li et al. focused on the potential pas-
senger demand prediction of last trains from public traffic data (e.g., FCD data from the
taxi and GPS/smart data from the bus) [14]. Xu et al. presented a sequence learning model
to predict taxi demands based on the latest demand and correlated information [42]. Liu
et al. analyzed the correlation among demand, grid probability of passengers in hotspots,
and taxi drivers’ different income levels. After analyzing the taxi GPS data and the income
level classification of taxi drivers, the pickup spots were filtrated and matched with all these
grids [21]. Qin et al. developed two new hybrids mean integrating seasonal-trend decompo-
sition procedures based on loess (STL) with ESN improved by GOA and Adaboost structure
presented to predict monthly passenger flow [30].

To sum up, the simple structure of the linear models is one of the advantages. How-
ever, the prediction accuracy of these models is relatively low, and poor performance could
be perceived when they are used to deal with nonlinear problems. By contrast, the nonlin-
ear model can make up for the shortcoming of the linear model and improve the accuracy
of passenger hotspot prediction, but it has some disadvantages, such as complex structure
and time-consuming calculation. Meanwhile, the nonlinear model reaches local optimal-
ity due to the selection of parameters. It is undoubted that there are still some drawbacks,
including high I/O and memory cost, time-consuming data processing, and low comput-
ing performance. Moreover, to effectively compensate for the limitations of the traditional
single-machine environment in processing large-scale data, such as low effectiveness and
poor scalability, several works have migrated the SVM algorithm to the Spark distributed
computing platform. For example, Yan et al. put forward a Microblog sentiment classifi-
cation approach with a parallel Spark-based SVM [43], and Shen et al. adopted the fusion
effect of SVM on Spark for speech data mining [35]. Gong et al. developed a parallel
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one-to-many SVM optimization algorithm on Spark [6]. Wang et al. proposed a parallel
Spark-based SVM for intrusion detection [39], and Sai et al. presented a budgeted parallel
primal gradient descent Kernel SVM on Spark [33].

To this end, this paper employs a Spark parallel distributed computing platform to rem-
edy the weakness mentioned above effectively and aims to enhance the effectiveness and
scalability of prediction by optimizing the SVM algorithm. With historical data, passenger
hotspot prediction is mainly used to predict the number of passengers in hotspots, which is
a nonlinear problem. It is well known that SVM and deep learning algorithms can effec-
tively cope with nonlinear problems, especially in the field of the visual analysis [34, 38,
48]. However, these methods are rarely applied to predict passenger hotspots. Therefore,
this paper utilizes the SVM optimization algorithm to predict passenger hotspots. In par-
ticular, parameters of RBF built in the SVM algorithm are not the globally optimal ones.
Therefore, we develop the GS approach to optimize parameters of RBF of the SVM algo-
rithm to find the global optimal parameter combinations, which is beneficial for accurately
predicting the passenger hotspots.

3 GS-SVM algorithm

In this section, we propose a parallel GS-SVM algorithm to improve the accuracy, effective-
ness, and scalability of passenger hotspot prediction on the distributed computing platform
with Spark and then implement the parallelization of the GS-SVM algorithm for predicting
passenger hotspots under the Spark framework.

3.1 Algorithm overview

As shown in Fig. 1, the passenger hotspot prediction with the parallel GS-SVM algorithm
on Spark mainly includes three steps, i.e., data preprocessing, data modeling, and algorithm
implementation. In data preprocessing, there are four phases for handling GPS data based
on the Spark framework consisting of data extraction, data sorting, grid mapping, and data
statistics. Then, in the data modeling, the RBF kernel function parameters of SVM are
optimized by the GS approach. Finally, in the algorithm implementation, to improve the
efficiency and scalability of passenger hotspot prediction, this work uses RDD under the
Spark framework to implement the parallelization of GS-SVM.

3.2 Data preprocessing

Taxi GPS information errors occur in some situations, including GPS equipment failure,
error operation of taxi drivers, and signal delay. Specifically, the signal is weak when taxis
pass through specific places, such as tunnels, leading to the delay in sending messages
and the deviation of the taxi’s longitude and latitude. Also, some drivers deliberately set
GPS operation status to occupied status to avoid being disturbed during the rest period.
To enhance the reliability and accuracy of the algorithm, data preprocessing is needed to
eliminate invalid data and incorrect data. The process of data preprocessing is composed of
four steps shown in Fig. 2.

• Step 1: Data extraction.
Trajectory data in the HDFS file are read, and they are converted into RDD elastic

distribution data set on Spark. Then, RDD is divided for filtering out the invalid data,
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Fig. 1 The overview of the proposed GS-SVM algorithm

and the required characteristics (taxi ID, operating condition, time, longitude, and lat-
itude) are extracted from GPS trajectories of taxicabs. These fields are sorted by taxi
ID (see Algorithm 1).

• Step 2: Data sorting.
According to the results obtained in the previous step, other taxi IDs with the same

operation status can be found. If the operation status of the same taxi ID is 0, it is
evident that there is no passenger in the taxi, while 1 represents that the taxi is occupied.
When the second operation status of taxi ID is equal to 1, the data characteristics,
including ID, operation status, time, longitude, and latitude, are saved and ordered by
time (see Algorithm 2).
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Fig. 2 Data preprocessing. (a) The flow chart of data preprocessing on Spark, and (b) the flow chart of data
on Spark
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• Step 3: Grid mapping.
The longitude and latitude ranges are [39.8283918700-39.9909153300] and

[116.2611551300-116.4954361600] in this work, respectively. The results first
obtained in Step 2 are filtered out in this range. Then, the latitude and longitude of
the filtered data are gridded, where the filtered data are divided into 10*10 grids (see
Algorithm 3 and Fig. 3).

• Step 4: Data statistics.
The time in the data obtained in Step 3 is one day, and it is divided into data with

intervals of fifteen minutes. Next, the number of pick-up hotspots in the same grid at
15-minute intervals is counted (see Algorithm 4).

3.3 Algorithm design

The core idea of SVM is to construct a suitable hyperplane that is used to classify samples
of the same category for addressing the linear inseparability problem. In real-world appli-
cations, there are many linearly inseparable problems. To solve them, inseparable data in
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Fig. 3 Road network grid. (a) 10 × 10 grid, and (b) road network 10 × 10 grid
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the low-dimensional space are usually mapped into a high dimensional space, which makes
the data linearly separable. This kind of non-linear mapping is mainly realized by kernel
function, and the SVM algorithm mainly uses the following four kernel functions:

(1) Linear kernel function.

K(Xi, Xj ) = Xi
T Xj , (1)

(2) Polynomial kernel function.

K(Xi,Xj ) = (γXi
T Xj + r)d , γ > 0, (2)

(3) Gaussian kernel function (RBF).

K(Xi,Xj ) = exp(−γ ||Xi − Xj ||2), γ > 0, (3)

(4) Sigmoid kernel function.

K(Xi,Xj ) = tanh(γXi
T Xj + r), (4)

where γ , r , and d are the kernel parameters. d is used to set the highest degree of the
polynomial kernel function, γ is utilized to set the gamma parameter in the kernel function,
and r is employed to set the coef0 in the kernel.

When the SVM algorithm is employed for regression prediction, the Gaussian kernel
function (RBF) is mainly utilized to project low-dimensional linear data into high-
dimensional space. However, SVM is easily affected by the parameters of the built-in radial
basis function (RBF), which makes the solution of the equation fall into local optimum.
Therefore, this paper uses the grid search (GS) approach to find the optimal parameter
combination of the kernel function in SVM, and the optimized SVM algorithm has better
generalization ability than the traditional SVM algorithm.

The linear regression function of SVM optimized by the Grid Search approach is given
as follows.

f (t) = wφ(x) + b, (5)

where φ(x) is the nonlinear mapping function.
Linear insensitive loss function ε could be defined as follows.

L(f (x), y, ε) =
{

0 |y − f (x)| ≤ ε

|y − f (x)| − ε |y − f (x)| >ε
, (6)

where f (x) represents the prediction value returned by the regression function and y

denotes the real value.
To obtain w and b values, slack variables ξi and ξ∗

i are introduced as follows.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min 1
2‖w‖2 + C

l∑
i=1

(ξi + ξi
∗)

s. t.

⎧⎨
⎩

yi − w�(xi) − b ≤ ε + ξi

−yi + w�(xi) − b ≤ ε + ξi i = 1, 2, · · · , l

ξi ≥ 0, ξi
∗ ≥ 0

, (7)

where C is the punishment factor. The bigger the value of C, the greater the sample pun-
ishment is when training errors are greater than ε. ε stipulates the error requirement of
the regression function. The lower the value of ε, the smaller the error of the regression
function.
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The Lagrangian function is introduced and transformed into a dual solution as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎡
⎢⎢⎢⎣

− 1
2

l∑
i=1

l∑
j=1

(αi − αi
∗)(αi − αi

∗)K(xi, xj )−
l∑

i=1
(αi + αi

∗) +
l∑

i=1
(αi − αi

∗)yi

⎤
⎥⎥⎥⎦

s. t.

⎧⎨
⎩

l∑
i=1

(αi − αi
∗) = 0

0 ≤ αi, αi
∗ ≤ C

, (8)

where K(xi, xj ) = φ(xi)φ(xj ) is the RBF kernel function. The SVM algorithm is very
susceptible to the influence of the RBF kernel function parameters C (penalty factor) and γ

(kernel parameters), and thus we adopt the GS method to find the optimal parameter com-
bination of the RBF kernel function C and γ . The optimal parameter combination obtained
by GS is substituted into (8) to obtain the optimal solution of α = [α1, α2, · · · , αl ] as
α∗ = [α∗

1 , α∗
2 , · · · , α∗

l ], and then there are:

w∗ =
l∑

i=1

(αi − αi
∗)�(xi), (9)

b∗ = 1
Nnsv

{ ∑
0<αi<C

[yi − ∑
xi∈SV

(αi − αi
∗)K(xi, xj ) − ε]

+
∑

0<αi<C

[yi − ∑
xj ∈SV

(αj − αj
∗)K(xi, xj ) + ε]}, (10)

where Nnsv denotes the number of support vectors. We substitute the optimal solution
obtained by (9) and (10) into the linear regression function of the SVM algorithm, and the
optimized GS-SVM algorithm is achieved as follows.

f (x) = w∗�(x) + b∗ =
l∑

i=1

(αi − αi
∗)�(xi)�(x) + b∗

=
l∑

i=1

(αi − αi
∗)K(xi, x) + b∗. (11)

3.4 Algorithm implementation

To improve the efficiency and scalability of predicting passenger hotspots, we implement
the parallelization of the GS-SVM algorithm under the Spark framework. The core of Spark
is RDD, and the GS-SVM algorithm implemented on Spark with RDD is described in Fig. 4
in detail.

As illustrated in Fig. 4, the process of implementing GS-SVM on Spark is mainly
composed of three steps.

• Step 1: Optimizing GS
Through a large number of experiments, the parameter range of the RBF ker-
nel function is selected to be within C = [100, 300, 500, 700, 900] and γ =
[0.001, 0.003, 0.005, 0.007, 0.009], and the optimal parameter combination is chosen
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Fig. 4 The implementation of GS-SVM on Spark

as C = 900 and γ = 0.001. The leave-one-out cross-validation (LOO-CV) method is
used to test the superiority of the parameter combination.

• Step 2: Verifying optimal parameters
We obtain the optimal parameter combination of the GS algorithm by Step 1 C = 900
and γ = 0.001. With the application of the RBF function, the GS-SVM algorithm
is experimentally verified via data sets with different sizes, and a parallel GS-SVM
algorithm based on Spark is obtained.

• Step 3: Predicting passenger hotspots
A parallel Spark-based GS-SVM algorithm is utilized to capture nonlinear information,
which predicts the number of passenger hotspots in the same grid within 15 minutes,
and it is compared with other algorithms under different data sets. It is concluded that
the prediction accuracy of GS-SVM is better than that of other algorithms in this paper
(see Algorithm 5).
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4 Experiments

In this section, compared with several state-of-the-art algorithms, the prediction perfor-
mance of the proposed GS-SVM algorithm for passenger hotspots is validated using a
real-world taxi trajectory data set, and then experimental results are analyzed in detail.

4.1 Experimental setup

This case study is based on a Hadoop distributed computing platform built by a Spark par-
allel processing framework. Furthermore, all experiments are performed on Ubuntu 18.04
OS using Hadoop 3.1.1 with Java, DL4J, and Spark 2.4.3. Our workstation consists of an
Intel Xeon i7-3550 CPU and ECC DDR3 8.0 GB Memory.

In addition, we compare the GS-SVM algorithm with cutting-edge algorithms, including
ARIMA, SVR, LSTM, and CNN.

4.2 Data description

The experimental data come from a real-world GPS trajectory data set (about 50 GB) gen-
erated by 12,000 taxis of Beijing in November 2012. The data set has more than 900 million
GPS trajectory records. The data records of the data set are illustrated in Fig. 5.

In particular, for the extensive comparisons, the aforementioned data set is divided into 7
groups (i.e., 1 day: Nov. 1, 5 days: Nov. 1–Nov. 5, 10 days: Nov. 1–Nov. 10, 15 days: Nov.
1–Nov. 15, 20 days: Nov. 1–Nov. 20, 25 days: Nov. 1–Nov. 25, 30 days: Nov. 1–Nov. 30).

Fig. 5 GPS trajectory data of taxi
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Furthermore, after data preprocessing, we select passenger hotspot data divided into blocks
of 15 minutes of 1 day, 5 days, 10 days, 15 days, 20 days, 25 days, and 30 days in the first
grid for prediction. For each group of data sets, this work takes 70% of the data set as the
training set and 30% as the test set.

4.3 Evaluationmetrics

To validate the measures of effectiveness (MOEs) of the algorithm, we take MAPE, RMSE,
MAE, and ME as four evaluation metrics in this experiment [41], which are defined as
follows.

MAPE = 1

n

n∑
t=1

|Xt − X̂t |
Xt

× 100%, (12)

RMSE =
√√√√ 1

n

n∑
t=1

(Xt − X̂t )2, (13)

MAE = 1

n

n∑
t=1

|Xt−X̂t |, (14)

ME = max
t=1,··· ,n

|Xt − X̂t |, (15)

where Xt denotes the real value of passenger hotspots at the time interval t , X̂t represents the
prediction value of passenger hotspots, and n is the total number of samples in the provided
time. The accuracy of prediction mainly depends on MAPE. The lower the value of MAPE,
the higher the accuracy of the algorithm.

4.4 Experimental results

Based on a large number of experiments, C = [100, 300, 500, 700, 900] and γ =
[0.001, 0.003, 0.005, 0.007, 0.009] are defined in this paper. We also calculate the C value
on the same data set, change the γ value, and traverse all grids to verify the performance of
the parameters, which are illustrated in Table 1 and Fig. 6.

As shown in Table 1 and Fig. 6, when the parameter combination is C = 100, and
γ = 0.001, the accuracy of the training set and the test set are 1, and the MAPE value of the
GS-SVM algorithm is 0.003, and thus the algorithm performance is the best. However, the
cross-validation score is poor. When γ = 0.001 and the values are 300, 500, 700, and 900,
the correct rates of the training set and the test set are equal to 1, and the cross-validation
scores are also 0.94, 0.95, 0.95, and 0.96, respectively. At this time, the MAPE value of
the GS-SVM algorithm is 0.002, and the algorithm performance is the best. Experimental
results indicate that when the parameter combination is C = 900 and γ = 0.001, both the
correct rate of the training set and the test set are 1. Meanwhile, the cross-validation score
reaches the peak, demonstrating that the optimal parameter combination found by the GS
approach is the global optimal rather than local optimal.

To further evaluate the superiority of this parameter combination, this paper validates the
performance of the GS-SVM algorithm when C = 900 and γ = 0.001 under different data
sets, which are illustrated in Table 2.
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Table 1 Comparisons of parameters on the same data set

Data set on 1 day GS-SVM MAPE MAE RMSE ME Training
set score

Test set
score

Best cross-validation
score

C = 100 γ = 0.001 0.003 0.084 0.105 0.224 0.999 1.000 0.790

γ = 0.003 0.002 0.082 0.092 0.191 1.000 1.000 0.330

γ = 0.005 0.003 0.104 0.11 0.212 1.000 1.000 -0.040

γ = 0.007 0.003 0.098 0.109 0.229 1.000 1.000 -0.460

γ = 0.009 0.003 0.108 0.128 0.365 1.000 1.000 -0.780

C = 300 γ = 0.001 0.002 0.076 0.081 0.159 1.000 1.000 0.940

γ = 0.003 0.003 0.093 0.106 0.258 1.000 1.000 0.550

γ = 0.005 0.003 0.099 0.106 0.206 1.000 1.000 0.050

γ = 0.007 0.003 0.108 0.126 0.351 1.000 1.000 -0.410

γ = 0.009 0.003 0.107 0.115 0.245 1.000 1.000 -0.760

C = 500 γ = 0.001 0.002 0.069 0.076 0.104 1.000 1.000 0.950

γ = 0.003 0.002 0.071 0.076 0.101 1.000 1.000 0.590

γ = 0.005 0.003 0.101 0.111 0.243 1.000 1.000 0.060

γ = 0.007 0.003 0.108 0.125 0.341 1.000 1.000 -0.410

γ = 0.009 0.003 0.106 0.112 0.204 1.000 1.000 -0.760

C = 700 γ = 0.001 0.002 0.068 0.075 0.104 1.000 1.000 0.950

γ = 0.003 0.002 0.071 0.076 0.101 1.000 1.000 0.590

γ = 0.005 0.003 0.102 0.114 0.262 1.000 1.000 0.060

γ = 0.007 0.003 0.107 0.125 0.343 1.000 1.000 -0.410

γ = 0.009 0.003 0.106 0.113 0.21 1.000 1.000 -0.760

C = 900 γ = 0.001 0.002 0.068 0.075 0.103 1.000 1.000 0.960

γ = 0.003 0.002 0.071 0.076 0.101 1.000 1.000 0.590

γ = 0.005 0.003 0.102 0.114 0.263 1.000 1.000 0.060

γ = 0.007 0.003 0.108 0.119 0.291 1.000 1.000 -0.410

γ = 0.009 0.003 0.099 0.102 0.147 1.000 1.000 -0.760

It is verified in Table 2 that, when the parameter combination is C = 900 and γ = 0.001,
the correct rates of the training set and the test set under different data sets both tend to 1,
and the cross-validation score also tends to 1. In particular, the value of MAPE is relatively
low. The results mentioned above show that the prediction accuracy of GS-SVM is better
with the above parameter combination. Therefore, the GS approach is feasible to find the
optimal parameter combination of the SVM algorithm.

To validate the effectiveness and accuracy of the GS-SVM algorithm, we divide the pas-
senger boarding data set on the same grid into 1 day, 5 days, 10 days, 15 days, 20 days, 25
days, and 30 days for prediction. Thus, 70% of the data set is utilized for the training set,
and the rest are the test set. The GS-SVM algorithm is compared with existing cutting-edge
algorithms with the same data set, illustrated in Table 3, and the experimental results with
different data sets are shown in Fig. 7.

Like many other studies, the prediction accuracy of the algorithm mainly depends on
the MAPE value [37] in this work. Combined with Table 3, and Figs. 7 and 8, the MAPE
value of the optimized GS-SVM algorithm is far lower than that of SVR, ARIMA, LSTM,
and CNN. More specifically, the experimental results with the data set on 1 day, 5 days, 10
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Fig. 6 Parameter tuning

days, 15 days, 20 days, 25 days, and 30 days are illustrated in Table 3. With the data set
on 30 days, the MAPE value of GS-SVM is 99%, 78.8%, 85.4%, and 96% lower than that
of ARIMA, SVR, LSTM, and CNN, respectively. The MAPE value obtained by GS-SVM
is 99%, 92.8%, 88.9%, 78.4%, 78.6%, 81.3%, and 78.8% lower when seven groups of data
sets are processed, respectively. The aforementioned results show that the SVM algorithm
optimized by the GS approach has better accuracy in predicting passenger hotspots.

Table 2 Performance comparisons of GS-SVM (C = 900, γ = 0.001) on different data sets

GS-SVM (C = 900, γ = 0.001)

Data sets MAPE MAE RMSE ME Training set Test set Best cross-validation

score score score

1 day 0.002 0.068 0.075 0.103 1.000 1.000 0.960

5 days 0.005 0.063 0.071 0.101 1.000 1.000 0.960

10 days 0.005 0.071 0.089 0.602 1.000 1.000 1.000

15 days 0.008 0.296 4.656 94.156 1.000 0.979 1.000

20 days 0.006 0.062 0.070 0.100 1.000 1.000 0.990

25 days 0.006 0.274 5.513 143.745 1.000 0.974 0.990

30 days 0.007 0.576 7.914 161.698 1.000 0.959 0.990
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Table 3 MOEs of ARIMA, SVR, LSTM, CNN, and GS-SVM

Data sets MOEs Algorithms

ARIMA SVR LSTM CNN GS-SVM

1 day MAPE 0.319 0.382 0.659 0.213 0.002

RMSE 20.646 15.746 39.902 11.429 0.075

MAE 15.326 11.141 35.598 10.655 0.068

ME 52.180 35.834 68.978 18.307 0.103

5 days MAPE 0.854 0.069 0.188 0.162 0.005

RMSE 15.442 15.460 17.798 8.094 0.071

MAE 11.869 4.836 9.645 6.749 0.062

ME 53.711 80.591 77.828 20.674 0.108

10 days MAPE 0.775 0.045 0.123 0.219 0.005

RMSE 17.244 16.799 12.688 12.357 0.089

MAE 12.607 4.049 4.597 10.125 0.071

ME 80.500 115.510 89.740 37.740 0.602

15 days MAPE 0.791 0.037 0.044 0.176 0.008

RMSE 17.123 15.852 9.492 11.367 4.656

MAE 12.460 3.651 2.476 9.347 0.296

ME 81.162 155.903 115.230 42.108 94.156

20 days MAPE 0.818 0.028 0.042 0.182 0.006

RMSE 17.449 10.882 4.754 10.634 0.070

MAE 12.663 2.405 2.129 8.688 0.010

ME 79.582 86.173 46.833 30.859 0.100

25 days MAPE 0.821 0.032 0.038 0.172 0.006

RMSE 18.052 15.045 7.017 11.129 5.513

MAE 12.966 3.302 1.720 8.925 0.274

ME 132.095 195.890 139.023 49.616 143.745

30 days MAPE 0.730 0.033 0.048 0.173 0.007

RMSE 18.621 20.069 11.046 12.523 7.914

MAE 13.109 4.103 3.607 9.746 0.576

ME 141.719 202.111 139.212 53.535 161.698

To further evaluate the universality of the parallel GS-SVM algorithm, we select 00 grid,
55 grid, 99 grid, and other surrounding grids to produce the mean value of MAPE under the
data set on 30 days, and plot the results in Tables 4, 5, and 6, respectively.

Table 4 explains the value of MAPE for the surrounding grid of 00 grid, 01 grid, 10 grid,
and 11 grid with the data set on 30 days. Moreover, Table 5 shows the MAPE values of 44
grid, 45 grid, 46 grid, 54 grid, 56 grid, 64 grid, 65 grid, and 66 grid, which are around the
55 grid with the data set on 30 days. Finally, Table 6 illustrates the MAPE values of 88 grid,
89 grid, and 99 grid, around the 99 grid.

From Tables 4, 5, and 6, it is evident that the average values of MAPE generated from the
parallel GS-SVM algorithm are 0.7%, 0.28%, and 0.27%, respectively. These experimental
results show that it is reliable to predict passenger hotspots between different grids in
different areas of passenger hotspots with the parallel GS-SVM algorithm on Spark.
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Fig. 7 Prediction results of GS-SVM on different data sets. (a) 1 day, (b) 5 days, (c) 10 days, (d) 15 days, (e)
20 days , (f) 25 days, and (g) 30 days
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Fig. 8 MOEs. (a) MAPE values of different algorithms on different data sets, and (b) MOEs of 30 days
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Table 4 MOEs values of different grids on the same data set

MOEs

Data sets MAPE MAE RMSE ME

00-30 days 0.007 0.576 7.914 161.698

01-30 days 0.006 0.071 0.168 4.38

10-30 days 0.007 0.349 5.331 109.373

11-30 days 0.007 0.108 1.034 28.317

Table 5 MOEs values of different grids on the same data set

MOEs

Data sets MAPE MAE RMSE ME

44-30 days 0.003 0.904 10.823 235.615

45-30 days 0.003 0.071 0.102 2.044

46-30 days 0.003 0.072 0.078 0.153

54-30 days 0.003 0.544 9.203 266.466

55-30 days 0.006 0.065 0.073 0.100

56-30 days 0.003 0.069 0.130 2.283

64-30 days 0.001 0.302 3.618 77.418

65-30 days 0.002 0.091 0.410 7.795

66-30 days 0.001 0.090 0.362 10.761

Table 6 MOEs values of different grids

MOEs

Data sets MAPE MAE RMSE ME

88-30 days 0.003 0.595 10.716 301.37

89-30 days 0.002 0.069 0.089 1.433

98-30 days 0.004 0.142 2.113 62.632

99-30 days 0.002 0.358 6.385 178.753
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5 Conclusions

In this paper, a parallel GS-SVM algorithm based on Spark was proposed to predict passen-
ger hotspots with real-world GPS trajectories of taxicabs, which was beneficial for locating
passengers timely and accurately. Specifically, the urban traffic road network was gridded
on Spark, and passenger hotspots in the same grid were counted at an interval of 15 min-
utes. Then, the GS approach found the optimal combination of C (penalty factor) and γ

(nuclear parameter) in the RBF function, and it was validated by cross-validation method-
ology. When the optimal combination of the RBF function is C = 900 and γ = 0.001,
both the correct rates of the training set and the test set are 1, and the cross-validation score
reaches the peak, which indicates that finding the optimal parameter combination in the GS
approach is the global optimal rather than the local optimal.

Finally, this combination was substituted into the RBF function. Compared with
ARIMA, SVR, LSTM, and CNN, the MAPE value generated from the proposed GS-SVM
algorithm was decreased by 99.0%, 92.8%, 88.9%, 78.4%, 78.6%, 81.3%, and 78.8% in
seven groups of different data sets. The experimental results demonstrated that our algo-
rithm had a high prediction accuracy and effectively process large-scale traffic data on the
Spark platform. In addition, to validate the universality of GS-SVM, we predicted the sur-
rounding grids by fixing a grid. The surrounding MAPE values of 00 grid, 55 grid, and 99
grid are 0.7%, 0.28%, and 0.27%, respectively, which verified the reliability of GS-SVM.

This work considers the number of passenger hotspots in each grid within 15 minutes but
does not consider the impacts of weather factors, traffic conditions, and passenger mobil-
ity. For example, the travel rate of passengers on sunny days may be higher than on cloudy
and rainy days. When the traffic conditions are good, the travel rate of residents is high,
and passenger mobility may affect the accuracy of the number of passengers in the grid. On
the other hand, this paper only employs the GPS trajectory data of taxis in Beijing to vali-
date the universality of the algorithm, so it is unknown that the optimal combination of the
parameters is still applicable under different data sets. In future work, we will incorporate
the impacts of weather, traffic conditions, and passenger mobility into predicting passenger
hotspots and utilize taxi GPS trajectory data in different cities to evaluate the algorithm.
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