
https://doi.org/10.1007/s11042-022-12043-7

Towards a fully homomorphic symmetric cipher
scheme resistant to plain-text/cipher-text attacks

Khalil Hariss1,2 ·Hassan Noura3

Received: 8 January 2021 / Revised: 22 April 2021 / Accepted: 3 January 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Users’ privacy becomes nowadays an important need and a big challenge for a lot of enter-
prises and service providers especially after adopting the cloud migration strategy. Thus,
Homomorphic Encryption (HE) came as a novel cryptographic approach that enables users’
privacy at the cloud side by allowing computation over encrypted data. Existing HE schemes
are based on either symmetric or asymmetric encryption algorithms. While asymmetric HE
schemes provide the high and the required level of security, they suffer from high compu-
tational complexity and high storage overhead making a big majority of them not practical
for real world applications. On the other hand, symmetric schemes assure the required effi-
ciency, but they are vulnerable to attacks and especially the known plain-text/cipher-text
attacks making their usage limited in practical implementation. The main objective of this
paper is to design a new symmetric HE variant that provides the desired level of efficiency
in implementation and the immunity against data breaches especially the known plain-
text/cipher-text attacks. The proposed scheme, named Homomorphic Hybrid Symmetric
Encryption Scheme (HHSES), which is based on combining the homomorphic behavior
of two well-known symmetric encryption schemes that are the MORE (Matrix Operation
for Randomization and Encryption) approach and the Domingo Ferrer (DF) scheme. The
performance analysis of HHSES confirms its efficiency for real-world applications in com-
parison with a big variety of existing and well known symmetric and asymmetric schemes.
A main drawback of HHSES is the cipher-text dimension expansion after the homomor-
phic multiplication since homomorphic operations are restricted to polynomial operations
over the matrices. Therefore, to fix this issue, we propose a specific Key Switching (KS)
technique after the homomorphic multiplication that reduces the cipher-texts’ dimension
without altering its homomorphic behavior and the primitive classified data. Security anal-
ysis of the new scheme also verifies its immunity against different types of attacks and
especially the known plain-text/cipher-text attacks. Another important contribution in this
work is the optimization of the HHSES encryption and decryption procedures by mak-
ing them parallelized using the Chinese Remainder Theorem (CRT). The implementation
results have shown that the proposed optimization technique reduces the execution time of
the HHSE encryption and decryption algorithms with a ratio close to 1

2 . To the best of our

� Hassan Noura
hassan.noura@univ-fcomte.fr

Extended author information available on the last page of the article.

Published online: 25 February 2022

Multimedia Tools and Applications (2022) 81:14403–14449

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-12043-7&domain=pdf
mailto: hassan.noura@univ-fcomte.fr

knowledge, HHSES is the first symmetric HE scheme immune against the known/chosen
plain-text/cipher-text attacks.

Keywords Symmetric homomorphic cipher scheme · Known plain-text/cipher-text attack ·
Domingo ferrer · MORE approach · PORE approach · RSA ring · Cloud computing

1 Introduction

Cloud computing ensures different services through the Internet. These resources include
tools and applications like data storage, servers, databases, networking, and software. This
technology presents a big variety of benefits for users such as scalabilty, cost reduction, dis-
aster recovery, virtualization, and opportunities for outsourcing of storage and computation.
Despite all of the advantages listed previously, users’ privacy in a cloud system is a major
concern since in some critical cases, performing operations on encrypted data is mandatory.
Users are then obliged to expose some of their secret parameters and decryption policies to
the cloud. Thus, computing over the encrypted data becomes a need especially when users’
life has become trapped within the cloud. While cryptography [15] and steganography [23–
25] are two important techniques used for preserving secret data confidentiality and for
communicating via secret messages, traditional algorithms related to these two techniques
are still limited in a cloud computing scenario.

HE is a modern cryptographic research topic, different from traditional cryptographic
algorithms, that allows non-trusted parties to compute over encrypted data. This new type of
encryption is crucial in the modern world [37] especially with cloud-based applications. An
attractive field of exploring and benefiting from HE advantages is bio-metric data analysis
such as DNA analysis [17], Palmprint [14], fingerprint [18] and eye-print [33] authenti-
cation. An illustration of HE implementation in such applications is shown in Fig. 1. In
the presented figure, data is encrypted and stored in the cloud using HE algorithms, and
different parties can send encrypted requests to the cloud. The latter performs operations
over encrypted data and ships back encrypted answers to the trusted parties for decryption.
Adopting a secure and efficient HE algorithm as a practical solution for bio-metric data
privacy and operations forms an important variant in comparison with some existing tech-
niques such as PalmHash Code and PalmPhasor Code [22] and Dual-key-binding cancelable
palmprint cryptosystem [21]. Especially that some of the latter solutions such as PalmHash
Code suffer from vulnerability to statistical attacks [20].

HE was first known as Privacy Homomorphism (PH) and was introduced in 1978 by
Rivest, Shamir and Adleman with the RSA scheme [30]. At that time, RSA allowed only
multiplication over encrypted data. Nowadays, existing HE schemes allow different types
of computations over encrypted data. While a wide range of the state of art (including sym-
metric and asymmetric homomorphic variants) is given in [1, 11], a brief description of
some well known schemes is shown in Table 1.

The stepping stone in designing an asymmetric HE scheme was achieved by the IBM
researcher Craig Gentry [8] in 2009. Gentry used ideal lattices to design the first Fully
Homomorphic Encryption (FHE) scheme that allows non-bounded circuit evaluation. After-
wards, several encryption schemes based on asymmetric algorithms were proposed such as
the DGHV (Dijk, Gentry, Halevi and Vaikuntanathan) scheme [38] and the BGV scheme [3].
DGHV is a FHE asymmetric scheme that works over the integers. DGHV supports a lim-
ited number of homomorphic operations due to the increase in noise after computing the

14404 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 1 Possible HE implementation in real world applications

cipher-text. Bootstrapping is a refresh mechanism introduced in the literature that decreases
the noise level after each homomorphic operation while preserving the primitive plain-text.
With bootstrapping, DGHV can evaluate circuits with non-bounded depth. BGV is another
asymmetric FHE scheme that works over the lattices. BGV also suffers from high noise
levels after performing homomorphic operations. Modulus Switching (MS) is a new tech-
nique introduced in the literature that extends the circuit evaluation depth by reducing the
noise level after homomorphic operations and preserving the original plain-text. Despite of
the high level of security presented by the DGHV and the BGV schemes, they suffer from
high computation complexity and communication overhead. For example as given in [6],
the size of the DGHV public key can attain 2.3 GB and with an optimized implementation
on a high end workstation, key generation takes 2.2 hours, one bit encryption takes 3 min-
utes, and cipher-text refresh mechanism takes 30 minutes. Similarly, BGV is also based on
complex lattice calculations.

In this paper, we will show that the proposed solution presents a new approach of sym-
metric HE algorithm that can require less performance overhead, and is more robustness
compared to symmetric FHE schemes since it is based on different cryptographic concepts.
Therefore, the proposed solution can be considered as a good candidate for limited real-time
applications or limited devices. In general different asymmetric HE schemes provide a high
level of security, meanwhile their performance is still far from being practical despite of all
the accelerated implementations present in the literature such as [10, 39].

Other researchers took a different direction by investigating the design of symmetric
encryption schemes using linear algebraic operations. In 2002, Joseph Domingo Fer-
rer published a symmetric polynomial based HE scheme known as Domingo Ferrer
scheme (DF) [7]. In 2003, David Wagner analyzed the vulnerabilities of DF and drove a
known plain-text/cipher-attack using polynomial resultant and Gaussian elimination [35].
Matrix Operation for Randomization and Encryption (MORE) is another symmetric HE
scheme [19, 36] based on linear matrix operations. While the security of the MORE
approach is based on the hardness of Rabin’s crypto-system and the factorization of the
product of two large primes, a known plain-text/cipher-text attack can be executed by

14405Multimedia Tools and Applications (2022) 81:14403–14449

Ta
bl
e
1

D
es

cr
ip

tio
n

of
ex

is
tin

g
H

E
sc

he
m

es

Sc
he

m
e

Ty
pe

St
ru

ct
ur

e
H

om
om

or
ph

ic
be

ha
vi

or
Se

cu
ri

ty

R
SA

[3
0]

A
sy

m
m

et
ri

c
In

te
ge

rs
’

R
in

g
M

ul
tip

lic
at

iv
e

H
ar

dn
es

s
of

Fa
ct

or
in

g
L

ar
ge

In
te

ge
rs

(N
=

p
×

q
)

Pa
ill

ie
r

[2
8]

A
sy

m
m

et
ri

c
In

te
ge

rs
’

R
in

g
A

dd
iti

ve
H

ar
dn

es
s

of
C

om
po

si
te

R
es

id
uo

si
ty

(D
C

R
)

Pr
ob

le
m

D
G

H
V

[3
8]

A
sy

m
m

et
ri

c
In

te
ge

rs
’

R
in

g
So

m
ew

ha
tH

om
om

or
ph

ic
H

ar
dn

es
s

of
G

en
er

al
A

pp
ro

xi
m

at
e

C
om

m
on

D
iv

is
or

(G
A

C
D

)

B
G

V
[3

]
A

sy
m

m
et

ri
c

L
at

tic
es

’
R

in
g

So
m

ew
ha

tH
om

om
or

ph
ic

H
ar

dn
es

s
of

L
ea

rn
in

g
W

ith
E

rr
or

s
(L

W
E

)

M
O

R
E

[1
9,

36
]

Sy
m

m
et

ri
c

M
at

ri
x

B
as

ed
A

dd
iti

ve
an

d
M

ul
tip

lic
at

iv
e

K
no

w
n

Pl
ai

n-
te

xt
/C

ip
he

r-
te

xt
A

tta
ck

→
M

at
ri

x
St

ru
ct

ur
e

PO
R

E
[1

9]
Sy

m
m

et
ri

c
Po

ly
no

m
ia

l’s
R

in
g

A
dd

iti
ve

an
d

M
ul

tip
lic

at
iv

e
K

no
w

n
Pl

ai
n-

te
xt

/C
ip

he
r-

te
xt

A
tta

ck
→

L
in

ea
r

St
ru

ct
ur

e

D
F

[7
]

Sy
m

m
et

ri
c

Po
ly

no
m

ia
l’s

R
in

g
A

dd
iti

ve
an

d
M

ul
tip

lic
at

iv
e

K
no

w
n

Pl
ai

n-
te

xt
/C

ip
he

r-
te

xt
A

tta
ck

→
Po

ly
no

m
ia

lR
es

ul
ta

nt
s

N
O

H
E

[1
3]

Sy
m

m
et

ri
c

B
it’

s
R

in
g

A
dd

iti
ve

an
d

M
ul

tip
lic

at
iv

e
K

no
w

n
Pl

ai
n-

te
xt

/C
ip

he
r-

te
xt

A
tta

ck
→

N
o

A
va

la
nc

he
E

ff
ec

t

14406 Multimedia Tools and Applications (2022) 81:14403–14449

calculating the eigen-vectors. The PORE (Polynomial Operation for Randomization and
Encryption) approach [19] is also a symmetric HE scheme based on polynomial operation
over the cipher-texts. The latter scheme is sensitive to known plain-text/cipher-text attack
where secret key can be revealed while knowing only one couple of plain-text and its corre-
spondent cipher-text. Not Operation for Homomorphic Encryption (NOHE) [13], is another
symmetric HE scheme based on the homomorphic behavior of the logic NOT gate. As stated
in [13], a known plain-text/cipher-text attack can be performed on the NOHE scheme due
to the lack of the avalanche effect.

As far as we know, we have built the first symmetric encryption scheme that can resist
several types of attacks including the known plain-text/cipher-text attacks. The proposed
scheme is realized by mixing the homomorphic behavior of both, the MORE and the DF
approaches. The resultant scheme is referred to as the Homomorphic Hybrid Symmetric
Encryption Scheme (HHSES). Crypt-analysis has shown that HHSES is resistant to differ-
ent types of attacks including the known plain-text/cipher-text attacks. Besides, high level
of efficiency is validated by implementation.

The rest of this paper is organized as follows: Section 2 introduces the HE concept
and homomorphic properties and presents the state of art and some of the very well-
known HE schemes for both symmetric (MORE, PORE and DF) and asymmetric (BGV)
approaches. Section 3 introduces the proposed scheme (HHSES) that combines the homo-
morphic behavior of MORE and DF approaches. Security analysis of the HHSES is given
in Section 4, where different security tests validate the scheme’s immunity against different
types of attacks such as statistical attacks, and related key attacks. Security tests also ver-
ify the fulfilment of both uniformity and independence properties and the avalanche effect.
Finally a theoretical crypt-analysis shows that the HHSES is immune against known plain-
text/cipher-text attacks even with the lowest encryption parameters. Implementations under
Python using SageMath library, and performance analysis of the new scheme are provided
in Section 5 along with a comparison with symmetric (MORE, PORE and DF) and asym-
metric (BGV) schemes. The correctness of the CRT optimization for both encryption and
decryption procedures is validated by implementation in Section 6. Conclusion and future
work are listed in Section 7.

2 State of art and existing schemes

In this section first HE concept is presented, then some of the well known symmetric
(MORE, PORE and DF) and asymmetric (BGV) HE schemes are described.

2.1 Homomorphic Encryption Concept

An encryption scheme (β) having an encryption function (Enc) under a secret key (K) is
said to be homomorphic, if for any circuit C that runs a function f , the evaluation procedure
satisfies the following relation [9]:

EncK(f (X)) = f (EncK(X)) (1)

Where X = [x1, x2, · · · , xl] is a tuple of l input plain-texts.
C is an electrical circuit written as a Boolean function. Boolean functions have a polynomial
form that consists of a set of addition and multiplication gates as presented in Fig. 2.

Thus, building a HE scheme that evaluates a set of cipher-texts over any given electrical
circuit is accomplished by applying these two basic properties defined by:

14407Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 2 Designing HE cipher scheme from electrical circuit to achieve homomorphic arithmetic operations:
addition and multiplication

1. Addition:

EncK(x1 + x2 mod(M)) = EncK(x1) + EncK(x2) mod(N) (2)

2. Multiplication:

EncK(x1 × x2 mod(M)) = EncK(x1) × EncK(x2) mod(N) (3)

Where x1 and x2 are two inputs plain-texts, ZN represents the plain-texts ring and ZM

represents the cipher-texts ring.

2.2 Symmetric HE schemes

In this part, different cryptographic functions of some well known symmetric HE schemes
(MORE, PORE and DF) are explained in detailed. In addition, crypt-analysis and some
problems related to their implementations are listed.

2.2.1 MORE approach

The MORE Approach is a symmetric encryption scheme that is based on matrix operations.
It was published in 2012 by the authors of [36]. The security of the scheme resides in the
hardness of factoring the product of large prime integers (i.e similar to RSA). A known
plain-text/cipher-text attack is possible over the MORE due to its matrix structure and it is
achieved by calculating the cipher matrix eigen-values. An explanation of this scheme is
given below:

1. Design Idea: the basic idea starts with Rabin’s encryption algorithm [5] introduced by
the following equation:

E(x) = x2(mod(N)) (4)

Where x is a plain-text and N = p × q (p and q are two large prime integers). The
security of Rabin’s crypto-system is based on the hardness of factoring large prime
integers (N = p × q). Rabin’s crypto-system decryption procedure is then achieved
using the Chinese Remainder Theorem (CRT) and the two prime factors of N (p and
q).

2. BasicMatrix Encryption: given that Rabin’s crypto-system allows only multiplication
over encrypted data, a simple matrix based HE scheme is built as follows:

E(x,K) = K−1
[
x 0
0 r

]
K mod(N) (5)

14408 Multimedia Tools and Applications (2022) 81:14403–14449

where K is an invertible matrix in the ring ZN and r is a random variable chosen also
from the ring ZN .

3. Homomorphic Properties: given two plain-texts (x1, x2) and a secret (2×2) invertible
matrix K from the ring ZN , homomorphic properties are verified as listed below:

(a) Addition:

(E(x1, K) + E(x2,K)) mod(N) = (K−1
[
x1 0
0 r1

]
K +

K−1
[
x2 0
0 r2

]
K) mod(N) =

(K−1
[
x1 + x2 0

0 r1 + r2

]
K) mod(N) = Enc(x1 + x2, K) mod(N)

(b) Multiplication:

((E(x1,K) × E(x2,K)) mod(N) = (K−1
[
x1 0
0 r1

]
K ×

K−1
[
x2 0
0 r2

]
K) mod(N)=

(K−1
[
x1 × x2 0

0 r1 × r2

]
K) mod(N) = Enc(x1 × x2,K) mod(N)

Where r1 and r2 are two random variables chosen from the public ring ZN .

4. Security of the Basic Matrix Scheme:

(a) Characteristic Equation: a possible attack on this scheme is achieved by calculating
the eigen-values of the cipher matrix E(x, k) given by (5); eigen-values represent
the plain-texts. A practical solution for the attacker is deriving the characteristic
equation given by:

P(z) = det (z − E(x,K)) mod(N) = z2 − (x + r)z + xr = 0 mod(N) (6)

Where z is the polynomial variable, x and r are the same cryptographic parameters
given in (5). It is infeasible for the attacker to solve the characteristic equation given
in (6) due to Rabin’s crypto-system (i.e the hardness of revealing two large prime
integers p and q (N = p × q)).

(b) Known Plain-text/Cipher-text Attack: knowing one couple of plain-text/cipher-
text (a, E(a,K)), an attacker can drive a known plain-text/cipher-text attack over
this basic matrix scheme. The related attack is achieved by calculating the eigen-
vectors of the cipher matrix E(a, k). Let �v be an eigen-vector, �v can be retrieved
by applying the following equation:

f (�v) = E(a,K) × �v = a × �v (7)

Remark In the rest of this article, diag(x1, x2,xl) represents a diagonal square
matrix of dimension l × l defined by:

diag(x1, x2,xl) =

⎡
⎢⎢⎢⎢⎢⎣

x1, 0, 0, 0, 0, · · · 0
0, x2, 0, 0, 0, · · · 0
0, 0, x3, 0, 0, · · · 0
...

...
...

...
...

. . .
...

0, 0, 0, 0, 0, · · · xl

⎤
⎥⎥⎥⎥⎥⎦

14409Multimedia Tools and Applications (2022) 81:14403–14449

(c) MORE Approach [19, 36]: the formal MORE Approach is presented in this part.
First, an invertible (4 × 4) matrix K is picked as a secret key of the encryption
scheme. Starting from a plain-text x ∈ ZN , a diagonal matrix diag(x, a, b, c) is
constructed. Different parameters a, b and c listed in the previous diagonal matrix
are the solutions to a set of linear congruences depending on the plain-text x and
a random value r ∈ ZN (i.e. a, b and c are calculated using the CRT). The
corresponding cipher-text C is the similarity transformation of the matrix K by
diag(x, a, b, c) : C = K−1 diag(x, a, b, c) K . Given {fi}mi=1, where fi = piqi

such that pi and qi are two large prime integers and N = ∏m
i=1 fi such that

m = O(poly(λ)), where λ is the security parameter.
The encryption algorithm is then represented by the following steps:

Remark Dimension is equal to 4 in the MORE Approach for simplicity, however,
the scheme is applicable for any matrix dimension.

(d) MORE Crypt-analysis: as it was proven in [36], the MORE Approach is sensitive
to chosen plain-text/cipher-text attack. The crypt-analysis of this scheme is given
by the two following lemmas and theorem:

Lemma 1 Letm′ be the number of plain-text/cipher-text pairs the adversary has access
to. If for some m′, there exists an algorithm Ad(C = E(x, k), {xl, Cl = E(xl,K)}m′

l=1)

such that given m′ chosen plain-text and cipher-text pairs (xl, Cl) and a cipher-text
C, returns x with probability p, then there exists a PPT algorithm Af using Ad as an
oracle to factor fi for some i with probability:

p′ = p(1 − 1

pi

)(1 − (1 − 1

m + 1
(1 − 1

m + 1
)
m′

)

m

) (8)

Lemma 2 Assuming that the probability to factor a λ bit integer in polynomial time is
negligible, the encryption scheme is secure for m′ ≤ m.

14410 Multimedia Tools and Applications (2022) 81:14403–14449

Theorem 1 The bound m′ of Lemma 1 can be weakened to m′ ≤ m ln poly(λ), where
poly(λ) denotes some fixed polynomial in λ.

2.2.2 PORE approach

The PORE Approach [19] stands for Polynomial Operation for Randomization and Encryp-
tion. This encryption scheme assures homomorphic operations over cipher-texts while
using polynomial calculations. The PORE Approach is vulnerable to the known plain-
text/cipher-text attacks due to its linear structure as will be discussed in the upcoming PORE
crypt-analysis part. A detailed explanation of this scheme is given as follows:

1. Cryptographic Parameters:

(a) Security Parameter λ: based on the chosen security level of the scheme.
(b) Public Modulus N : given {fi}mi=1, where fi = piqi such that pi and qi are

two large prime integers, the public modulus N = ∏m
i=1 fi such that m =

O(poly(λ)).
(c) Secret Key (v1, v2): 2 secret big integers chosen randomly from the public ring

ZN .
(d) Public Polynomial: a public polynomial PP(v) of variable v is computed as fol-

lows: PP(v) = (v − v1)(v − v2) = v2 − (v1 + v2)v + v1v2 = v2 + bv + c, where
b = −(v1 + v2) mod(N) and c = v1v2 mod(N). The two public parameters
are shared with the third party to perform computation over encrypted data.

Remark While knowing the two public parameters b = −(v1 + v2) mod(N)

and c = (v1v2) mod(N) by the third non-trusted party, revealing secret values
v1, v2 is done by finding the root of the public polynomial PP(v) = v2 + bv + c

which is a hard problem based on the Rabin’s cypto-system (i.e the hardness of
factoring N = ∏m

i=1 fi where fi = piqi) as discussed in Section 2.2.1.

2. Encryption Procedure: starting from a plain-text x ∈ ZN and secret key (v1, v2) ∈
Z

2
N , its corresponding cipher-text C = (c1, c2) mod(N) is calculated based on the

following algorithm:
3. Decryption Procedure: having a cipher-text C = (c1, c2) and the secret key v =

(v1, v2), the plain-text x is retrieved by applying the following equation:

x = c1v1 + c2 mod(N) (9)

14411Multimedia Tools and Applications (2022) 81:14403–14449

4. Homomorphic Properties: having two plain-texts x1 and x2 with their respective cipher-
texts C1 = (c1

1, c
1
2) and C2 = (c2

1, c
2
2), homomorphic addition and multiplication over

cipher-texts are achieved based on the following properties:

(a) Homomorphic Addition: the resultant cipher-text after homomorphic multiplica-
tion is C(1+2) defined by C(1+2) = (c

(1+2)
1 , c

(1+2)
2) = (c1

1 + c2
1, c

1
2 + c2

2) because
x1 + x2 = c1

1v1 + c1
2 + c2

1v1 + c2
2 = (c1

1 + c2
1)v1 + (c1

2 + c2
2).

(b) Homomorphic Multiplication: the resultant cipher-text after homomorphic multi-
plication is defined by C(1×2) = (c

(1×2)
1 , c

(1×2)
2) = ((c1

1 +c1
2)(c

2
1 +c2

2)−c1
1c

2
1(1+

b)−c1
2c

2
2, c1

2c
2
2 −c1

1c
1
2c), where b and c are the two public parameters given pre-

viously and shared with the third non-trusted party. Homomorphic multiplication
is verified by applying the decryption equation given in (9) over C(1×2):

c
(1×2)
1 v1 + c

(1×2)
2 = ((c1

1+c1
2)(c

2
1 + c2

2) − c1
1c

2
1(1+b)−c1

2c
2
2)v1 + c1

2c
2
2 − c1

1c
1
2c

= (c1
1c

2
1)v

2
1 + (c1

1c
2
2 + c1

2c
2
1)v1 + c1

2 + c2
2

= (c1
1v1 + c1

2)(c
2
1v1 + c2

2)

= (x1 × x2) mod(N)

5. PORE Crypt-analysis: due to its linear structure (linear systems), the PORE Approach
is vulnerable to known plain-text/cipher-text attack where revealing secret key (v1, v2)

is possible while knowing only one couple of plain-text/cipher-text. Starting from one
couple of known plain-text/cipher-text (x, C = (c1, c2)), the attacker can reveal the
secret key while applying the following algoithm:

2.2.3 Domingo rerrer (DF) scheme

DF scheme is a symmetric encryption scheme published in 2002 by Joseph Domingo Ferrer
in [7]. The scheme is polynomial based, each cipher-text is seen as a uni-variate polynomial.
Homomorphic properties are then defined as polynomial operations over the cipher-texts.
DF scheme suffers form two main problems that are cipher-texts expansion after homomor-
phic multiplication and sensitivity to the known plain-text/cipher-text attack. An explanation
of this scheme is given below:

1. Security Parameters: different security parameters of DF scheme [7] are given by the
following:

(a) λ: Security Parameter based on the chosen level of security.
(b) m: Pubic Modulus m > 10200 should have many small divisors.
(c) d: Public Integer d > 2 represents the cipher-text dimension.
(d) m′: Secret Modulus, a small divisor of the public modulus such that m = (m′)λ.
(e) r: Secret Key r ∈ Zm should be invertible in the public ring Zm.

2. Encryption Procedure: Starting from a plain-text a ∈ Zm′ , the encryption procedure is
given by the two following steps:

14412 Multimedia Tools and Applications (2022) 81:14403–14449

(a) Decompose Function: the plain-text a is randomly decomposed into d elements
(a(1), a(2), a(3), · · · , a(d)) ∈ [Zm]d such that

∑d
i=1a

(i) mod(m′) = a(1)+a(2)+
· · · + a(d) mod(m′) = a

(b) Encryption Procedure: an invertible secret key r is randomly picked from the
public ring Zm, the cipher-text π of the plain-text a is then given by:
π = [a(1)r, a(2)r2, a(3)r3, · · · , a(d)rd].
Cipher-text can be represented as a uni-variate polynomial π(t) of variable t :
π(t) = (a(1)r)t + (a(2)r2)t2 + (a(3)r3)t3 + · · · + (a(d)rd)td (mod(m)).

3. Decryption Procedure: the decryption is simply done by multiplying the ith coordi-
nate π(i) of the cipher-text π by the r−i mod(m) to retrieve a(i) mod(m), then
performing

∑d
i=1a

(i) mod(m′) to retrieve a.
4. Homomorphic Properties: the two homomorphic properties of DF (addition and mul-

tiplication) are investigated in this part. Let (C1, C2) respectively two cipher-texts
generated from two different plain-texts (a1, a2) taken from the private ring Zm′ while
using the security parameters and the DF encryption procedure given previously.

C1 = [a(1)
1 r, a

(2)
1 r2, a

(3)
1 r3, · · · , a

(d)
1 rd]

C2 = [a(1)
2 r, a

(2)
2 r2, a

(3)
2 r3, · · · , a

(d)
2 rd]

C1 and C2 are then represented in their uni-variate polynomial form with variable t as
follows:

C1 → π1(t) = (a
(1)
1 r)t + (a

(2)
1 r2)t2 + (a

(3)
1 r3)t3 + · · · + (a

(d)
1 rd)tdmod(m).

C2 → π2(t) = (a
(1)
2 r)t + (a

(2)
2 r2)t2 + (a

(3)
2 r3)t3 + · · · + (a

(d)
2 rd)tdmod(m)

Given that, homomorphic operations of DF encryption scheme are restricted to poly-
nomial calculations over encrypted data, homomorphic addition and multiplication are
achieved as given below:

(a) Addition: the two polynomials π1(t) and π2(t) are added in the public ring Zm[T]
as follows:

π1(t) + π2(t) = ((a
(1)
1 + a

(1)
2)r)t + ((a

(2)
1 + a

(2)
2)r2)t2 + (10)

((a
(3)
1 + a

(3)
2)r3)t3 +((a(d)

1 + a
(d)
2)rd)tdmod(m)

The resultant cipher-text after homomorphic addition is:

C1+2 =[(a(1)
1 +a

(1)
2)r, (a

(2)
1 +a

(2)
2)r2, (a

(3)
1 +a

(3)
2)r3, . . . , (a

(d)
1 +a

(d)
2)rd]. (11)

C1+2 is decrypted using the vector:

[r1, r−2, r−3, · · · , r−d] ∈ [Zm]d (12)

Thus, Dec(r,m′)(C1+2) = (a1 + a2) is validated. Thus, the scheme is additive
homomorphic.

(b) Multiplication: the two polynomials π1(t) and π2(t) are multiplied in the public
ring Zm[T] as follows:

π1(t) × π2(t) = ((a
(1)
1 a

(1)
2)r2)t2 + ((a

(1)
1 a

(2)
2 + a

(1)
2 a

(2)
1)r3)t3 + ((a

(1)
1 a

(3)
2

+a
(3)
1 a

(1)
2 + a

(2)
1 a

(2)
2)r4)t4 + . . . + ((a

(d)
1 a

(d)
2)r2d)t2d

14413Multimedia Tools and Applications (2022) 81:14403–14449

The resultant cipher-text after homomorphic multiplication is:

C1×2 = [(a(1)
1 a

(1)
2)r2, (a

(1)
1 a

(2)
2 + a

(1)
2 a

(2)
1)r3, (a

(1)
1 a

(3)
2 + a

(3)
1 a

(1)
2

+a
(2)
1 a

(2)
2)r4,, (a(d)

1 a
(d)
2)r2d] (13)

The decryption of C1×2 is done using the vector [r2, r3, r4, · · · , r2d] ∈ Z
2d−1

and Dec(r,m′) = (a1 × a2) is validated. Thus, the scheme is multiplicative
homomorphic.

5. DF cipher-text expansion: as mentioned previously, homomorphic multiplication in DF
scheme is a polynomial multiplication over the cipher-texts. The cipher-text dimension
will grow exponentially with homomorphic multiplication. One disadvantage of the
DF scheme is that after evaluating a multiplicative circuit of high depth, the scheme
loses its efficiency due to the resultant communication overhead (i.e. after performing k

multiplication operations over 2k cipher-texts of dimension d, the cipher-text dimension
becomes 2k(d − 1) + 1).

6. DF Crypt-analysis: DF crypt-analysis has shown that the scheme is sensitive to known
plain-text attack due to its algebraic structure. Using uni-variate polynomial resul-
tant and Gaussian elimination, David Wagner has shown in [35] that starting with
4 × poly(λ) (λ is the security parameter) couples of plain-text/cipher-text (ai/Ci =
[a(1)

i r, a
(2)
i r2, · · · , a

(d)
i rd]), revealing secret parameters (r,m′) is possible with a

probability close to (1 − (1 − 6

π2
)poly(λ)).

2.3 BGV asymmetric scheme

BGV is a lattice based asymmetric encryption scheme published by the authors of [3]. The
scheme suffers from two main problems that are cipher-text expansion after homomorphic
multiplication and noise increase after circuit evaluation. The first problem is resolved using
the Key Switching (KS) technique and the second one is resolved using the Modulus Switch-
ing (MS) technique. The security of the scheme is based on the hardness of Learning With
Errors (LWE) and, as far as we know, no attack is introduced againt the concerned scheme.
A detailed explanation of the BGV scheme is given below:

1. Basic Scheme: the basic BGV [3, 4] scheme can be modeled as a symmetric encryption
scheme, that operates over the bit level. Secret key and cipher-text are given respectively
by s ∈ Z

[m,1]
q and c ∈ Z

[m,1]
q , where m is the lattice dimension.

Decryption is given by the two following vector and matrix forms, where decryption
works as long as the noise ((s.c)mod(q) << αq:

V ector Form : (〈s, c〉mod(q))mod(2)

Matrix Form : ((s.c)mod(q))mod(2)
(14)

2. Building the Homomorphic Scheme

(a) Addition: the scheme is an instance of Error Correcting Code (ERC), addition is
valid as long as the noise is small enough.

(b) Multiplication: building homomorphic multiplication is done using tensor product
as given in the following equation:

M = u ⊗ v = {Mij = (uivj)} (15)

14414 Multimedia Tools and Applications (2022) 81:14403–14449

It is easy to demonstrate that:

s(u ⊗ v)st = 〈s, u〉〈s, v〉 = (s.u)(s.v) (16)

If the noise level is low enough after multiplicative operation, decryption can be written
as:

(s(u ⊗ v)stmod(q))mod(2) = ((〈s, u〉〈s, v〉)mod(q))mod(2) (17)

It is more preferable to deal with vectors rather than matrices and the following
linearization is proposed:

Given that:

c = u ⊗ v =

⎡
⎢⎢⎢⎣

u1v1 u1v2 · · · u1vm

u2v1 u2v2 · · · u2vm

...
...

. . .
...

umv1 umv2 · · · umvm

⎤
⎥⎥⎥⎦

An extended linear version of c is represented by c∗ = vect (u ⊗ v) =
[u1v1, u1v2,, umvm]

s ⊗ s =

⎡
⎢⎢⎢⎣

s1s1 s1s2 · · · .s1sm
s2s1 s2s2 s2sm

...
...

. . .
...

sms1 sms2 · · · smsm

⎤
⎥⎥⎥⎦

and

s∗ = vect (s ⊗ s) = [s1s1, s1s2, · · · , smsm]
It is simple to demonstrate that 〈c∗, s∗〉 = 〈s, u〉〈s, v〉 = sMst and the decryption
equation can then be written by the following:

Dec(c∗) = (〈c∗, s∗〉mod(q))mod(2) (18)

(18) works as long as the noise (〈c∗, s∗〉mod(q)) is quite small.
3. Dimension Growth: due to the tensor product used with homomorphic multiplication,

the cipher-text dimension will grow exponentially. Starting from 2k cipher-texts of
dimension m each and after doing k multiplication operations, the resultant cipher-text
dimension becomes m2k

.
To resolve the cipher-text dimension expansion present in BGV scheme, Key Switching
(KS) is introduced. The main concept of KS is that after having an extended cipher-
text c∗ (of dimension n > m) with respect to an extended secret key s∗ = vect (s ⊗ s)

(of dimension n > m), a new lower dimension cipher-text c′ with respect to a lower
dimension secret key s′ is built such that:

Decs′(c′) = Decs∗(c∗) (19)

To achieve KS, an encryption matrix M ∈ Z
[m,n]
q is published and defined by:

M(s∗ → s), c′ = Mc∗ ([m.1] = [m, n][n, 1]) m < n (20)

Remark The detailed explanation, implementation and performance analysis regarding
KS are given in [3, 11].

14415Multimedia Tools and Applications (2022) 81:14403–14449

4. Level Somewhat Homomorphic Scheme

(a) Basic BGV SHE Scheme: Level SHE scheme symbolizes a level by level path.
For a circuit of depth d, d random secret keys are generated as si = [1|ti] ∈ Z

m
q

where 0 ≤ i ≤ d − 1. For each level i of the circuit, a public matrix Mi ∈ Z
[m,n]
q

is published. For level 0, M0 = M(0 → s0) is generated and for any level i

Mi = M(s∗∗
i → si) is generated.

i Parameters Generation: starting from security parameter λ, the lattice
dimension is given by m ≈ poly(λ) and the public ring dimension is
given by q ≈ poly(m).

ii Public Matrices Generation:

s0M0 = 2e0
siMi = 2ei + s∗∗

i−1
(21)

iii Encryption Procedure: the encryption mechanism in this case is done
based on the following equation:

Enc(b) = M0r +

⎡
⎢⎢⎣

b

0
· · ·
0

⎤
⎥⎥⎦ (22)

where r is a random vector ∈ {0, 1}n.
iv Decryption Procedure: the decryption mechanism at any level i is

performed using the secret key si and applying the following equation:

Dec(c, i) = (〈si , ci〉mod(q))mod(2) (23)

v Homomorphic Properties: starting from two cipher-texts (c1, i) and
(c2, i) at a level i, homomorphic properties can be done by the follow-
ing:

A. Addition: addition is simply performed by (cadd , i) = (c1 +
c2, i).

B. Multiplication: multiplication is performed by applying the
tensor product over the two cipher-texts (c1, i) and (c2, i) at
level i. The resultant cipher-text is then linearized by c∗ =
vect (c1, c2). Finally, the fresh cipher-text is calculated by
c′ = Mc∗based on the KS technique and the public matrix
M .

(b) Making the Scheme Fully Homomorphic: the noise at level i is given by
(scimod(q)). Noise level will be doubled after addition and squared after multi-
plication. In this way, a circuit of limited depth can be evaluated as long as the
noise is lower than the modulus q. To evaluate deeper circuit, the Modulus Switch-
ing (MS) technique is introduced in the literature. MS is based on switching into
another modulus (different than q) but the decryption is always possible. The key

14416 Multimedia Tools and Applications (2022) 81:14403–14449

challenge with MS is that while having a cipher-text c with respect to a secret key
s, a new cipher-text c′ for some modulus f < q should be built such that:

(〈c′, s〉mod(f))mod(2) = (〈c, s〉mod(q))mod(2) (24)

Remark The detailed explanation, implementation and performance analysis of
MS are given in [3, 11].

5. BGV Crypt-analysis: The hardness of the BGV scheme is based on the hardness of
Learning With Error (LWE) introduced by Oded Regev in [26, 29]. As far as we known,
no attack is introduced in the literature against the BGV scheme.

3 Homomorphic hybrid symmetric encryption scheme (HHSES)

HHSES is a new symmetric encryption scheme obtained by mixing the homomorphic
behavior of two well known symmetric variants: the MORE approach and the DF scheme.
Following the scheme’s topology, homomorphic properties are based on polynomial oper-
ations over matrices. One main disadvantage of the new scheme is exponential cipher-text
expansion due to polynomial multiplication over matrices. The scheme will suffer from
high storage overhead and low performance especially when dealing with circuits of high
depth. To resolve the latter problem, KS technique [3, 11] is applied to reduce the cipher-text
dimension and hence improve its efficiency. One main characteristic of HHSES is its resis-
tance against different types of attacks including the known plain-text/cipher-text attacks. A
detailed explanation of designing the new scheme is presented in the next.

3.1 Building the scheme

In this part, we will describe the mathematical concept of the proposed HE cipher scheme
including the security parameters in addition to encryption and decryption procedures.

3.1.1 HHSES parameters

HHSES parameters are a mix of both MORE and DF encryption parameters and are given
as follows:

1. λ: security parameter, based on the required security level.
2. ψ : secret modulus, that represents the dimension of the private ring Zψ , where different

plain-texts are chosen.
3. N , RSA ring modulus: is given as N = ∏m

i=1 fi , {fi}mi=1 and fi = piqi such that pi

and qi are two large prime integers, where m = O(poly(λ)).
4. �= ψ × N : is the public modulus that represents the dimension of the public ring Z� .
5. d: cipher-text dimension, each plain-text is decomposed into d elements using the

random decompose function of DF given in Section (3.1.2).
6. r: invertible secret key, an invertible secret key chosen from the public ring Z� .
7. K: invertible secret matrix given by K = (ki,j), where ki,j ∈ Z� .

In our previous article [12], we proposed a lightweight and practical technique to gen-
erate an invertible random square matrix K as explained in Appendix A. The authors
of [34] detected a vulnerability in this model if the dynamic key approach is not used,
which is in contrast to the presented assumption and the main idea of this work. The

14417Multimedia Tools and Applications (2022) 81:14403–14449

strength of the enhanced MORE approach in resisting known plain-text/cipher-text
attacks is weak as explained in details in Appendix B if the employed cryptographic
primitives are static. Here, a new countermeasure is proposed against this vulnerability
in the case of static cryptographic primitives are used. The proposed solution applies a
new random model in generating the invertible secret matrix key K , which is based on
the following steps.

(a) Step 1: lower bound triangular matrix A, a random invertible lower bound matrix
A of dimension (n × n) is generated based on the following form:

A =

⎡
⎢⎢⎢⎢⎢⎣

a1,1 0 0 0 · · · 0
a1,2 a2,2 0 0 · · · 0
a3,1 a3,2 a3,3 0 · · · 0

...
...

...
. . .

...
an,1 an,2 an,3 0 · · · . an,n

⎤
⎥⎥⎥⎥⎥⎦

(25)

The matrix A is created above such that gcd(ai,i , �) = 1 for i ∈ {1, 2, 3, ..., n},
thus (ai,i)

−1 ∈ Z� . The lower bound matrix A is invertible since Det(A) =∏n
i=1 ai,i and (Det (A))−1 = ∏n

i=1(ai,i)
−1.

(b) Step 2: higher bound triangular matrix B, a random invertible matrix B of
dimension (n × n) is generated based on the following form:

B =

⎡
⎢⎢⎢⎢⎢⎣

b1,1 b1,2 b1,3 · · · b1,n

0 b2,2 b2,3 · · · b2,n

0 0 b3,3 · · · b3,n

...
...

. . .
...

0 0 0 · · · bn,n

⎤
⎥⎥⎥⎥⎥⎦

(26)

B is built such that gcd(bi,i , �) = 1. Higher bound matrix B is invertible since
(Det (B))−1 exists in the ring Z� .

(c) Step 3: random secret invertible matrix K Generation, the invertible matrix K is
then given by A × B. (K)−1 exits and (K)−1 = (A × B)−1 = (B)−1 × (A)−1.

Due to the new secret matrix K generation, the attack given in [34] is no more possible.
It is mentioned previously that the latter attack profits from the linear relations existent
within the matrix K given in (38). The new matrix generation presented is based on
creating the invertible secret matrix K from random values where no clear patterns
or linear relations exist among different elements of the matrix K . This new way of
building K can generate odd and even matrices, while with the previous one ((38)) only
matrices with even dimensions were possible.

3.1.2 Encryption procedure

Starting from a vector X = [x1, x2, ..., xk, ..., xl] of l plain-texts such that xi ∈ Zψ , the
encryption procedure is given by the following steps:

14418 Multimedia Tools and Applications (2022) 81:14403–14449

1. DF Encryption Procedure: each element xk ∈ X is decomposed and encrypted using
DF cryptographic parameters (d and r) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 = [x(1)
1 r, x

(2)
1 r2,, x(d)

1 rd] mod(�)

X2 = [x(1)
2 r, x

(2)
2 r2,, x(d)

2 rd] mod(�)
...
Xk = [x(1)

k r, x
(2)
k r2,, x(d)

k rd] mod(�)
...
Xl = [x(1)

l r, x
(2)
l r2,, x(d)

l rd] mod(�)

(27)

2. Matrix Polynomial Form: different vectors X1, X2, .., Xk, .., Xl given above are
grouped by the following polynomial matrix form:

P(t) =
i=d∑
i=1

diag(x
(i)
1 ri , x

(i)
2 ri , x

(i)
3 ri , . . . , x

(i)
l ri)t i mod(�)

= diag(x
(1)
1 r, x

(1)
2 r, x

(1)
3 r, . . . , x

(1)
l r)t + diag(x

(2)
1 r2, x

(2)
2 r2, x

(2)
3 r2, . . . , x

(2)
l r2)t2

+ . . . + diag(x
(d)
1 rd , x

(d)
2 rd , x

(d)
3 rd , . . . , x

(d)
l rd)td mod(�)

3. MORE Encryption Procedure: finally an invertible secret matrix K is built using the
matrix generation engine explained in Section 3.1.1. Thus, the encryption of the vector
X is given by the following equation:

Enc(X) = K−1 · P(t) · K mod(�) (28)

An illustration of the encryption procedure is given in Fig. 3.

Fig. 3 The proposed HHSES encryption algorithm

14419Multimedia Tools and Applications (2022) 81:14403–14449

3.1.3 Decryption procedure:

HHSES is a symmetric encryption scheme, the decryption procedure is then the inverse of
the encryption process. Hence, decryption is based on the following steps:

1. Retrieving the Polynomial Matrix P(t): this is done by applying the following equation:

P(t) = K · Enc(X) · K−1 mod(�) (29)

2. Retrieving the Xi Vectors: once the polynomial matrix P(t) is retrieved, the following
vectors are built
Xi = [x(1)

i r, x
(2)
i r2, x

(3)
i r3,, x(d)

i rd] for 1 ≤ i ≤ l.
3. Retrieving the plain-texts vector X: after building the Xi vectors, the DF decryption

procedure is applied as given in Section 2.2.3 to calculate the primitive plain-text vector
X.

An illustration of the decryption procedure is given in Fig. 4.

3.2 Homomorphic properties

Starting from two different plain-text vectors X and Y of dimension l such that: X =
[x1, x2, x3, ...xl] and Y = [y1, y2, y3, ...yl] where xi, yi ∈ Zψ . The encryption of X and Y

using HHSES is given by:
Enc(X) = K−1 · Px(t) · K such that Px(t) = ∑i=d

i=1 diag(x
(i)
1 ri , x

(i)
2 ri , x

(i)
3 ri ,,

x
(i)
l ri)t i mod(�).

Enc(Y) = K−1 · Py(t) · K such that Py(t) = ∑i=d
i=1 diag(y

(i)
1 ri , y

(i)
2 ri , y

(i)
3 ri ,,

y
(i)
l ri)t i mod(�).

Homomorphic properties are verified as follows:

1. Addition:
Enc(X + Y) = Enc(X) + Enc(Y) = K−1 · Px(t) · K + K−1 · Py(t) · K = K−1 ·

Fig. 4 The corresponding decryption scheme of HHSES

14420 Multimedia Tools and Applications (2022) 81:14403–14449

(Px(t) + Py(t)) · K = K−1 · (Px+y(t)) · K

Decryption is done by applying these steps:

(a) Step1: K(Enc(X + Y)K−1 is calculated to retrieve Px+y(t).

(b) Step2: Px+y(t) = ∑i=d
i=1 diag((x

(i)
1 + y

(i)
1)ri , (x

(i)
2 + y

(i)
2)ri , (x

(i)
3 +

y
(i)
3)ri ,, (x(i)

l + y
(i)
l)ri)t i mod(�).

(c) Step3: based on the polynomial Px+y(t), the following vectors are retrieved as
follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X1 + Y1 = [(x(1)
1 + y

(1)
1)r, (x

(2)
1 + y

(2)
1)r2, ..., (x(d)

1 + y
(d)
1)rd]

X2 + Y2 = [(x(1)
2 + y

(1)
2)r, (x

(2)
2 + y

(2)
2)r2, ..., (x(d)

2 + y
(d)
2)rd]

...
Xl + Yl = [(x(1)

l + y
(1)
l)r, (x

(2)
l + y

(2)
l)r2, ..., (x(d)

l + y
(d)
l)rd]

By applying the DF decryption procedure given in Section 2.2.3, it is simple to
calculate X + Y = [x1 + y1, x2 + y2, ..., xl + yl] and the scheme is additive
homomorphic.

2. Multiplication:
Enc(X × Y) = Enc(X) × Enc(Y) = (K−1 · Px(t) · K) × (K−1 · Py(t) · K) =
K−1 · (Px(t) × Py(t)) · K = K−1 · (Px×y(t)) · K . Decryption is done by applying the
following steps:

(a) Step 1: K(Enc(X × Y))K−1 is calculated to retrieve Px×y(t).
(b) Step 2:

Px×y(t) = diag((x1
1y1

1)r2, (x1
2y1

2)r2,, (x1
l y1

l)r2)t2

+diag((x
(1)
1 y

(2)
1 + y

(1)
1 x

(2)
1)r3, (x

(1)
2 y

(2)
2 + y

(1)
2 x

(2)
2)r3, . . . , (x

(1)
l y

(2)
l

+y
(1)
l x

(2)
l)r3)t3 + diag((x

(1)
1 y

(3)
1 + x

(3)
1 y

(1)
1 + x

(2)
1 y

(2)
1)r4, (x

(1)
2 y

(3)
2

+x
(3)
1 y

(1)
2 + x

(2)
2 y

(2)
2)r4, . . . , (x

(1)
l y

(3)
l + x

(3)
1 y

(1)
l + x

(2)
1 y

(2)
l)r4)t4

+ . . . + diag((x
(d)
1 y

(d)
1)r2d , (x

(d)
2 y

(d)
2)r2d , . . . , (x

(d)
l y

(d)
l)r2d)t2d

(a) Step 3: based on the polynomial Px×y , the following vectors are retrieved:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1 × Y1 = [(x1
1y1

1)r2, (x
(1)
1 y

(2)
1 + y

(1)
1 x

(2)
1)r3, (x

(1)
1 y

(3)
1 + x

(3)
1 y

(1)
1 + x

(2)
1 y

(2)
1)r4,, (x(d)

1 y
(d)
1)r2d]

X2 × Y2 = [(x1
2y1

2)r2, (x
(1)
2 y

(2)
2 + y

(1)
2 x

(2)
2)r3, (x

(1)
2 y

(3)
2 + x

(3)
2 y

(1)
2 + x

(2)
2 y

(2)
2)r4,, (x(d)

2 y
(d)
2)r2d]

...
Xl × Yl = [(x1

l y1
l)r2, (x

(1)
l y

(2)
l + y

(1)
l x

(2)
l)r3, (x

(1)
l y

(3)
l + x

(3)
l y

(1)
l + x

(2)
l y

(2)
l)r4,, (x

(d)
l y

(d)
l)r2d]

after applying the DF decryption procedure given in Section 2.2.3, it is simple
calculate X ×Y = [x1 × y1, x2 × y2,, xl × yl] and the scheme is multiplicative
homomorphic.

3.3 Dimension growth and KS technique

In this part, KS technique is introduced to resolve HHSES dimension growth after homo-
morphic multiplication while preserving the homomorphic behavior of the scheme and the
original plain-text. More details are presented in the next.

14421Multimedia Tools and Applications (2022) 81:14403–14449

3.3.1 Cipher-text expansion

A main problem of the HHSES is the cipher-text dimension expansion after homomorphic
multiplication. For example, as it is given in Section 3.2, the multiplication of two cipher-
texts formed of d matrices will give a resultant cipher-text vector formed of 2d −1 matrices.
Following the same analogy of DF polynomial calculation and starting from 2k cipher-texts
each one formed of d matrices, the resultant cipher-text is formed of (2k(d−1)+1) matrices.
Thus, evaluating a multiplicative circuit with high depth becomes inefficient due to the high
storage overhead. A practical solution to enhance the HHSES efficiency and to reduce the
cipher-text dimension after each homomorphic multiplication is applying Key Switching
(KS) technique.

3.3.2 KS technique for DF

As it is given previously in (19) and (20), the main idea of KS is to publish a matrix M ∈
Z

[H,d]
� (H = 2d − 1) that verifies the following:
M(s∗ → s) such that c′ = Mc∗, (Dimension : (d, 1) = (d,H) × (H, 1)).

KS was applied over DF encryption scheme as it is listed in [16]. The new secret key
is given by s ′ = [r ′, r ′2, r ′3,, r ′d] and s′

inverse = [r−1 mod(m), r ∈ s′] and t ′ =
[s′(i)inverse, 2 ≤ i ≤ d]. The matrix M is of dimension (d,H) and is formed of two sub-

matrices b and A having the following form

[
b

A

]
.

Matrix b forms the first row of the public matrix M and it is given by b = (−t ′A + ψe +
s∗
inverse)r

∗ ∈ Z
[1,H]
� . The matrix A is of dimension (d − 1, H) and is generated based on a

uniform distribution over Z� . Different secret parameters (s∗, s′, ψ) are encrypted within
the matrix M based on the hardness of LWE [26, 29] and e = [e1, e2, e3, ..., eH] is a ran-
dom Gaussian noise matrix.
Given that c′ = Mc∗, the following relations are demonstrated:

s′
inversec

′ mod(ψ) = s′
inverse(Mc∗) mod(ψ) = (s′

inverseM)c∗ − kψ

= (ψe + s∗
inverse)c

∗ − kψ

= s∗
inversec

∗ + ψ(ec∗ − k)

= s∗
inversec

∗ mod(ψ)

where k ∈ Z and ((20), (19)) are both satisfied.

3.3.3 Applying KS technique for HHSES

Given a public matrix M generated based on Section 3.3.2.

M =

⎡
⎢⎢⎢⎢⎢⎣

M1,1 M1,2 M1,3 · · · M1,H

M2,1 M2,2 M2,3 · · · M2,H

M3,1 M3,2 M3,3 · · · M3,H

...
...

...
. . .

...
Md,1 Md,2 Md,3 · · · Md,H

⎤
⎥⎥⎥⎥⎥⎦

14422 Multimedia Tools and Applications (2022) 81:14403–14449

where M ∈ Z
[d,H]
� and a DF cipher-text Cmult obtained after multiplication that has the

following form:

Cmult =

⎡
⎢⎢⎢⎢⎢⎣

(x1
1y1

1)r2

(x1
1y2

1 + y1
1x2

1)r3

(x1
1y3

1 + x3
1y1

1 + x2
1y2

1)r4

...
(xd

1 yd
1)r2d

⎤
⎥⎥⎥⎥⎥⎦

∈ Z
[H=2d−1,1]
�

The new fresh cipher-text CFresh of dimension [d, 1] is given by CFresh = M × Cmult ,
where

CFresh =

⎡
⎢⎢⎢⎣

M1,1 × (x1
1y1

1)r2 + · · · + M1,H × (xd
1 yd

1)r2d

M2,1 × (x1
1y1

1)r2 + · · · + M2,H × (xd
1 yd

1)r2d

...
Md,1 × (x1

1y1
1)r2 + · · · + Md,H × (xd

1 yd
1)r2d

⎤
⎥⎥⎥⎦ ∈ Z

[d,1]
�

Given a cipher-text CHHSES
mult obtained after homomorphic multiplication using HHSES, the

latter is a polynomial matrix that has the following form: K−1 · (Px×y(t)) · K , where K is
the invertible secret matrix of HHSES and

Px×y(t) = diag((x1
1y1

1)r2, (x1
2y1

2)r2, · · · , (x1
l y1

l)r2)t2

+diag((x
(1)
1 y

(2)
1 + y

(1)
1 x

(2)
1)r3, (x

(1)
2 y

(2)
2 + y

(1)
2 x

(2)
2)r3, · · · , (x

(1)
l y

(2)
l

+y
(1)
l x

(2)
l)r3)t3 + diag((x

(1)
1 y

(3)
1 + x

(3)
1 y

(1)
1 + x

(2)
1 y

(2)
1)r4, (x

(1)
2 y

(3)
2 +x

(3)
1 y

(1)
2

+x
(2)
2 y

(2)
2)r4, ..., (x(1)

l y
(3)
l + x

(3)
1 y

(1)
l + x

(2)
1 y

(2)
l)r4)t4

+ . . . + diag((x
(d)
1 y

(d)
1)r2d , (x

(d)
2 y

(d)
2)r2d ,, (x(d)

l y
(d)
l)r2d)t2d

CHHSES
mult is a cipher-text formed of (2 × d − 1) matrices. The main concept of KS is to

generate a new cipher-text CHHSES
Fresh formed of d matrices without modifying the original

plain-text. This can be achieved by building a global public matrix MGlobal formed of d×H

sub-matrices of dimension (l × l) each having the following form:[
K−1diag(Mi,j ,Mi,j , ...Mi,j)K

]
where 1 ≤ i ≤ d and 1 ≤ j ≤ H = 2d − 1.

CHHSES
mult is presented by the following form:⎡

⎢⎢⎢⎢⎣

K−1 × diag((x1
1y1

1)r2, · · · , (x1
l y1

l)r2) × K

K−1 × diag((x
(1)
1 y

(2)
1 + y

(1)
1 x

(2)
1)r3, · · · , (x

(1)
l y

(2)
l + y

(1)
l x

(2)
l)r3) × K

...
...

K−1diag((x
(d)
1 y

(d)
1)r2d , · · · , (x

(d)
l y

(d)
l)r2d) × K

⎤
⎥⎥⎥⎥⎦

The following equation can than be demonstrated:

CHHSES
Fresh = MGlobal × CHHSES

mult (30)

4 HHSES security analysis

In this section, a deep security analysis is done for the HHSES to validate its high immunity
against several types of attacks. Different security tests are implemented as given in [27]

14423Multimedia Tools and Applications (2022) 81:14403–14449

to show its immunity against statistical attacks and related key attacks, and to prove that
the scheme provides the avalanche effect, the uniformity and the independence properties.
Finally a theoretical crypt-analysis shows that the new scheme is resistant against known
plain-text/cipher-text attacks. Different security tests are implemented under Python using
Sagemath library with a personal laptop having the following specifications: OS Ubuntu
14.04, RAM 3.9 GB, Processor Intel Core i7 − 8550U CPU @ 1.8 GHZ, 64 bit, Disk 24.1
GB. For the HHSES implementation, the security parameter λ is taken 20, DF dimension
d = 2, secret modulus ψ = 256. Different plain-texts are sampled as Bytes (Zψ=256) from
a Gaussian distribution having a mean value μ = 128 and standard deviation σ = 16.

Remark During the encryption procedure, DF dimension is taken d = 2 (in Section 5.4, a
theoretical crypt-analysis shows that the scheme is resistant to known plain-text/cipher-text
attacks even with the lowest DF dimension, d = 2). The resultant cipher-text C = [C1, C2]
is then formed of 2 matrices.

Remark Different elements of the cipher-text C = [C1, C2] are in the ring Z� (�
is the public modulus). To accomplish distribution, recurrence, correlation and entropy
tests cipher-texts are converted to the Bytes level as illustrated in Fig. 5. In the lat-
ter figure, each element (c ∈ Ci)(1≤i≤2) of the cipher-text C is decomposed into bits
[bi

1, b
i
2,, bi

�log2(�)](1≤i≤2), then the (�log2(�)) bits for each cipher-text are grouped
by sets of 8 bits and converted into integers to form the new cipher-text at the byte level
[Bi

1, B
i
2,, Bi

�log2(�)

8

](1≤i≤2)), where Bi
j ∈ Z256.

4.1 Resistance against statistical attacks

Resistance against statistical attacks is assured by the proposed scheme while providing a
high level of randomness. Thus, the resultant cipher-text should present the independence
and uniformity criteria. Uniformity can be proved visually by plotting the histogram of the
cipher-texts and applying the entropy test. On the other hand, the independence property
is validated visually by plotting the recurrence of the encrypted data and calculating the
percentage of difference in bit level between the original and the encrypted data (difference

Fig. 5 Cipher-text byte conversion procedure

14424 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 6 Distribution test for a random original message M (a) and for two cipher messages C1 (b) and C2 (c)
obtained by using the proposed HHSES scheme with a random secret key

test) and the correlation between the original and the encrypted data. All these tests are
applied in the following sections to prove the resistance of the scheme against the statistical
attacks.

4.1.1 Uniformity property

1. Distribution Test:
To guard against statistical attacks, a good crypto-system should give a distribution
close to uniform among the cipher-texts. The distributions of the plain-texts and their
correspondent cipher-texts are given in Fig. 6. The plain-texts’ distribution is Gaussian
where different data messages are close to each other (low standard deviation as given
previously). After applying the HHSES scheme over a plain-texts message M of size
16 Bytes, one can visually detect that the two cipher-texts’ distributions are close to
uniform and no clear pattern is shown. Thus, an attacker is unable to reveal the plain-
texts’ distribution after drawing the two cipher-texts’ distributions. Hence, the scheme
is resistant against statistical attacks.

2. Entropy Test:
The entropy is used to measure the level of uncertainty in a random variable. The
entropy of a message m is calculated by the following equation:

2	−1∑
i=0

p(mi)log2
1

p(mi)
(31)

p(mi) represents the probability of occurrence of symbol mi and 2	 is the total states
of information source. A truly random entropy is equal to 	. As given in Fig. 5, the
cipher-texts are transformed into the Byte level (Z256, 28 = 256), thus the resultant
cipher-texts of the HHSES are considered as a truly random source if the entropy values
are close to 8. In Fig. 7, the entropy values are calculated for both cipher-texts C1 and
C2 for 10000 iterations and for a plain-texts message M of 16 Bytes.

In the presented figure, the red dots present the different entropy values obtained
by implementing the entropy tests over the cipher-texts and the blue line represents the
ideal value (equal to 8 in our case). The obtained results gave for cipher-text C1 a mean
value equal to 7.996 with a low standard deviation equal to 0.000361 and for cipher-text
C2 a mean value equal to 7.9959 with a low standard deviation equal to 0.0003666 as
given in Table 2. After analyzing the obtained results, one can deduce that the different

14425Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 7 Variation of the entropy test for the obtained cipher-text C1 (a) and C2 (b) for 10000 random secret
keys

obtained entropy values are close to the ideal value (8) for both cipher-texts. Thus, the
HHSES scheme presents the required uniformity.

4.1.2 Independence property

As mentioned previously, several tests can be done to prove the independence criterion
which are the recurrence, correlation and difference tests.

1. Recurrence Test:
Starting from a data sequence xi = x(i,1), x(i,2), x(i,3),, x(i,m) and vector with delay
t ≥ 1 constructed by xi(t) = x(i,t), x(i,2t), x(i,3t), ..., x(i,mt), the recurrence test is
achieved by calculating the correlation among these two sequences to measure the evo-
lution of randomness. Figure 8a represents the correlation among xi(t) and xi(t + 1)

for the plain-text while Fig. 8b and c are for both cipher-texts C1 and C2. For the
plain-texts, we used a Gaussian distribution with a mean value equal to 128 with a low
standard deviation as given in Fig. 8a. After applying the HHSES over a plain-texts’

Table 2 Statistical analysis result for the different security tests

Security test Cipher-text Min Max Mean Std

Entropy Test C1 7.9942 7.997 7.996 0.000361

Entropy Test C2 7.9943 7.997 7.9959 0.0003666

Difference Test C1 49.683 50.313 49.998 0.08299

Difference Test C2 49.6563 50.3506 49.9977 0.08345

Correlation Test C1 −0.01681 0.01809 9.10129e − 05 0.0047077

Correlation Test C2 −0.019713 0.01575 0.000124 0.004748

Key Sensitivity C1 49.655 50.3194 50.00208 0.082217

Key Sensitivity C2 49.69615 50.35781 50.002986 0.084065

Plain-text Sensitivity C1 49.68086 50.319984 49.99929 0.08173

Plain-text Sensitivity C2 49.649337 50.374259 50.00017 0.0845123

14426 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 8 Recurrence test for a random original message M (a) and for two cipher messages C1 (b) and C2 (c)
obtained by using the proposed HHSES scheme with a random secret key

message M of size 16 Bytes, Fig. 8b and c present a high level of randomness among
the cipher-texts and no clear pattern is shown after the encryption process.

2. Difference Test:
The difference test consists of calculating the difference at the bit level between the
plain-texts and their correspondent cipher-texts. To achieve the independence property,
a good crypto-system should at least give 50% difference at the bit level between the
plain-texts and the cipher-texts. In Fig. 9, the difference test is applied for a plain-texts
message M of size 16 Bytes for 10000 iterations. As given in Table 2, mean value for
cipher-text C1 is equal to 49.998 with a low standard deviation equal to 0.08299 and for
cipher-text C2 the mean value is equal to 49.9977 with a low standard deviation equal
to 0.08345. Thus, one can deduce that difference values at the bit level between cipher-
texts and plain-texts (red dots) are close to the ideal value (50: blue line) and the new
scheme provides the independence property.

3. Correlation Test:
The correlation coefficient between a cipher-text message y and its correspondent

Fig. 9 Variation of the difference test with respect to the plain-text M for the obtained cipher-text C1 (a) and
C2 (b) for 10000 random secret keys

14427Multimedia Tools and Applications (2022) 81:14403–14449

plain-text message x is given by the following equation:

ρx,y = cov(x, y)√
D(x) × D(y)

(32)

where cov(x, y) = E[{x − E(x)}{y − E(y)}];

E(x) = 1

n
×

n∑
k=1

xi

and D(x) = 1

n
×

n∑
k=1

{xi − E[x]}2

A good crypto-system that satisfies the independence property should present a low
correlation (close to zero) between the plain-texts and the cipher-texts distribution. In
Fig. 10, the correlation for 10000 iterations for a plain-text message M of size 16 Bytes
with its corresponding cipher-texts is calculated. As presented in Table 2, the corre-
lation’s mean value between cipher-text C1 and the plain-texts message M is equal
to 9.10129 × 10−5 with a low standard deviation equal to 0.0047077. For cipher-text
C2, the correspondent mean value is equal to 0.000124 with a low standard devia-
tion equal to 0.004748. Hence, the resultant scheme provides the required property
of in-dependency, since different correlation values (red dots) are close to the ideal
correlation value which is zero (blue line).

4.2 Resistance against related key attacks

A crypto-system that ensures a high resistance against related key attacks should give a high
level of Key Sensitivity (KS) where the cipher-text should ensure a (KS) result close to 50.
Thus, the KS test consists on calculating the difference between the cipher-texts at the bit
level after doing a slight change in the encryption key. Indeed, the sensitivity of wth secret
key K ‘

w is calculated as follows:

KSw =
∑T

k=1 EKw ⊕ EK ′
w

T
× 100%, (33)

where all the elements of K ‘
w are equal to those of Kw, except a random Least Significant

Bit (LSB) of a random byte, T is the length of the original and cipher-text packets (in bits),
and w = 1, 2, . . . , 10000. Figure 11 presents the result for 10000 iterations for a plain-texts’
message M of 16 Bytes. Mean values are close to 50 with a low standard deviation as given
in Table 2 (C1: Mean Value=50.00208, Std=0.082217 and C2: Mean Value=50.002986,
Std=0.084065). Thus, KS values obtained by implementation (red dots) are concentrated
close to the ideal KS value (50), and the scheme provides the required Key Sensitivity
property.

4.3 Resistance to known plain-text/cipher-text attacks

In this section, the resistance of the HHSES against the known plain-text/cipher-text attacks
is first evaluated by testing its avalanche effect while using the Plain-text Sensitivity (PS)
test. Second, a theoretical crypt-analysis shows mathematically that the concerned scheme
is immune against the concerned attack even with the lowest DF dimension d = 2.

14428 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 10 Variation of the correlation test with respect to the plain-text M for the obtained cipher-text C1 (a)
and C2 (b) for 10000 random secret keys

4.3.1 Avalanche effect

A good crypto-system should satisfy the avalanche effect. The avalanche effect can be inter-
preted by a significant change in the cipher-text due to a slight change in the plain-text. A
good measure for the avalanche effect is the Plain-text Sensitivity (PS) test which gives the
difference at the bit level between the resultant cipher-texts of two plain-texts that differ only
in 1 bit. A crypto-system that satisfies the avalanche effect should at least give 50% differ-
ence. Figure 12 gives the result of this test for 10000 iterations for a plain-texts message M

of 16 Bytes. Mean values are close to 50 with a low standard deviation as given in Table 2
(C1: Mean Value= 49.99929, Std=0.08173, C2: Mean Value=50.00017, Std=0.0845123).
One can deduce that the HHSES presents the avalanche effect since different PS values (red
dots) are concentrated close to the ideal value (50) (blue line).

Fig. 11 Variation of the KS test for the obtained cipher-text C1 (a) and C2 (b) for 10000 random secret keys.

14429Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 12 Variation of the PS test for the obtained cipher-text C1(a) and C2 (b) for 10000 random secret keys

4.3.2 Theoretical crypt-analysis

As mentioned previously, HHSES is a new symmetric HE scheme based on mixing the
homomorphic behavior of two well known symmetric HE schemes: the MORE approach
and the DF scheme.

As given in Sections 2.2.1 and 2.2.3, MORE approach and DF scheme are sensible to
known plain-text/cipher-text attacks where revealing secret parameters for both is possible
for each with a certain probability.

In this part, it is shown theoretically that the HHSES is resistant against the known plain-
text/cipher-text attacks. It is also demonstrated that the implementation of the new scheme
is secure even with the lowest possible DF dimension (d = 2).

Having 	 plain-texts’ vectors Xj = [xj

1 , x
j

2] where 1 ≤ j ≤ 	 with their respective
cipher-texts:

Cj = [Cj,(1) =
[
C

j,(1)

11 C
j,(1)

12

C
j,(1)

21 C
j,(1)

22

]
= K−1

[
x

j,(1)

1 r 0

0 x
j,(1)

2 r

]
K,

Cj,(2) =
[
C

j,(2)

11 C
j,(2)

12

C
j,(2)

21 C
j,(2)

22

]
= K−1

[
x

j,(2)

1 r2 0

0 x
j,(2)

2 r2

]
K] mod(�)

We suppose the existence of an attacker who knows the 	 couples of plain-text/cipher-
text (Xj = [xj

1 , x
j

2], Cj = [Cj,(1), Cj,(2)], 1 ≤ j ≤) and who’s trying to reveal the
HHSES secret parameters (i.e. the secret modulus ψ , the secret invertible key r and the
secret invertible matrix K) by doing the following two steps:

1. Revealing ψ and r: in order to reveal the secret parameters ψ and r , the attacker will
try to calculate the (4 ×) DF values that are (x

j,(1)

1 r, x
j,(1)

2 r, x
(j,2)

1 r2, x
j,(2)

2 r2) that
form the eigen values of matrices Cj,(1) and Cj,(2) respectively. This can be done by
calculating the roots of the (2 ×) characteristic polynomials P j,(1)(α) of Cj,(1) and
P j,(2)(α) of Cj,(2) that are given by:

P j,(1)(α) = α2 − α(C
j,(1)

11 + C
j,(1)

22) + C
j,(1)

11 C
j,(1)

22 − C
j,(1)

21 C
j,(1)

12 mod(�)

P j,(2)(α) = α2 − α(C
j,(2)

11 + C
j,(2)

22) + C
j,(2)

11 C
j,(2)

22 − C
j,(2)

21 C
j,(2)

12 mod(�)

14430 Multimedia Tools and Applications (2022) 81:14403–14449

Calculating the roots of P j,(1)(α) and P j,(2)(α) is a hard task due to Rabin’s crypto-
system that is reduced to the problem of factoring � = ψ × ∏m

i=1(pi × qi). Thus

revealing the (4×) DF values (x
j,(1)

1 r, x
j,(1)

2 r, x
j,(2)

1 r2, x
j,(2)

2 r2) is a hard task for the
attacker, which makes revealing r and ψ also a hard task.

2. Revealing the Secret Invertible matrix K: the columns of the secret invertible matrix K

are the eigen vectors of the (2 ×) matrices Cj,(1) and Cj,(2). Calculating those eigen
vectors while knowing the eigen values is done by applying (7). The attacker is unable
to apply the procedure of (7) with HHSES even while knowing the 	 couples (xj =
[xj

1 , x
j

2], Cj = [Cj,(1), Cj,(2)]). The latter hardness is based on the fact that the eigen

values of Cj,(1) and Cj,(2) are not x
j

1 and x
j

2 , otherwise they are the (4 ×) random

values ((xj,(1)

1 r, x
j,(1)

2 r, x
j,(2)

1 r2, x
j,(2)

2 r2)) generated based on the DF encryption algo-

rithm and secret parameters. In addition, revealing ((xj,(1)

1 r, x
j,(1)

2 r, x
j,(2)

1 r2, x
j,(2)

2 r2))
is a hard task due to Rabin’s crypto-system as it is mentioned in the previous step.

Table 2 presented below shows the maximum, the minimum, the mean, and the standard
deviation values of different security test results listed previously and implemented to eval-
uate the security level of the concerned scheme and its immunity against a big variety of
attacks.

5 Experimentation and performance analysis

In this section, the performance of the new scheme HHSES is compared with three well
known symmetric schemes: the MORE approach, the PORE approach, and the DF scheme.
It is also compared with the famous asymmetric scheme BGV. The comparison is done in
terms of execution time for the different basic cryptographic functions: encryption, decryp-
tion, homomorphic addition, and homomorphic multiplication. Different implementations
are done under Python using SageMath library with a personal laptop having the following
specifications: OS Ubuntu 14.04, RAM 3.9 GB, Processor Intel Core i7 − 8550U CPU @
1.8 GHZ, 64 bit, Disk 24.1 GB.

5.1 Comparison with symmetric schemes

To accomplish the required comparison, the four different symmetric encryption schemes
(HHSES, DF, MORE and PORE) are implemented with the same level of security (security
parameter λ = 20), the same plain-texts message size l in Bytes (varied from 8 Bytes till
128 Bytes) and the same cipher-texts range of storage overhead. Different plain-text inputs
are sampled as Bytes from the ring Z256. For different operations, the mean execution time
is calculated for 50 iterations.

1. HHSES Performance Analysis: as it was proven in the previous section (HHSES Secu-
rity Analysis), the concerned scheme is resistant against different types of attacks and
especially the known plain-text/cipher-text attacks even with the lowest possible DF
dimension d = 2. Thus, HHSES is implemented with DF dimension dimension d = 2.
The evolution of different operations execution time of the HHSES in function of the
plain-texts message size l is presented in the two tables below: Tables 3 and 4. KS is
adopted for the HHSES in order to preserve the cipher-texts dimension after each homo-
morphic multiplication (Section 3.3). In Table 3, Mean Total Multiplication time refers

14431Multimedia Tools and Applications (2022) 81:14403–14449

to the basic time of multiplication with the KS operation. In Table 4, different execu-
tion time values for multiplication as a function of the message size in Bytes provided
with the public matrix M generation (Section 3.3) are present in details.

After examining different results published in both Tables 3 and 4, one can deduce
that the execution times of different HHSES cryptographic and arithmetic functions and
storage overheads increase with the increase of the message size l in Bytes.

Remark During the HHSES performance analysis, DF dimension is fixed to d = 2
based on the security analysis of the scheme. Starting from a security parameter λ = 20,
implementation has shown that the HHSES cipher-text public modulus N (explained
in Section 3) size in Bytes is 176 (parameter m = 5, prime integers pi and qi taken of
size 16 Bytes and N = ∏m

i=1 fi , {fi}mi=1 where fi = piqi). Thus, the encryption of a
plain-texts message of size l Bytes will output a cipher-text C = [C1, C2] formed of 2
matrices (C1) and (C2) each of dimension l × l. The cipher-text C size in memory will
be (l × l × 2 × 176) Bytes. For example with l = 8 the cipher-text C in Bytes will be
8 × 8 × 2 × 176 = 22528 as mentioned in Table 3.

2. DF Performance Analysis: the evolution of different operations execution time for the
DF scheme in function of the message size l is shown in Table 5. Parameter d represents
the DF cipher-text dimension as given in Section 2.2.3.

After examining different metrics given in Table 5, one can deduce that with the
increase of the plain-texts message size l and the DF parameter d different execution
times and storage overheads increase.
As for the comparison between the HHSES and the DF schemes, different implemen-
tations for both schemes should be driven with the same level of security (i.e. security
parameter λ is taken 20 for both HHSES and DF schemes) and the same level of
cipher-texts storage overhead. Achieving the same level of storage overhead for both
DF and HHSES while encrypting two plain-texts messages having the same size l in
Bytes is accomplished as follows: during this implementation the secret modulus of
DF scheme m′ is taken 256 (i.e. plain-texts are taken a Bytes) and λ = 20, the public
modulus is then m = (256)20 (as explained in Section 2.2.3). The size of the resultant
public modulus m in Bytes is then 20. Thus, starting from a plain-texts message of
length l, the DF cipher-texts message size in Bytes will be (l × d × 20). Hence, the
correspondent DF parameter d required to generate a DF cipher-texts message having
the same range of storage overhead for a given HHSES cipher-texts message (also
related to a plain-texts message of size l) is calculated by applying the following

formula �Required Storage HHSES Overhead Bytes

l × 20
�. For example as given in

Table 3 HHSES execution time in seconds (λ = 20)

Plain-text Message
Size l in Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total
Mult. Time

Cipher-text Size in
Bytes

l = 8, d = 2 0.008484 0.01052056 0.003246 0.1741 22528

l = 16. d = 2 0.0375 0.0481 0.013 1.202 89600

l = 32. d = 2 0.23643 0.335032 0.053391921 8.50443 360448

l = 64. d = 2 1.85349 2.674 0.1836 64.313 1441792

l = 128. d = 2 13.6919 14.0495 0.99365 625.248 5767168

14432 Multimedia Tools and Applications (2022) 81:14403–14449

Table 4 HHSES KS time in seconds (λ = 20)

Plain-text Message
Size l in Bytes

Mean Basic Mult. Time Mean KS Time Public Matrix M Generation

l = 8, d = 2 0.153 0.021 0.003192

l = 16. d = 2 1.12867 0.07366 0.003305

l = 32, d = 2 8.23958 0.2642 0.004334

l = 64. d = 2 63.1831 1.12604 0.00436

l = 128, d = 2 615.9825 9.2658 0.004094

Table 5, to achieve a DF cipher-texts of dimension close to the correspondent HHSES
cipher-texts size (22528 Bytes as given in Table 3) for a plain-texts message of length

l = 8 Bytes, d = � 22528

8 × 20
� = 140.

A practical way to compare between the performance of both HHSES and DF schemes
in terms of different metrics given in Tables 3 and 5 is to calculate the following ratio

ε = HHSES Metric

DF Metric
as given in Table 6 below:

By analyzing different results given in Table 6, one can deduce that with the same
plain-texts message length (l varied from 8 till 128 Bytes), the same level of security
(λ = 20) and the same range of storage overhead (Storage Overhead ε’s are close to 1),
the HHSES is performing better than the DF scheme in terms of execution time since
the majority of the ε’s values related to execution times are lower than 1. Given that
the DF scheme suffers from vulnerability to the known plain-text/cipher-text attacks
(Section 2.2.3) and the HHSES presents the immunity against this type of attacks
(Section 4.3), it is clear that the HHSES scheme is more implementable and practical
than the DF scheme in real world applications.

3. MORE Performance Analysis: different execution times for different functions related
to the MORE approach while varying the plain-texts message size l in Bytes are
presented in Table 7. Matrix Dim represents the matrix dimension of the MORE
approach as given in Section 2.2.1.

It is clear from Table 7, that with the increase of the plain-texts message size l

and the MORE matrix dimension Matrix Dim, different execution times and storage
overheads will increase.

Based on the MORE encryption procedure listed in Section 2.2.1, the encryp-
tion of plain-texts message of size l Bytes will output a cipher-texts message of size

Table 5 DF execution time in seconds (λ = 20)

Plain-text Message
Size l in Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total
Mult. Time

Cipher-text Size
in Bytes

l = 8, d = 140 0.201165 0.025562 0.01922908 0.943 22400

l = 16, d = 280 2.01739 0.12126 0.086073139 7.73 89600

l = 32, d = 560 32.8328 0.4251 0.2976526 51.85 358400

l = 64, d = 1120 244.426 1.913 1.243 456.8201254 1433600

l = 128, d = 2240 1956.7412 6.464 3.8467 2926.433 5734400

14433Multimedia Tools and Applications (2022) 81:14403–14449

Table 6 Ratio between HHSES and DF schemes

Plain-text Size l

in Bytes
Enc. Time (ε) Dec. Time (ε) Add. Time (ε) Mult. Time (ε) Storage

Overhead (ε)

l = 8 0.042174161 0.411608623 0.168805788 0.184645257 1.005714286

l = 16 0.018584378 0.397232907 0.151166787 0.155555897 1

l = 32 0.007201142 0.788167086 0.179376629 0.164038868 1.005714286

l = 64 0.007583038 1.397727968 0.14769073 0.140783538 1.005714286

l = 128 0.006997344 2.173398172 0.258313437 0.2136555 1.005714286

(l×Matrix Dim×Matrix Dim×N Size Bytes) Bytes where N Size Bytes is the
size in Bytes of N (the MORE cipher-text public modulus). Implementation has shown,
that with a security parameter λ = 20, public modulus N size in Bytes (N Size Bytes)
is 159 (parameter m = 5, prime integers pi and qi are taken of size 16 Bytes and
N = ∏m

i=1 fi , {fi}mi=1 where fi = piqi). Hence, to generate a MORE cipher-texts
message with a storage overhead close to a given HHSES cipher-texts message while
both having the same plain-texts message size l, Matrix Dim should be estimated as

follows: �
√

Required Storage HHSES Overhead Bytes

l × 159
�.

The comparison between both HHSES and MORE schemes in terms of different met-
rics presented in Table 3 and Table 7 is accomplished like the case of DF scheme and
presented in Table 8 below:

As given in Table 8, for the same plain-texts message size l in Bytes, the same secu-
rity parameter λ and the same range of storage overhead (Storage Overhead ε) for both
MORE and HHSES schemes, MORE is performing better than the HHSES in terms of
execution time since the majority of ε’s values related to execution times are greater
than 1. Based on the crypt-analysis of the MORE approach discussed in Section 2.2.1,
the latter scheme is vulnerable to the known plain-text/cipher-text attacks while the
HHSES presents simultaneously the efficiency in implementation and the high immu-
nity against a big variety of attacks and specifically the known plain-text/cipher-text
attacks.

4. PORE Performance Analysis: the variation of execution time of different cryptographic
and analytic functions related to the PORE scheme while varying the plain-texts mes-
sage size in Bytes is given in the following Table 9. N bits represents the number of
bits related to the PORE public modulus N (Section 2.2.2).

Table 7 MORE execution time in seconds (λ = 20)

Plain-text message
Size l in Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total Mult.
Time

Cipher-text
Size in Bytes

l = 8, Matrix Dim = 4 0.014141 0.0075746 0.00346 0.00470318 20352

l = 16, Matrix Dim = 6 0.0482647 0.03507 0.01336 0.01893 91008

l = 32, Matrix Dim = 8 0.1493 0.127399 0.051996 0.079289 325632

l = 64, Matrix Dim = 12 0.678075 0.7081144 0.2134 0.3611 1465344

l = 128, Matrix Dim = 17 3.071547 3.59209 0.956166 1.771 5844736

14434 Multimedia Tools and Applications (2022) 81:14403–14449

Table 8 Ratio between HHSES and MORE schemes

Plain-text Size l

in Bytes
Enc. Time (ε) Dec. Time (ε) Add. Time (ε) Mult. Time (ε) Storage

Overhead (ε)

l = 8 0.599954741 1.388926148 0.937943908 37.02514896 1.106918239

l = 16 0.776799193 1.373520477 0.973883859 63.52906777 0.984528833

l = 32 1.583396129 2.629786402 1.02684747 107.2587309 1.106918239

l = 64 2.733463791 3.775903498 0.859997435 178.0769284 0.983927324

l = 128 4.457685251 3.911249871 1.039207039 353.0220788 0.986728571

After analyzing different values present in Table 9, one can deduce that with the
increase of plain-texts message size l, different execution times and storage overheads
will increase.

As for the comparison between the performance of HHSES and PORE schemes,
the same principle adopted for both DF and MORE schemes is applied. The two
schemes (HHSES and PORE) should be implemented with the same level of secu-
rity (λ = 20), the same plain-texts message size l in Bytes and the same range of
storage overhead. Given that the PORE cipher-text dimension is limited to 2 num-
bers (C = (c1, c2)), a practical way to control the PORE cipher-texts message size is
to vary the size of the PORE public modulus N (explained in Section 2.2.2). Hence,
encrypting a plain-texts message of size l Bytes under the PORE scheme will output
a cipher-texts message having the same range of storage overhead of that of a given
HHSES cipher-texts message related also to a plain-texts message of size l Bytes if
the PORE public modulus N size in Bytes is estimated by using the following for-

mula �Required Storage HHSES Overhead Bytes

2 × l
�. For example, starting from

a plain-texts message size of l = 8 Bytes, to achieve under the PORE a cipher-
texts message of size close to 22528 Bytes (HHSES cipher-texts message size in
Bytes for l = 8 Bytes as given in Table 3) the size of the PORE public modulus

N = �22528

2 × 8
� = 1408 Bytes (i.e 1408 × 8 = 11264 bits). The parameter m is taken

equal to 5, both prime integers pi and qi are taken of size 140 Bytes in this case and
N = ∏m

i=1 fi , {fi}mi=1 where fi = piqi . The comparison between the performance of
HHSES and PORE is accomplished similar to that of DF and PORE and presented in
Table 10.

Table 9 PORE execution time in seconds (λ = 20)

Plain-texts mes-
sage Size l in
Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total
Mult. Time

Cipher-text Size
in Bytes

8, N bits = 11264 0.00371348 0.00090168 8.296e−5 0.0057458 22512

16, N bits = 22400 0.01741764 0.004438 0.00014442 0.03072498 89568

32, N bits = 45056 0.08871658 0.02221452 0.00036358 0.1560644 358400

64, N bits = 90112 0.49892978 0.12547544 0.0010088 0.90894358 1441792

128,N bits = 180224 4.59223732 1.36599674 0.00344232 8.34415842 5767168

14435Multimedia Tools and Applications (2022) 81:14403–14449

Table 10 Ratio between HHSES and PORE schemes

Plain-text Size l

in Bytes
Enc. Time (ε) Dec. Time (ε) Add. Time (ε) Mult. Time (ε) Storage

Overhead (ε)

l = 8 2.284639 11.6677 39.127 30.3066 1.000710732

l = 16 2.152529 10.85388 90.094 39.1400 1.00035727

l = 32 2.665 15.08166 146.85 54.49310169 1

l = 64 3.7149 21.309 181.967 70.75549547 1

l = 128 2.9815 10.2852 288.658 74.93248734 1

Based on Table 10, one can deduce that the PORE approach is performing better
than the HHSES in terms of execution times since all ε’s values related to execution
times are greater than 1. We recall that the PORE Approach is vulnerable to known
plain-text/cipher-text attack (Section 2.2.2), where the attack can be driven while know-
ing only one couple of plain-text/cipher-text. On the other hand, the HHSES presents
efficiency in implementation and high immunity against attacks.

5.2 Comparison with asymmetric schemes

In this Section, the performance of the HHSES scheme is compared with the well known
asymmetric BGV scheme. Starting from the same level of security (λ = 10), a plain-texts
message is taken from the ring Z256 where its size is varied from 2 Bytes till 7 Bytes. Hence,
different results are published as follows:

1. HHSES Performance Analysis: implementations given in Tables 11 and 12 are similar
to Tables 3 and 4 (the security parameter λ is taken 10 instead of 20). It is clear that
with increase of the plain-texts message size l, different execution times of different
operations and storage overheads will also increase.

2. BGV Performance Analysis: Table 13 presents the execution times of the BGV scheme
for different operations are given (similar to the HHSES scheme). Latt Dim represents
the lattice dimension (BGV cipher-text dimension). In Table 14, detailed execution
times for homomorphic multiplication (basic multiplication and KS technique) and
public matrix M generation (Section 2.3) are shown. Based on these two tables, dif-
ferent execution times and storage overheads are increasing with the increase of the
plain-texts message Size l and the lattice dimension (Latt Dim).

Table 11 HHSES execution time in seconds (λ = 10)

Plain-texts Mes-
sage Size l in
Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total
Mult. Time

Cipher-texts
Message Size in
Bytes

l = 2, d = 2 0.00109 0.00122 0.0001778 0.00429 896

l = 3, d = 2 0.001476 0.00178 0.0003655 0.00983 1998

l = 4, d = 2 0.00206 0.00217 0.0006366 0.018067 3584

l = 5, d = 2 0.002784 0.00279 0.00098074 0.0323 5650

l = 6, d = 2 0.00378 0.0038 0.00187 0.0666 8064

l = 7, d = 2 0.00503 0.00516 0.002052 0.0866 10878

14436 Multimedia Tools and Applications (2022) 81:14403–14449

Table 12 HHSES KS time in seconds (λ = 10)

Plain-texts Message
Size l in Bytes

Mean Basic Mult. Time Mean KS Time Public Matrix M Generation

l = 2, d = 2 0.00279784 0.00143208 0.003979

l = 3, d = 2 0.00725622 0.00257298 0.003569

l = 4, d = 2 0.01406394 0.00393076 0.003361

l = 5, d = 2 0.02672842 0.0055413 0.003339

l = 6, d = 2 0.0562989 0.01031014 0.003382

l = 7, d = 2 0.0754255 0.01118048 0.0034694

As mentioned in the previous Section 5.1, to achieve a good compari-
son between different encryption schemes, implementations should be accom-
plished with the same security parameter λ, the same plain-texts message size
l in Bytes and the same range of storage overhead. Achieving for a BGV
cipher-texts message the same size in Bytes of a given HHSES cipher-texts
(Required Storage HHSES Overhead Bytes) starting from the same plain-texts
message size l is done as follows: based on [4], a secure implementation of the BGV
scheme is assured as long as Latt Dim ∼= poly(λ) and the BGV public modu-
lus q ∼= poly(Latt Dim). Hence starting from Latt Dim ∼= poly(λ) and q ∼=
(Latt Dim)g where g ∈ Z, for a plain-texts message of size l in Bytes, the resul-
tant cipher-texts message size in Bytes after applying the BGV scheme is equal to

� l × Latt Dim × log(Latt Dim)g

8 × log(2)
. Thus, to achieve the required level of storage

overhead for a BGV cipher-texts message, g is estimated by the following formula

g = �Required Storage HHSES Overhead Bytes × 8 × log(2)

l × Latt Dim × log(Latt Dim)
�. For example,

as given in Table 13 for l = 2 and Latt Dim = 13 to achieve for BGV a cipher-texts
message of size 896 Bytes (Required Storage HHSES Overhead Bytes given in

Table 11), �g = 896 × 8 × log(2)

2 × 13 × log(13)
� = 74 and q ∼= (13)74.

The comparison between the HHSES and the BGV schemes is accomplished a given in
Tables 6, 8 and 10 and given in Tables 15 and 16.

Based on the results given in Tables 15 and 16, it is obvious that the HHSES is performing
better than the BGV scheme in terms of execution time given that different ε’s values related

Table 13 BGV execution time in seconds (λ = 10)

Plain-texts
Message Size l

in Bytes

Mean Enc.
Time

Mean Dec.
Time

Mean Add.
Time

Mean Total Mult.
Time

Cipher-text
Size in Bytes

l = 2, Latt Dim = 13 4.829757 0.00158 0.003559 2.077387 858

l = 3, Latt Dim = 18 16.4838 0.0023671 0.006197 6.85549 1998

l = 4, Latt Dim = 23 42.5665 0.003132 0.01189 17.1927 3680

l = 5, Latt Dim = 27 77.7437 0.004255 0.01932 40.8725 5670

l = 6, Latt Dim = 33 140.04524 0.04189 0.0257078 66.29662 8910

l = 7, Latt Dim = 36 224.43017 0.05372 0.0302415 90.92897 11592

14437Multimedia Tools and Applications (2022) 81:14403–14449

Table 14 BGV KS time in seconds (λ = 10)

Plain-texts Message Size l

in Bytes
Mean Basic Mult. Time Mean KS Time Public Matrix M Generation

l = 2, Latt Dim = 13 0.04309216 2.03428524 9.247966

l = 3, Latt Dim = 18 0.11542216 6.7400588 30.241611

l = 4, Latt Dim = 23 0.26575618 16.9269577 65.136014

l = 5, Latt Dim = 27 0.48831334 40.38422894 124.276685

l = 6, Latt Dim = 33 0.8502763 65.44632018 254.536334

l = 7, Latt Dim = 36 1.14594242 89.78301398 295.984628

to execution times are lower than 1. Given that both schemes are immune against the known
plain-text/cipher-text attacks, one can conclude that the HHSES is considered as a good
competent for the well known BGV scheme.

5.3 Multiplicative circuit evaluation

Another way to compare the performance of the different encryption schemes (DF, HHSES
and BGV) is to evaluate the multiplicative circuit of depth l given in Fig. 13. The 3 schemes
listed previously suffer from cipher-text expansion after homomorphic multiplication and
KS technique can be adopted as a practical solution to reduce this expansion and improve
their efficiency.

In Fig. 14, the circuit evaluation using the HHSES is compared with an evaluation that
adopts the basic DF scheme given in [7] and another version of it that adopts the DF scheme
implemented with KS as presented in [16]. Different schemes are implemented with the
same security level (security parameter λ = 60) over a plain-text message of size 2 Bytes
and by varying the circuit depth l from 2 till 14 and taking the DF dimension d respectively
2, 3 and 5 for DF and HHSES. Different execution times in Fig. 14 represent the mean
values of 10 iterations and illustrated in seconds using a log scale. After examining different
results, it is clear that with the increase of the circuit depth different execution times are
increasing linearly. A deep analysis of the concerned results shows that the main importance
of the HHSES comes with complex circuits of high depth (l ≥ 6) since DF with KS takes the
lowest execution time afterward comes HHSES and the highest execution time is preserved
for DF without KS. The main contribution of HHSES is that with circuits of high depth,
such as the case of real-life applications, the latter is a symmetric scheme that provides,
simultaneously, the efficiency in implementation and the immunity against different types

Table 15 Ratio between HHSES and BGV schemes

Plain-text Size l

in Bytes
Enc. Time (ε) Dec. Time (ε) Add. Time (ε) Mult. Time (ε) Storage

Overhead (ε)

l = 2 0.000226073 0.775642726 0.049963477 0.002066192 1.044289044

l = 3 8.95206e − 05 0.750403447 0.058970644 0.001433965 1

l = 4 4.84253e − 05 0.695759897 0.053540099 0.001050851 0.973913043

l = 5 3.582e − 05 0.65758614 0.050757108 0.000790416 0.996472663

l = 6 2.70033e − 05 0.090837996 0.072788025 0.001004712 0.905050505

l = 7 2.24536e − 05 0.096105018 0.067859729 0.000952521 0.938405797

14438 Multimedia Tools and Applications (2022) 81:14403–14449

Table 16 Ratio between BGV and HHSES for KS operation

Plain-texts Message Size l

in Bytes
Mean Basic Mult (ε) Mean KS (ε) Public Matrix Gener-

ation (ε)

l = 2 0.064926892 0.000703972 0.000430257

l = 3 0.062866784 0.000381744 0.000117719

l = 4 0.052920463 0.000232219 5.15997e − 05

l = 5 0.054736207 0.000137214 2.68675e − 05

l = 6 0.066212477 0.000157536 1.32869e − 05

l = 7 0.065819625 0.000124528 1.17202e − 05

of attacks including the known plain-text/cipher-text attacks. On the other hand, DF with
KS is efficient but it is compromised where a known plain-text/cipher-text attack is possible
while knowing at least d couples of plain-text/cipher-text as given in [16, 35].

In Fig. 15, the evaluation procedures of the circuit given in Fig. 13 using both asymmet-
ric BGV and symmetric HHSES are illustrated. Starting from the same security parameter
(λ = 10) and a plain-text message of size 2 Bytes for both, the circuit depth is varied from
1 till 5. As for HHSES, DF dimension d is varied between 10, 25, and 50 respectively. For
BGV the lattice dimension is chosen 5, 7, and 10 respectively. Different results in Fig. 15
also present the mean execution time of 10 iterations given in seconds and illustrated using
a log scale. It is clear from the given results that with the increase of circuit depth l, exe-
cution times are increasing linearly. A deep examination of the obtained results shows that
HHSES with d = 10 is taking the lowest execution time then come respectively HHSES
with d = 25, BGV with lattice dimension=5, HHSES with d = 50, BGV with lattice dimen-
sion=7 and finally BGV with lattice dimension=10 is taking the highest execution time. In
conclusion, HHSES can be considered as a good candidate in comparison with the well
known and famous BGV scheme. Hence, the proposed solution is a symmetric HE cipher,
and it requires simple operations and a lower number of rounds. Thus, the proposed solution
can ensure better efficiency compared to existing asymmetric ones. Moreover, the proposed

Fig. 13 Multiplicative circuit of depth l

14439Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 14 Multiplicative circuit evaluation for HHSES and DF

solution reaches resistance against crypt-analysis as discussed in Section 4. Equally impor-
tant, the storage overhead can be reduced according to the selected encryption parameters
(configuration). This discussion indicates clearly that the proposed solution can reach a
good level of efficiency and robustness.

6 HHSES optimization using CRT

HE schemes are characterized by having a high storage overhead in comparison with tradi-
tional encryption schemes, which reflects a high computational complexity in the encryption
and decryption operations. Brakerski et al. [2] and Smart et al. [32] proposed an opti-
mization technique for HE and decryption over an array of plain-texts instead of a single
plain-text at a time. This technique uses the Chinese Remainder Theorem (CRT) [31]
and factorizes any plain-text ring Rf into a product of many small prime factors where
f = ∏t

i=1 fi , where f1, f2,, ft are distinct prime numbers.

Fig. 15 Multiplicative circuit evaluation for HHSES and BGV

14440 Multimedia Tools and Applications (2022) 81:14403–14449

6.1 Chinese remainder theorem (CRT)

In this section, a brief overview about CRT is introduced as given in [31]: Given n1,
n2,, nt , t integers greater than 1 and N = n1 × n2 × × nt the product of the ni . The
CRT asserts that if the ni are pairwise co-prime and if a1, a2,...., at are t integers such that
0 ≤ ai ≤ ni for every i, then there is one and only one integer x, such that 0 ≤ x < N and
the remainder of the Euclidean division of x by ni is ai for every i.

The CRT can be written in term of congruence’s: If the ni are pairwise co-prime, and if
a1, a2,..., at are any integers, then there exist integers x such that:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...
x ≡ at (mod nt)

(34)

Any given two solutions, for example x1 and x2, are congruent modulo N (i.e x1 ≡
x2 (mod N))
CRT enables homomorphic operations, since having two integers x and y in N that verify
the two following relations:

x ≡ a1 (mod n1) y ≡ b1 (mod n1)

x ≡ a2 (mod n2) y ≡ b2 (mod n2)

...
...

...
...

x ≡ at (mod nt) y ≡ bt (mod nt)

Both addition and multiplication properties are simply verified:

x + y ≡ (a1 + b1) (mod n1) x × y ≡ (a1 × b1) (mod n1)

x + y ≡ (a2 + b2) (mod n2) x × y ≡ (a2 × b2) (mod n2)

...
...

...
...

x + y ≡ (at + bt) (mod nt) x × y ≡ (at × bt) (mod nt)

6.2 HHSES under CRT

In order to enhance the HHSES efficiency, the latter scheme is implemented under CRT as
follows:

1. Security Parameters:

(a) λ: security parameter, based on the security level.
(b) t : CRT’s number of equations.
(c) ψi , 1 ≤ i ≤ t : t secret co-primes pairwise modulus (ψ1, ψ2,, ψt) are generated

such that
ψi = random prime(2high bound , 2low bound).

(d) ψ : global secret modulus given by the product of the t (ψi) (i.e. ψ = ψ1 × ψ2 ×
.... × ψt).

(e) Ni , 1 ≤ i ≤ t : t RSA ring modulus are generated (N1, N2, .., Nt).
(f) �i : t public modulus where �i = ψi × Ni , where i ∈ {1, 2, 3, .., t}.

14441Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 16 Proposed HHSES parallel encryption scheme

(g) �: global public modulus is given by the product of t public modulus �i . (i.e.
� = �1 × �2 × × �t)

(h) ri , 1 ≤ i ≤ t : t invertible secret keys respectively in the public rings Z�i
.

(i) Ki , 1 ≤ i ≤ t : t invertible secret matrices respectively in the public rings (i.e
Ki = (ki

j,h ∈ Z�i
) generated as given in Section 3.1.1.

(j) d: Cipher-text dimension is kept the same as given in Section 3.1.1.

2. Encryption Procedure: the computation with respect to the different secret modulus
(ψ1, ψ2, ..., ψt) are independent of each and hence encryption can be implemented in
parallel as given in Fig. 16.

3. Decryption Procedure: similar to the parallel encryption procedure given in Fig. 16,
decryption can also be implemented in parallel as given in Fig. 17.

4. Implementations: to validate the correctness of the HHSES under CRT for both encryp-
tion and decryption procedures, different implementations are done under Python using
SageMath library. A personal laptop having the following specifications: OS Ubuntu
14.04, RAM 3.9 GB, Processor Intel Core i7 − 8550U CPU @ 1.8 GHZ, 64 bit, Disk
24.1 GB is used. For parallel processing, the multiprocessing pool of threads available
in Python is adopted. In the following implementations, security parameter λ is taken
equal to 10, t the number of CRT equations is taken equal to 6. Thus, 6 secret mod-
ulus ψi such that 1 ≤ i ≤ 6 are generated as random primes between 2500 and 2100

(high bound = 500 and low bound = 100). Since 6 CRT equations are present, 6
processors are mandatory to implement the 6 processes of encryption and decryption in
parallel to achieve the required optimization.

Different results of optimization are given as follow:

(a) Encryption’ Optimization: in Fig. 18, the mean execution time for 40 iterations of
HHSES encryption procedure with and without CRT are respectively calculated. In
the related implementation, DF dimension d is taken 50 and the plain-text message
size is varied from 10 to 30 with a step equal to 5. By examining the obtained
result in Fig. 18, one can see that the parallel processing decreases the execution

14442 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 17 Proposed HHSES parallel decryption scheme

time of encryption efficiently where ε represents the relative enhancement of the
encryption procedure with CRT with respect to the encryption procedure without
CRT as given below:

ε = Execution time with CRT − Execution time without CRT

Execution time with CRT
(35)

While varying the plain-texts message size from 10 till 30 with a step equal to 5, ε’s
values increase respectively as follows: 0.166303856595, 0.3495, 0.4803, 0.51203
and 0.5895.

Figure 19 illustrates the same contribution for HHSES under CRT but with DF
dimension d = 60.

Fig. 18 Variation of HHSES encryption execution time with and without CRT for d = 50 (Parallel
Processing)

14443Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 19 Variation of HHSES encryption execution time with and without CRT for d = 60 (Parallel
Processing)

(b) Decryption’s Optimization: in Fig. 20, the mean execution time for 40 operations
of decryption by taking d = 50 are illustrated. The plain-text message size is also
varied from 10 to 30 with a step equal to 5. By examining different values of ε, it
is obvious that decryption is also reduced efficiently using the parallel processing
implementation since ε’s values are increasing with the increase of the plain-texts
message size as follows: 0.24027130944, 0.385004909377, 0.4572527777372,
0.500034926174 and 0.549887710517.

Figure 21 also illustrates the same contribution for HHSES under CRT with DF
dimension d = 60.

An overall evaluation for both encryption and decryption optimization procedures leads
us to conclude that with the increase of the plain-text message size, the relative enhancement
ε tends to be close to 0.5. Hence, the proposed optimization improves twice the efficiency
in implementation in terms of execution time.

Fig. 20 Variation of HHSES decryption execution time with and without CRT for d = 50 (Parallel
Processing)

14444 Multimedia Tools and Applications (2022) 81:14403–14449

Fig. 21 Variation of HHSES decryption execution time with and without CRT for d = 60 (Parallel
Processing)

7 Conclusion and future work

In this paper, we have designed the first fully symmetric HE scheme that resists the known
plain-text/cipher-text attacks. As far as we know this is the first work in this direction.
The new scheme is referred to as Homomorphic Hybrid Symmetric Encryption Scheme
(HHSES). HHSES is based on mixing the homomorphic behavior of two well known sym-
metric encryption schemes, which are the MORE approach and the DF scheme. Different
implementations and performance evaluations have shown that the new scheme (HHSES) is
a good candidate in comparison to the well known symmetric (MORE, PORE and DF) and
asymmetric (BGV and DGHV) encryption schemes. Security tests have shown that the new
variant presents a high immunity against several types of attacks such as statistical attacks
and related key attacks. The scheme also fulfills some important properties such as unifor-
mity, in-dependency, and the avalanche effect. Theoretical crypt-analysis has shown that
the scheme is robust against the known plain-text/cipher-text attacks even with the lowest
possible dimension (d = 2), while other symmetric schemes (MORE, PORE and DF) are
sensitive to this type of attacks. Another contribution in this work is optimizing the HHSES
encryption and decryption procedures under CRT using parallel processing. The correctness
of the optimization is also validated by the implementation. In conclusion, HHSES is a new
efficient, robust, and practical symmetric HE scheme that can be adopted as a secure solu-
tion for a wide range of emerging and future applications. For future work, we will design a
symmetric fully homomorphic message authentication to achieve data integrity and source
authentication security services.

Acknowledgements This work has been funded by the EIPHI Graduate School (contract “ANR-17-EURE-
0002”).

Appendix A: Invertible Secret Matrix Generation

Different Steps for generating the invertible matrix K in [12] are given by the following:
Starting from a matrix

k =
[
a b

c d

]

14445Multimedia Tools and Applications (2022) 81:14403–14449

its corresponding determinant Det(k) = ad − bc, assume that Det(k) = ad − bc = 1 and
a = d. Under the conditions listed above we have:
a2 − bc = 1, so bc = a2 − 1 = (a + 1)(a − 1), than we can write b = a + 1 and c = a − 1.
As a result, the matrix k is given by the following form:

k =
[

a a + 1
a − 1 a

]
(36)

Since Det(k) = 1, the matrix k is obviously invertible, and k−1 is

k−1 =
[

a −(a + 1)

−(a − 1) a

]
(37)

If the parameter a is replaced by sub matrix A, we get

K =
[

A A + I

A − I A

]
(38)

where I and A are the identity matrix and a non-zero matrix of size n/2 respectively. Addi-
tionally, the elements of A can be freely chosen from any Galois field such that K is full
rank. However, having a matrix K constructed from four sub-matrices (A, B,C and D),

K =
[
A B

C D

]
, the inverse of this matrix when A = D, B = A + I and C = A − I can be

proven since the determinant of K is given by:

Det(K) = Det(A) × Det(D − CA−1B)

= Det(A) × Det(A − (A − I)A−1(A + I))

= Det(A) × Det(A − (I − A−1)(A + I))

= Det(A) × Det(A − (A + I − I − A−1))

= Det(A) × Det(A−1)

= Det(A) × 1
Det(A)

= 1

(39)

Since Det(K) = 1, the matrix K is always invertible and its inverse integer matrix K−1 is:

K−1 =
[

A −A − I

−A + I A

]
(40)

As a result, building a secret invertible matrix K of dimension n×n, where n is always even
is done by selecting a nonzero random sub matrix A of dimension n/2, and by applying the
matrix forms listed respectively in (38) and (40), K and K−1 are obtained.

Appendix B: Attack on the Invertible Matrix Model

The vulnerability detected by the authors of [34] resides in using (38) while creating the
invertible secret key K . As explained previously in Appendix A, the invertible matrix K has

the following form:

[
A A + I

A − I A

]
where dim(K) is [n × n] and dim(A) = dim(I) =

[n
2

× n

2
], thus the attack is based on the the two following principles:

1. Principle 1: the attacker does not know the matrix A, but given a plain-text vector
m = [m1,m2,,mn] with its corresponding cipher-text matrix C of dimension [n×n],
he knows that the eigen-vector of C associated to the ith plain-text mi has the following

14446 Multimedia Tools and Applications (2022) 81:14403–14449

form:[
A(i)

−A(i) + ei

]
for 1 ≤ i ≤ n

2
and

⎡
⎣−A(i − n

2
) − ei− n

2

A(i − n

2
)

⎤
⎦ for

n

2
< i ≤ n.

2. Principle 2: setting C1,1, C1,2, C2,1 and C2,2 four sub-matrices of C =
[
C1,1, C1,2
C2,1C2,2

]
,

the attacker can deduce the following equalities for 1 ≤ i ≤ n

2
and

n

2
< j ≤ n:

[
C1,1, C1,2
C2,1, C2,2

]
.

[
A(i)

−A(i) + ei

]
= mi .

[
A(i)

−A(i) + ei

]
(41)

[
C1,1, C1,2
C2,1, C2,2

]
.

⎡
⎣−A(j − n

2
) − ej− n

2

A(j − n

2
)

⎤
⎦ = mj .

⎡
⎣−A(j − n

2
) − ej− n

2

A(j − n

2
)

⎤
⎦ (42)

By linearizing the two (41) and (42) and setting up j = i + n

2
, the attacker can build the

following relation given by:

(−C1,1 + C1,2 − C2,1 + C2,2) = (mi − mi+ n
2
).ei (43)

Let D = (−C1,1 + C1,2 − C2,1 + C2,2). It is clear that for every 1 ≤ i ≤ n

2
, the i − th

column of D is the i − th canonical vector multiplied by a difference of two eigen-values
of C. Thus the matrix D, that can be computed using only one cipher-text, is a diagonal
matrix, whose entries leak differences of eigen-values of C.

Revealing a plain-text vector, in this case, is given by the following steps:

1. Step1: let δi = D(i, i) denotes the i − th entry on the diagonal of D.
2. Step2: let the characteristic polynomial p(x) = CharPoly(C)(x) of the cipher-text C.
3. Step3: given that the roots of p(x) are the elements of the plain-text vector m, the

attacker defines n new polynomials p−i (x) and pi(x) for 1 ≤ i ≤ n

2
as p−i (x) = p(x−

δi) and pi(x) = p(x + δi)

4. Step 4: for any 1 ≤ i ≤ n

2
, mi must be a root of p−i (x), Thus mi will also be root of

gcd(p(x), p−i (x)).

References

1. Aguilar-Melchor C, Fau S, Fontaine C, Gogniat G, Sirdey R (2013) Recent advances in homomorphic
encryption: A possible future for signal processing in the encrypted domain. IEEE Signal Proc Mag
30(2):108–117

2. Brakerski Z, Gentry C, Halevi S (2013) Packed ciphertexts in LWE-based homomorphic encryption. In:
Kurosawa K, Hanaoka G (eds) Public-Key Cryptography – PKC 2013. Springer, Berlin, pp 1–13

3. Brakerski Z, Gentry C, Vinod V (2014) (Leveled) fully homomorphic encryption without bootstrapping.
ACM Trans. Comput. Theory 6(3)

4. Brakerski Z, Vaikuntanathan V (2011) Fully homomorphic encryption from ring-LWE and security for
key dependent messages. In: Rogaway P (ed) Advances in cryptology – CRYPTO 2011. Springer, Berlin,
pp 505–524

5. Catalano D, Cramer R, Damgård IB (2005) Contemporary cryptology. Advanced courses in mathemat-
ics: CRM Barcelona Birkhäuser Di Crescenzo G, Pointcheval D (eds)

14447Multimedia Tools and Applications (2022) 81:14403–14449

6. Coron J-S, Mandal A, Naccache D, Tibouchi M (2011) Fully homomorphic encryption over the integers
with shorter public keys. In: Rogaway P (ed) Advances in cryptology – CRYPTO 2011. Springer, Berlin,
pp 487–504

7. Domingo-Ferrer J (2002) A provably secure additive and multiplicative privacy homomorphism. In:
Chan AH, Gligor V (eds) Information security. Springer, Berlin, pp 471–483

8. Gentry C (2009) A fully homomorphic encryption scheme. PhD thesis, Stanford University.
crypto.stanford.edu/craig

9. Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first
annual ACM symposium on theory of computing, STOC ’09. Association for Computing Machinery,
New York, pp 169–178

10. Gentry C, Sahai A, Waters B (2013) Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In: Canetti R, Garay JA (eds) Advances in cryptology –
CRYPTO 2013, Springer, pp 75–92

11. Hariss K, Chamoun M, Samhat AE (2017) On DGHV and BGV fully homomorphic encryption schemes.
In: 2017 1St cyber security in networking conference (CSNet), pp 1–9

12. Hariss K, Noura H, Samhat AE (2017) Fully enhanced homomorphic encryption algorithm of MORE
approach for real world applications. Journal of Information Security and Applications 34:233–242

13. Hariss K, Noura H, Samhat AE, Chamoun M (2018) Design and realization of a fully homomorphic
encryption algorithm for cloud applications. In: Cuppens N, Cuppens F, Lanet J-L, Legay A, Garcia-
Alfaro J (eds) Risks and Security of Internet and Systems. Springer International Publishing, Cham,
pp 127–139

14. Im J, Choi J, Nyang D, Lee M (2016) Privacy-preserving palm print authentication using homomorphic
encryption. In: 2016 IEEE 14Th intl conf on dependable, autonomic and secure computing, 14th intl
conf on pervasive intelligence and computing, 2nd intl conf on big data intelligence and computing and
cyber science and technology congress(DASC/picom/datacom/cyberscitech), pp 878–881

15. Katz J, Lindell Y (2014) Introduction to Modern Cryptography. Chapman & hall/CRC, 2nd edn
16. Khalil H, Samhat AE, Chamoun M (2019) An efficient fhe scheme to secure cloud computing. In:

Proceedings of the 16th International Joint Conference on e-Business and Telecommunications - Vol 2:
SECRYPT, INSTICC, SciTePress, pp 341–349

17. Kim Miran, Lauter KE (2015) Private genome analysis through homomorphic encryption. IACR Cryptol
ePrint Arch 2015:965

18. Kim T, Oh Y, Kim H (2020) Efficient privacy-preserving fingerprint-based authentication system using
fully homomorphic encryption. Commun Networks 2020:4195852:1–4195852:11

19. Kipnis A, Hibshoosh E (2012) Efficient methods for practical fully homomorphic symmetric-key
encrypton, randomization and verification. IACR Cryptology ePrint Archive 2012:637

20. Leng L, Teoh ABJ, Li M, Khan MK (2014) Analysis of correlation of 2dpalmhash code and orientation
range suitable for transposition. Neurocomputing 131:377–387

21. Leng L, Zhang J (2011) Dual-key-binding cancelable palmprint cryptosystem for palmprint protection
and information security. J Netw Comput Appl 34(6):1979–1989

22. Leng L, Zhang J (2013) Palmhash code vs. palmphasor code. Neurocomputing 108:1–12
23. Liao Xin, Li Kaide, Yin Jiaojiao (2017) Separable data hiding in encrypted image based on compressive

sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753
24. Liao X, Yin J, Chen M, Qin Z (2020) Adaptive payload distribution in multiple images steganography

based on image texture features. IEEE Transactions on Dependable and Secure Computing
25. Liao X, Yu Y, Li B, Li Z, Qin Z (2019) A new payload partition strategy in color image steganography.

IEEE Trans Circuits Syst Video Technol 30(3):685–696
26. Micciancio D, Peikert C (2013) Hardness of SIS and LWE with small parameters. In: Canetti R, Garay

JA (eds) Advances in cryptology – CRYPTO 2013. Springer, Berlin, pp 21–39
27. Noura H, Chehab A, Sleem L, Noura M, Couturier R, Mansour MM (2018) One round cipher algorithm

for multimedia IoT devices. Multimedia Tools and Applications 77(14):18383–18413
28. Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Stern

J (ed) Advances in cryptology — EUROCRYPT ’99. Springer, Berlin, pp 223–238
29. Regev Oded (September 2009) On lattices, learning with errors, random linear codes, and cryptography.

j. ACM 56(6)
30. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key

cryptosystems. Commun ACM 21(2):120–126
31. Schwarzweller C (2009) The chinese remainder theorem, its proofs and its generalizations in mathemat-

ical repositories. Studies in Logic, Grammar and Rhetoric, 18(31)
32. Smart NP, Vercauteren F (2014) Fully homomorphic SIMD operations. Des Codes Cryptography

71(1):57–81

14448 Multimedia Tools and Applications (2022) 81:14403–14449

33. Torres WAA, Bhattacharjee N, Srinivasan B (2015) Privacy-preserving biometrics authentication
systems using fully homomorphic encryption. International Journal of Pervasive Computing and
Communications 11(2):151–168

34. Vizár D, Vaudenay S (2019) Cryptanalysis of enhanced more. Tatra Mountains Mathematical Publica-
tions 73(1):163–178

35. Wagner D (2003) Cryptanalysis of an algebraic privacy homomorphism. In: CBoyd D, Mao W (eds)
Information security. Springer, Berlin, pp 234–239

36. Xiao L, Bastani O, Yen I-L (2012) An efficient homomorphic encryption protocol for multi-user systems.
IACR Cryptology ePrint Archive 2012:193

37. Yi X, Paulet R, Bertino E (2014) Homomorphic encryption and applications. Springer Publishing
Company, Incorporated

38. van Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully homomorphic encryption over the
integers. In: Gilbert H (ed) Advances in cryptology – EUROCRYPT 2010. Springer, Berlin, pp 24–43

39. Öztürk E, Doröz Y, Sunar B, Savas E (2015) Accelerating somewhat homomorphic evaluation using
FPGAs. IACR Cryptology ePrint Archive 2015:294

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Khalil Hariss1,2 ·Hassan Noura3

1 Faculty of Engineering-CRSI, Lebanese University, Hadath, Lebanon
2 ESIB-CIMTI, Saint Joseph University, Mar Roukoz, Lebanon
3 FEMTO-ST Institute, Université Bourgogne Franche-Comté (UBFC), CNRS, Belfort, France

14449Multimedia Tools and Applications (2022) 81:14403–14449

	Towards a fully homomorphic symmetric cipher scheme resistant to plain-text/cipher-text attacks
	Abstract
	Introduction
	State of art and existing schemes
	Homomorphic Encryption Concept
	Symmetric HE schemes
	MORE approach
	Remark
	Remark

	PORE approach
	Domingo rerrer (DF) scheme

	BGV asymmetric scheme

	Homomorphic hybrid symmetric encryption scheme (HHSES)
	Building the scheme
	HHSES parameters
	Encryption procedure
	Decryption procedure:

	Homomorphic properties
	Dimension growth and KS technique
	Cipher-text expansion
	KS technique for DF
	Applying KS technique for HHSES

	HHSES security analysis
	Resistance against statistical attacks
	Uniformity property
	Independence property

	Resistance against related key attacks
	Resistance to known plain-text/cipher-text attacks
	Avalanche effect
	Theoretical crypt-analysis

	Experimentation and performance analysis
	Comparison with symmetric schemes
	Comparison with asymmetric schemes
	Multiplicative circuit evaluation

	HHSES optimization using CRT
	Chinese remainder theorem (CRT)
	HHSES under CRT

	Conclusion and future work
	Appendix A Invertible Secret Matrix Generation
	 Attack on the Invertible Matrix Model
	Appendix B Attack on the Invertible Matrix Model
	References
	Affiliations

