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Abstract
The safety helmet wearing of workers is extremely important to their safety in construc-
tion scenarios, and it is very meaningful for computer vision, pattern recognition and
artificial intelligence. This paper proposes a new Improved Boosted Random Ferns
algorithm (IBRFs) for safety helmet wearing status detection. IBRFs originates from
the Boosted Random Ferns algorithm (BRFs) and introduces the weighted coefficient to
improve. In IBRFs, firstly, the feature is extracted by Histogram of Oriented Gradient
(HOG) to form the feature domain space of the image. Secondly, the random binary test
method is used to construct random ferns in the feature domain space. Then, a weak
(acceptable) classifier is constructed by random ferns. Finally, an improved Real
AdaBoost algorithm is used to select the most discriminative ones to construct IBRFs.
Experimental evaluation on an enlarged public Safety Helmet Wearing-datasets (GZMU-
SHWD) shows that the result of IBRFs outperforms those of the existing advanced
detection algorithms, including SSD, YOLOv3 and Faster R-CNN, which further dem-
onstrates the effectiveness of IBRFs for safety helmet wearing status detection.

Keywords Object detection . Improved boosted random ferns . Safety helmet .Weighted
coefficient

1 Introduction

The safety helmet, as the basics safety protection equipment for constructers, is mainly used to
protect workers’ head and prevent them from being hit and collided by sharp objects [18]. It is
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of great significance to the personal safety of constructers. Therefore, it has become a hot topic
of artificial intelligence to detect the wearing status of safety helmet, in different construction
scenarios, based on computer vision technology, especially in pattern recognition community.

The task of object detection is to find out the interested objects in the image and determine
their classes and locations. We form the safety helmet wearing status detection as two class
object detection problems. In pattern recognition community, there are two main methods,
traditional statistical pattern recognition and deep learning, to detect the safety helmet wearing
status.

In traditional object detection, firstly, some candidate regions are selected from a given
image. Then, feature extraction is carried out for these regions, the commonly used features are
Histogram of Oriented Gradient (HOG) [4], Local Binary Patterns (LBP) [12], Scale-Invariant
Feature Transform (SIFT) [10] etc. Finally, the pretrained classifier is used for classification.
Limei Cai et al. constructed standard images of helmets, extracted four directional features,
modeled the distribution of these features using a Gaussian function and separated local
images of frames into helmet and non-helmet classes [2]. Bahaa et al. Detect the helmet in
different scenarios [1]. Park et al. proposed a background difference method for detection [13].
After extracted HOG features from the input image, SVM classifier is used to detect person
and safety helmet.

There are two problems in the existing safety helmet wearing detection based on traditional
methods. One is the region selection strategy based on sliding window lack of pertinence, with
high time complexity and redundant window. Another is the hand-designed features have poor
robustness to the changes of diversity.

In deep learning method, after multiple convolutional and pooling operations, the extracted
features are put into the classifier for detection. There are two distinct ideas of deep learning
detection. One is using semantic segmentation [11, 27] for reference, which mainly includes
You Only Look Once (YOLO) [14], YOLOv3 [17] and Single Shot MutiBox Detector (SSD)
[19], predicting the classes and locations of different objects with convolutional neural
network. This kind of method can achieve higher accuracy while slower detection speed.
Another is the R-CNN framework based on candidate region, which mainly includes R-CNN
[8], Fast R-CNN, and Faster R-CNN [15]. Within this framework, the object candidate box is
generated for classification and regression. This framework has strong generalization ability
and has been widely used. Cheng Raoet al. proposed a helmet wearing detection algorithm
based on SAS-YOLOv3-Tiny [3]. Fang Ming et al. proposed a fast detection algorithm based
on YOLOv2 [5].Added dense blocks, and compressed the network by adopting the lightweight
network structure, to realize the rapid detection of safety helmet. Wen P et al. proposed a
method based on the YOLOv3 algorithm to detect the wearing of safety helmet [24]. By using
multi-scale training and increasing the anchor points to enhance the robustness of network for
different sizes object detection, the Fast R-CNN is optimized.

In general, deep learning can achieve high accuracy, however a lot of samples, high
hardware, and long time is need for training. Moreover, there is no public large-scale safety
helmet datasets. In this way, the unbiased estimation based on deep learning is in efficient on
small samples.

In order to realize the accurate detection of helmet wearing status, this paper proposes an
new IBRFs. Based on HOG feature to construct random ferns, then weak classifiers are
constructed. Selected the most discriminative ones to build a strong classifier to detect the
wearing status of the safety helmet. The main contirbutions of our work are summarized as
follows:

16784 Multimedia Tools and Applications (2022) 81:16783–16796



& Feature extraction of image based on HOG domain solves the inaccurate feature
description.

& Weak classifiers are constructed based on BRFs, by selecting the position points and
parameters with strong discriminative ability to improve their performance.

& An improved ensemble learning algorithm is proposed to enhance the discriminative
ability of strong classifiers.

The rest of this paper is composed of 4 sections. Section 2 briefly describes the theory of
random ferns. Section 3 presents the proposed IBRFs. Section 4 submits experimental
validation of IBRFs on GZMU-SHWD. And section 5 concludes the work and points out
the future work.

2 RandomFerns Algorithm

Random Ferns algorithm (RFs) is an ensemble learning method that performs well in
classification and regression tasks in machine learning [21, 25]. As shown in Fig. 1, RFs
takes a particular decision tree as the basic meta-model, and there is only one judgment
criterion in each layer of fern. In the random ferns, the training time increases linearly as the
number of ferns increases, so the calculating feasibility can be confirmed.

2.1 Random ferns cluster based on HOG domain

In order to improve the robustness of the random ferns classifier for illumination and
intra-class variation, we extract image HOG features referencing to the feature represen-
tation based on the intensity domain in the RFs [20]. Given an image window X, HOG is
calculated in the center position U of the sub-window S. Each local gradient in the sub-
window S contributes to the construction of the HOG, and is positioned in the corre-
sponding box through weighting processing. In the HOG, two boxes are randomly
selected for binary test:

f x; u; θð Þ ¼ I HOG x; u; bð Þ > HOG x; u; b
0

� �� �
ð1Þ

Fig. 1 Tree classifier and Fern classifier
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Where I(a) is the index function, if ais true, then I(a) = 1, otherwiseI(a) = 0. θ = {b,
b′} is two randomly selected dindexes in the interval [1, B], and B is the total number of
cases in the histogram. A binary feature vector of fern is synthesized by aggregating M
local features to represent S belong to one class. Therefore a single random fern f(x; u,
θ) based on HOG domain is represented as follows:

f x; u; θð Þ ¼ f x; u; θ1ð Þ; ; f x; u; θMð Þ½ � ð2Þ
In Fig. 2, the right one is random ferns based on HOG, each output of the random ferns is a M
dimensional binary feature vector Z, Z ∈ 0,…, 2M − 1. In the image window X, WhenM = 3,
the output feature of random fern s is Z = {011} = 3, Z = {0, …, 255}. The output of the
random ferns is determined by u and θ = {θ1, …, θM}.

As shown in Fig. 3, when training N samples in the same class, random ferns will output a
probability distribution P(F| C). For training samples with multiple classes, random ferns will
output probability distribution P(F| Ck) of each class, Ck denotes the probability of the input
sample belongs to class k. When testing a sample with an unknown class, using a fixed-size
rectangular sliding window to scan it, its feature is calculated by random ferns. Semi-naive
Bayes is used to get the final classification.

Classðf Þ ¼ argmaxkP Ckð Þ
YN
n¼1

p FnjCkð Þ ð3Þ

2.2 Boosted random ferns

In order to improve the performance of the classifier, BRFs [22] adopts the Real AdaBoost
strategy [7] to select T weak classifiers ht(x), t = 1, …, T with strong discriminative ability to
build a strong classifier H(x):

HðxÞ ¼ sign
XT
t¼1

htðxÞ � �

 !
ð4Þ

Where β is a threshold that determines the classifier tolerance, each weak classifier returns a
confidence score:

Fig. 2 Random Ferns based on HOG
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htðxÞ ¼ 1

2
log o x; ul; θrð Þð Þ ð5Þ

o x; ul; θrð Þ ¼ P zjOð Þ þ "

P zjBð Þ þ "
ð6Þ

Where ε is a small positive integer to avoid zero division. Higher score weak classifier ht(x)
denotes there is a significant difference between object and background. It means the random
ferns can produce a weak classifier with recognition ability on the location of u and parameter
selection θ.

In order to get the most suitable u and θ for each weak classifier, using N samples S = {(x1,
y1), …, (xN, yN)} to train the classifier, where yi ∈ {−1, +1}, yi = − 1 represents the image
window xi belongs to the background class, and yi = + 1 represents xi belongs to the object.
Every training sample also has an associated weight ωt(i), it is initialized as !1ðiÞ ¼ 1

N . The

main steps of BRFs as follows:
Specifically, we first define a set {u1, …, uL} of all possible 2D pixel coordinates within a

window X and a pool {θ1, …, θR} of R different sets of random pair of histogram bin indices.
Then, a weak classifier is constructed. Each iteration of a possible random pair (ul, θr)

generates a random fern f(x; ul, θr). Each random fern is evaluated according to the whole
training datasets, and HOG of object and background was constructed.

P zjOð Þ ¼
X

i:f xi;ul ;θrð Þ¼ẑ yi¼þ1

!tðiÞ ð7Þ

P zjBð Þ ¼
X

i:f xi;ul ;θrð Þ¼ẑ yi¼�1

!tðiÞ ð8Þ

Fig. 3 Random Ferns classifier
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Where P(z| O) stands for P(f(xi; ul, θr)| O), the output valuezof random ferns under the
parameters ut and θt represents the probability that the image windowxbelongs to the object.
P(z| B) stands for P(f(xi; ul, θr)| B). It is the probability that the image window belongs to the
background.

The discriminative ability of each weak classifier ht(x) is determined by the Bhattacharyya
coefficient [16] Q between P(z| O) and P(z| B).

Q ul; θrð Þ ¼ 2
X2M�1

z¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P zjOð ÞP zjBð Þ

p
ð9Þ

The value of Q is lower, the discriminative ability of weak classifier is stronger. A weak
classifier ht(x) is constructed by retaining the parameters ul* ; θr*ð Þ that minimize Q.

ul* ; θr*ð Þ ¼ argminl;rQ ul; θrð Þ ð10Þ

htðxÞ ¼ 1

2
logo x; ul* ; θr*ð Þ ð11Þ

Finally, sample weight is updated:

!tþ1ðiÞ ¼ !tðiÞexp �yiht xið Þð ÞPN
i¼1 !tðiÞexp �yiht xið Þð Þ ð12Þ

3 Algorithm design

3.1 Improved boosted random ferns algorithm

In order to enhance the detection accuracy, the Real AdaBoost method [7] is introduced in
BRFs [22]. It selects the weak classifier ht(x) with strong discriminative ability, and obtains the
classifier H(x) by accumulating sum.

This method simply combines multiple weak classifiers, and pays less attention to weak
classifiers with low weight. In order to achieve optimal combination of classifiers, this paper
enhances the BRFs by Real AdaBoost with the help of a new definition method [23]. Random
variable is defined as:

Dt ¼ htðxÞ; if y ¼ þ1; x 2 s
� htðxÞ; if y ¼ �1; x 2 s

�
ð13Þ

Let D ¼PT
t¼1 �tDt, then weighted combination is used to construct strong classifier H(x):

HðxÞ ¼ sign
XT
t¼1

�thtðxÞ � �

 !
ð14Þ
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�t ¼
μt

�2t
ð15Þ

Where γt is the ratio of mean μt and variance �
2
t of random variable D, μt and �

2
t are expressed

as:

μt ¼
1

2

XN
i¼1

P zjOð Þ � P zjBð Þð Þlog P zjOð Þ
P zjBð Þ

� �� �
ð16Þ

�2t ¼
XN
i¼1

P zjOð Þ 1

2
log

P zjOð Þ
P zjBð Þ

� �
� μt

� �2

þ P zjBð Þ 1

2
log

P zjOð Þ
P zjBð Þ

� �
þ μt

� �2
 !

ð17Þ

After introducing the weighted coefficient, the sample weight is updated as follows:

!tþ1ðiÞ ¼ !tðiÞexp �yi�tht xið Þð ÞPN
i¼1 !tðiÞexp �yiht xið Þð Þ ð18Þ

IBRFs is show as algorithm 1:

16789Multimedia Tools and Applications (2022) 81:16783–16796



3.2 Algorithm implementation

As shown in Fig. 4, the pipeline framework of IBRFs is given as follows.
At the training stage, for an input image, firstly, the feature is extracted by HOG with

candidate box to form the feature domain space. After that, the random binary test is used to
construct the random ferns. Next, a weak classifier is built by the random ferns. At last, the
improved Real AdaBoost algorithm is used to select the most discriminative ones to construct
IBRFs. At the testing stage, the HOG for input image with candidate box is obtained, and
estimated by the IBRFs to complete the safety helmet wearing status detection.

4 Experimental results and analysis

4.1 Datasets and experimental platform

The experimental environment of this paper is as follows: window10, 64-bit operating system,
Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz, 8G RAM.

In this experiment, an enlarged Safety Helmet Wearing-datasets (SHWD1) called GZMU-
SHWD is taken to evaluate the IBRFs. The GZMU-SHWD originates from Internet crawler
data (Google-Net crawler) and SHWD. It consists of 7589 images, including 5000 training
samples, 2481 test samples and 108 verification samples. Some data are shown in Fig. 5.

The image comes from the different scenarios, different lighting conditions and different
angles, and the sample distribution is uneven. Therefore, image preprocessing is performed.
The image is augmented by horizontal flipping and clipping, and normalized to 100*120.

Fig. 4 Pipeline framework of the IBRFs

1 The SWHD database: [Online]. Available: https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset#
model, October 11, 2019.
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4.2 Experimental parameter setting

In the training phase, some parameters of the model are fine-tuned with reference to BRFs
[22]. The experimental parameters are shown in Table 1.

4.3 Experimental results

In order to evaluate the effectiveness of the proposed IBRFs, precision and recall are used in
the measuring the effectiveness of the proposed method for safety helmet wearing status
detection. The experimental evaluation formula is given as:

precision ¼ TP
TP þ FP

ð19Þ

recall ¼ TP
TP þ FN

ð20Þ

Fig. 5 Some images fromGZMU-SHWD

Table 1 Parameters

Parameter name Parameter value

Epoch 50
Oriented box 4
Feature number (M) 8
Feature sharing 10
Number of weak classifiers (T) 300
Overlap threshold 0.3
Detection threshold 0.1020

16791Multimedia Tools and Applications (2022) 81:16783–16796



Where True Positive (TP) is the positive sample predicted to be positive, False Positive (FP) is
the negative sample predicted to be positive, False Negative (FN) is the negative sample
predicted to be negative.

4.3.1 Comparative analysis of different ensemble algorithms

The weighted coefficient is used to improve the Real AdaBoost algorithm to get the best
combination coefficient. In order to verify the superiority of improved Real AdaBoost
algorithm for classification, the algorithms are tested on Ionoshpere and Sonar datasets [23]
and compared with other algorithms. The results are shown in Table 2.

As show in Table 2, the detection error rate and variance of Improved Real AdaBoost are
lowest. On Ionoshpere datasets, the detection error rate of Improve Real AdaBoost is 0.0939,
which is 0.0129 lower than Gentle AdaBoost, and 0.0111 lower than Real AdaBoost. This
verifies the effectiveness of the Improve Real AdaBoost algorithm to help the IBRFs algorithm
in the classification problem.

4.3.2 Analysis of BRFs and IBRFs

In order to verify the effectiveness and generalization ability of IBRFs.In the same experi-
mental environment, the BRFs and IBRFs are trained on public datasets include UIUC cars
[26], INRIA horses [6], and GZMU-SHWD. There are 108 images in UIUC cars datasets,
including 139 detection objects. There are 35 images in the INRIA horses datasets, including
45 detection objects. There are 108 images in GZMU-SHWD datasets, including 124 detection
objects. The detection results of the two models are shown in Table 3.

Table 3 Compares the performance of BRFs and IBRFs on different datasets, and the
detection accuracy of the IBRFs on INRIA horses datasets, UIUC cars datasets and GZMU-

Table 2 Comparative analysis of different ensemble algorithms

UIUC Car GZMU-SUWD INRIA horse

BRFs IBRFs BRFs IBRFs BRFs IBRFs

FP 4 2 20 11 12 9
FN 5 1 19 9 10 10
TP 134 138 105 115 35 35
Recall/% 96.40 99.28 84.00 91.27 77.78 77.78
Precision/% 97.10 98.57 84.68 92.74 74.47 79.55
EER 96.75 98.93 76.36 84.38 92.00 78.66

Table 3 Comparative analysis of different datasets

Ionoshpere Sonar

Error Variance Error Variance

Real AdaBoost 0.1068 0.0237 0.2346 0.0392
Improved Real AdaBoost
(Method of this paper)

0.0939 0.0174 0.2300 0.0412

Gentle AdaBoost 0.1050 0.0210 0.2337 0.0372
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SHWD datasets is improved compared with the BRFs, especially on GZMU-SHWD, the
detection accuracy reaches 92.74%, which is about 9.5% higher than the BRFs, The results
show that the IBRFs is effective to detect the wearing status of safety helmet.

Figure 6 is the PR (Precision and Recall) curves of GZMU-SHWD, it can be seen that the
IBRFs is better than BRFs in detection accuracy and recall rate. The results show that the
weighted coefficient introduced in this paper can improve the detection accuracy of the model.

The IBRFs can distinguish and select random ferns during the detection process, so that the
classifier can focus on the object parts that are more relevant to the classification. In Fig. 7, we
observe the results of feature selection for the three different object classifiers. The first row
depict the spatial layout of the ferns used to ensemble the classifiers. The colored contour
boxes indicate the positional density and weight of individual ferns that give rise to the strong
classifier. Red contours indicate higher density of ferns. We can see how ferns concentrate on
those semantically relevant regions, such as the wheels of cars, or the neck and head on horses.

Fig. 6 Precise and Recall curves

Fig. 7 The first row denotes spatial layout of ferns for different object categories.The second row denotes the
distribution of weak classifiers for each class
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The second row contains shared ferns distributions map for each strong classifier, the height of
the i column indicates the number of weak classifiers that use the parameters θi .

4.3.3 Analysis of experimental results

In order to verify the superiority of our algorithm, compared it with other algorithms in the
same hardware environment. IBRFs, BRFs, SVM + HOG [9], SSD [19], Faster R-CNN [15]
and YOLOv3 [17] are tested on GZMU-SHWD. The detailed detection results are shown in
Table 4.

From Table 4, in the safety helmet wearing status detection task, the detection accuracy of
IBRFs is 92.74%, which is higher than SSD, Fast R-CNN, BRFs, especially HOG + SVM.
Compared with BRFs, the detection accuracy is improved by 9.5%, which verifies the
effectiveness of IBRFs. In CPU environment, the detection speed of IBRFs is about 15 times
faster than Fast R-CNN, compared with BRFs, the detection speed of IBRFs is also improved.
It verifies IBRFs meets the requirements of real-time detection. Above all, in the helmet

Table 4 Comparison of different algorithms

Method Recall/% Precision/% frame(f.s−1)

HOG+SVM 71.95 79.83 #
SSD 87.89 88.23 38.0
Faster R-CNN 90.45 91.42 0.6
YOLOv3 92.56 94.13 48
BRFs 84.0 84.68 7
IBRFs 91.26 92.74 9

Fig. 8 Detection results of IBRFs. The blue box represents Ground Truth (GT), the green box represents the
detected person with helmet, and the red box represents the situation of mistaking the background as the object
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wearing status detection task, the IBRFs proposed in this paper can achieve faster detection
speed and higher detection accuracy.

Figure 8 shows the detection results of IBRFs in the safety helmet detection task in different
angles, partial occlusion and complex environment. The reason for the success of IBRFs is that
it adopts a crowd voting strategy based on prior probability, takes the differences between
various features into full consideration, and gains strong adaptability in generalization.

5 Conclusions

A novel object detection method, known as Improved Boosted Random Ferns algorithm
(IBRFs) is proposed in this work for safety helmet wearing status detection. The IBRFs makes
use of the advantage of basic BRFs and the improved Real AdaBoost algorithm for voting. In
the proposed method, it adopts a crowd voting strategy based on prior probability, takes the
differences between various features into full consideration, and gains strong adaptability in
generalization for safety helmet wearing status detection. The proposed IBRFs shows more
efficient outcomes compared to some deep object detectors. Furthermore, two other public
datasets, INRIA horses datasets and UIUC cars datasets, are tested and compared with the
basic BRFs. The results aslo verified the competitiveness of IBRFs.

Due to the effectiveness of the proposed IBRFs, it is suitable for safety helmet wearing
status detection under various scenarios. Next, some recent object detection methods, such as
FCOS and DETR, will be taken into account to enhance our IBRFs for object detection task so
as to complete complex and various applications.
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