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Abstract
Action recognition and positional tracking are critical issues in many applications in Virtual
Reality (VR). In this paper, a novel feature representation method is proposed to recog-
nize actions based on sensor signals. The feature extraction is achieved by jointly learning
Convolutional Auto-Encoder (CAE) and the representation of motion bases via clustering,
which is called the Sequence of Cluster Centroids (SoCC). Then, the learned features are
used to train the action recognition classifier. We have collected new dataset of actions of
limbs by sensor signals. In addition, a novel action tracking method is proposed for the VR
environment. It extends the sensor signals from three Degrees of Freedom (DoF) of rotation
to 6DoF of position plus rotation. Experimental results demonstrate that CAE-SoCC feature
is effective for action recognition and accurate prediction of position displacement.
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1 Introduction

Virtual Reality (VR) has many applications, such as entertainment, art, education, and med-
ical care. Most VR headsets have IMU sensors that can measure the translation and rotation
of users. Mobile VR (MVR) is a special kind of VR. Unlike HTC Vive (Vive) or Oculus
Rift, which require a computer and a set of VR equipment, users only need a smartphone
and a head-mounted display (HMD) to use VR. Although MVR is not efficient as large VR,
it is still popular due to its tiny, lightweight, and portable characteristics [24].

Action tracking is an essential issue for VR. It tracks the movement in real space by
detecting the position of the HMD, controllers, or body parts. This allows the users to
perform different actions or navigate the virtual environment. Action tracking in VR envi-
ronment depends on the space locator. For example, Vive is equipped with two locators.
However, MVR does not have a locator, like Vive or Oculus Rift. So, it needs other ways to
track the positions.

Inertial tracking is one of the positional tracking methods where data is collected from
accelerometers and gyroscopes. Accelerometers measure linear acceleration whereas gyro-
scopes measure angular velocity. Conventional inertial tracking uses a low-cost inertial
measurement unit (IMU) based on Microelectromechanical systems (MEMS) to track the
acceleration and orientation with high update rates. Generally, acceleration can be inte-
grated to obtain the velocity and then it can be integrated again to obtain the displacement.
However, the accuracy decreases as the error accumulation through time [5].

Action recognition plays an important role in VR applications as well. VR applications
usually involve lots of action and accurate action recognition broadens the extent of appli-
cations. However, it is challenging to recognize actions with high similarity. Our goal is to
use the sensor signals of wearable device for action recognition.

The first part of our paper aims for action recognition using sensor signals. To con-
quer the difficulty of recognizing similar actions, the motion bases method is proposed
for discriminative feature representation. The motion bases is learned based on the feature
learning from Convolutional Auto-Encoder (CAE) model in a clustering fashion. In addi-
tion, We propose a deep sequential model to predict the displacement of positions with
acceleration and Euler angle to reduce error accumulation. In recent years, deep recur-
rent neural networks (RNN) have achieved remarkable success using sequential data. Body
motions are intensely temporal dependent. It is appropriate to use the recurrent model
to learn the temporal representations [8, 18, 32]. We adopt Long Short-Term Memory
(LSTM) model to avoid vanishing gradient or exploding gradient problems during RNN
training [11, 31]. It also has the ability to handle the long-term dependencies of sequential
data [5, 11].

In addition to standard LSTM networks, we also use bidirectional LSTM (Bi-LSTM)
networks, which are stacked two LSTM networks in forward and backward directions.
Unlike standard LSTM networks, which can only consider the past information, Bi-LSTM
networks can capture both past, and future information by two opposite temporal order
in hidden layers [27, 33, 34]. Furthermore, except for the LSTM networks, we also use
Temporal Convolutional Networks (TCN), capturing long-range patterns by temporal con-
volutions. Recent research shows that the convolutional architectures can achieve a good
performance as recurrent models [1, 2, 7, 14].

The contribution of this paper two-fold. (1) A novel motion bases representation is pro-
posed to extract discriminative features for action recognition. (2) Deep RNN models are
exploited using sensor signals for action tracking in VR environment.
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2 Related works

2.1 Human action recognition

The Human Action Recognition (HAR) task facilitates the computer to recognize human
behavior and actions. It has become one of the essential tasks in the field of computer vision.
Different HAR technology have been developed, such as sensor-based human action recog-
nition [21], vision-based human action recognition [9]. As a typical deep learning model,
Convolutional Neural Networks (CNN) [15] have been applied to many computer vision
and image processing problems. The operation of 2D convolution is often used to extract
features from two-dimensional data. Traditional 2D convolution operation usually captures
locally spatial information; however, temporal information is also critical when processing
the sequential data, such as videos. Therefore, Ji et al. [10] proposed a video-based deep
learning method for action recognition. They added one dimension to the traditional 2D
convolution operation and used the 3D convolution operation to capture the spatio-temporal
information.

2.2 Action recognition in videos

In addition to the 3D convolution operation, Simonyan et al. [25] proposed a two-stream
network structure for identifying actions by video-based data with temporal and spatial
information. They used two independent CNNmodels, which process the spatial and tempo-
ral information of the video separately. Spatial information refers to the texture information
within one single frame, such as objects, scenes. The network used for image classification
can be used as a backbone model for spatial convolutional network, such as AlexNet [13],
GoogLeNet [26]. Optical flows between frames are used as temporal information, which
carry the energy of motions between frames. The outputs of twomodel which process spatial
and temporal information are then fused to identify action types. Two schemes are usually
adopted to fuse the outputs of two networks. One is averaging the outputs of softmax layers,
and the other is to exploits the softmax scores as features and train another SVM classifier.

2.3 Activity recognition and early detection

Ma et al. [19] proposed a activity detection and early detection method to improve the accu-
racy of the temporal model based on the observation of of earlier activities. In their method,
a new loss function is designed to train the Long Short-Term Memory (LSTM) model. The
output of the detector is the detection score. As the score is continuous and monotonously
non-decreasing function through time, the detector can output a higher detection score for
the correct category while suppressing the scores of other categories.

2.4 Sensor-based human activity recognition

Li et al. [17] divide the problem of sensor-based human activity recognition into five steps to
solve: data acquisition, data preprocessing, data segmentation, feature extraction, and clas-
sification. They compare seven feature extraction methods, including Hand Crafted (HC),
Multi-Layer Perceptron (MLP), CNN, LSTM, Hybrid model featuring CNN and LSTM
layers, Auto-encoder (AE), and CodeBook (CB) approach. In all, the hybrid architecture
involving CNN and LSTM demonstrates significant improvement on the OPPORTUNITY
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dataset [4]. Yang et al. [30] propose CNN-based architecture for multi-sensor human activ-
ity recognition problems. The architecture follows the classic LeNet-like architecture that
comprises four convolutional layers and two fully connected layers. The input multi-sensor
signals are passed through the convolutional layers that operate along with the temporal
dimension. The multi-sensor features are unified with the first fully connected layer and
classified with the last fully connected layer. It is the early non-hand-crafted method for
human activity recognition and gets a significant breakthrough. Qian et al. [22] propose
DDNN architecture consisting of spatial, temporal, and statistical modules to extract differ-
ent representations. The multi-sensor signals are partitioned by the sliding window method
first and passed through the three modules simultaneously. The spatial module comprises
LSTMs that input along with the sensors’ dimensions, whereas the temporal module is
along with the temporal dimension. Besides, the statistical module is composed of an auto-
encoder to capture statistical features, where the training procedure is accomplished with
MMD loss. These features are concatenated and fed into fully connected layers to fuse and
classify activities. Wang et al. [29] propose a hierarchical LSTM, stacking two LSTM layers
to extract different levels of features and a fully connected layer to classify activities. Nafea
et al. [20] propose a two-stream architecture containing CNN layers and BiLSTM layers.
The CNN layers comprise convolutional layers with various kernel-size to capture different
resolutions. The BiLSTM layers are used temporal information for activity recognition and
are considered forward and backward. The outputs of the two-stream layers will be fused
with fully connected layers and then produce a classification result.

3 Proposedmethod

3.1 Action recognition

Our method can be divided into two parts: (1) feature extraction and (2) action recognition.
In the first part, we have proposed two features, the Convolutional Auto-Encoder (CAE)
feature and Sequence of Cluster Centroids (SoCC) feature. These features represent the
action patterns and used for classifier of action recognition. The CAE feature is learned
by the deep auto-encoder model, whereas the SoCC feature is represented by action bases
learned from CAE features. Two kinds of features are concatenated as feature representation
and are used to train XGBoost model to identify different actions. Figure 1 depicts the
proposed system framework.

Convolutional Neural Network (CNN) is a very popular method in deep learning field for
image analysis. LeCun [16] proposed this method which is used in many visual recognition
tasks. The advantage of CNN is that its network structure exploits convolutional layers
to capture the local dependency of the image or signals, other than entirely using fully
connected layers. In additions, it has less number of parameters compared to that of deep
neural network with fully connected layer only. CNN model training on a large amount of
labeled data has high accuracy in recognition tasks.

CNN can be also used for feature extraction. The Auto-Encoder (AE) is a network
architecture that performs feature extraction and feature representation in an unsupervised
learning manner. The architecture is composed of the encoder and decoder part. In the
encoder strurcture, the number of neurons layer by layer is decreased to compress the
high-dimensional data into a low-dimensional latent vector. Based on the low-dimensional
representation, the decoder increases the number of neurons layer by layer to reconstruct
the input samples.

11848 Multimedia Tools and Applications (2022) 81:11845–11864



Fig. 1 The proposed system framework consists of two parts, feature extraction and action recognition. CAE
feature and SoCC are learned from a deep auto-encoder model and a clustering model. These two features
are then combined to train the action recognition classifier

3.1.1 Feature extraction

The advantages of CNN and AE models can be considered altogether for feature represen-
tation. CNN is good at capturing locally dependency of action signals, while AE exploits
unlabeled data for training which is helpful when the number of training samples are limited.
Therefore, we proposed to use the convolutional auto-encoder (CAE) as a feature extrac-
tion model for feature representation of action signals. As shown in Fig. 2, the CAE model
is composed of an encoder and decoder. The encoder contains two 2D convolutional layers
with a kernel of size 3×1 with the stride of 1. The decoder contains two 2D transposed con-
volutional layers with the same kernel size and stride. The bottleneck is three feed-forward
fully-connected layers with neurons of 1024, 128, and 1024, respectively. The tanh func-
tion is used as the activation function between the convolution layer and the fully connected
layer.

Each action takes different lengths of time interval, resulting in different data dimensions.
To train CAE, the input size is requires to be fixed. We first take body acceleration, gravity
acceleration, gyroscope, and quaternion to be the input data. The total data dimension is 26.
The action signal is divided into segments of 25 timestamps by stride-1 sliding windows
Fig. 3. Therefore, the input data from one sliding window can be fixed to the size 25 ×
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Fig. 2 CAE network structure

26. Then, the input data are used to train our CAE feature extraction model. During the
collection of action signals, each action is performed and recorded separately. Therefore, the
ground-truth labels can be assigned to the action signals once the action is finished. Then,
the signals of each action with ground-truth labeling are used as input to CAE model for
feature extraction by sliding windows.

The loss function to train the CAE model is defined as (1). Nt is the total number of
timestamps in the input data. Nattr is the number of data dimension. x̂ij is the output data,
and xij is input data. The function is used to determine whether the output reconstructed by

Fig. 3 The formation of input data to CAE model. The red box is the pre-defined time window. According
to the number of strides, the time window moves to the blue box at the next step and then to the green box to
segment the action signals into fixed-size input data to CAE model
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the latent vector (CAE feature) is similar to the input. The closer the output to the input, the
more representative features that the CAE model learns.

Lreconst = 1

NtNattr

Nt∑

i=1

Nattr∑

j=1

(
x̂ij − xij

)2 (1)

3.1.2 Feature representation of SoCC

In the action recognition problem, some actions are somewhat similar. Some different
actions may have a common part. Take the actions of lower limbs of football for examples,
right foot raises to front may be partially similar to right foot kicks to front. By the conven-
tional metric learning, features learned for both actions could be similar. In view of this, we
propose the idea of deep motion bases to distinguish actions when they are just slightly
different or partially similar.

The motion signals are partitioned into segments via sliding windows. Each segment is
fed to CAE to extract feature representation. By using the CAEmodel, the high-dimensional
signal data can be represented by the latent vector in the low-dimensional space. The latent
vectors in the latent space are firstly clustered by K-Means Clustering [12] to find cluster
centroids. These vectors of cluster centroids are referred to as motion bases in our method.
After obtaining these motion bases, the Euclidean distance between the CAE feature and
each motion basis is calculated to analyze the similarity between the CAE feature and each
centroid, as shown in Fig. 4. The lower value of the distance means the higher similarity to
the centroid. The CAE features are sorted by the similarity to the sample data and choose
the top-k to form the SoCC features; therefore, the centroids are numbered in sequence from

Fig. 4 The process to generate the SoCC feature
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high similarity to low. This sequence is used as the feature representation Sequence of

Cluster Centroids (SoCC) via motion bases learned from the action signals. Instead of
using all clusters, only top-k clusters are chosen to form the SoCC features. This is because
the distances of clusters in the bottom of the list after sorting are all very large. This hardly
provides discriminative information in SoCC.

By using the feature representation SoCC, even though the first half of action ’right foot
raises to front’ may be partially similar to ’right foot kicks to front’, the motion bases of the
latter half of both actions will be different. This improves the discrimination of auto-encoder
and k-means-based feature learning in an unsupervised manner.

3.1.3 Recognition models

In the second stage, we concatenate the CAE feature and SoCC to generate the CAE-SoCC
feature for action recognition. We propose two different recognition methods. The first
one is to use deep recurrent neural model trained by a novel loss function. The other is to
exploit the popular machine learning method, XGBoost, which is widely used in Kaggle
competitions.

LSTM (Long Short-Term Memory) is a deep network model that is used to process
sequential data. It is different from the traditional RNN design. LSTM adds the gates to
filter the past states, instead of accepting all past states, to process short-term time-series
data effectively.

In the training of LSTM, we design the following loss function. The goal is to make the
trained LSTM with higher probability to accurately recognize actions as more data samples
are observed. In our method, LSTM outputs the detection scores corresponding to the total
number of action categories and give the correct category a higher detection score than
all other incorrect categories. The new function (2) is composed of classification loss (3)
and ranking loss (4), p

y
t is the detection score of the ground-truth label y of the t-th time

window. For classification loss, the detection score of the ground-truth class y of the t-th
time window should be as large as possible. For ranking loss, we expect the detection score
of the ground-truth class y of time t should be larger than the maximal detection score of the
ground-truth class y of time 0 to t-1. In that case, as the timestamp increases, the detection
score of the correct action class can be monotonically increasing through time. This helps
determine the correct action class in the last sliding window.

Lt = Lt
c + αLt

r (2)

Lt
c = − logp

y
t (3)

Lt
r = max

(
0, max

t ′=[0,t−1]
p

y

t ′ − p
y
t

)
(4)

In the second model, XGBoost [6] is exploited. The XGBoost model uses an extreme gra-
dient boosting algorithm to enhance the Gradient Boosted Decision Tree (GBDT) model.
XGBoost is an optimized implementation for the Gradient Boosting method. It uses tree
structure to fit the data and is optimized with Newton–Raphson method. XGBoost is
implemented in parallel computing, and it provides hugely significant efficiency. Basically,
XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gra-
dient boosting framework. XGBoost and gradient boosting machines are both ensemble
tree methods that apply the principle of boosting weak learners using the gradient descent
architecture. However, XGBoost improves upon the gradient boosting framework through
systems optimization and algorithmic enhancements. In addition, XGBoost minimizes a
regularised (L1 and L2) objective function that incorporates a function of convex loss and
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a model complexity penalty term. In order to make the final prediction, the training contin-
ues iteratively, inserting new trees that predict the residuals or errors of previous trees that
are then combined with previous trees. It is called gradient boosting since it uses a gradient
descent algorithm to minimize the loss. Therefore, it is used broadly in Kaggle competitions.

3.2 Action tracking

For action tracking, we predict the displacement in each timestamp and then add it to its
previous location, instead of predicting each position directly. To obtain displacement at
each time t , we trained three different models, including LSTM, Bi-LSTM, and TCN, using
acceleration and Euler angle information as input. Bidirectional LSTM (Bi-LSTM) net-
works are structured with two LSTM networks in forward and backward directions. Unlike
standard LSTM networks, which only considers the past information, Bi-LSTM networks
captures both past and future information by two opposite temporal order in hidden lay-
ers [27, 33, 34]. Except for the LSTM networks, Temporal Convolutional Networks (TCN)
model is recently proposed and have shown good performance of capturing long-range
patterns by temporal convolutions. Recent researches show that TCN achieves as good per-
formance as recurrent models [1, 2, 7, 14]. We explore the capabilities of three models and
compare the action tracking results in the next section.

4 Experimental results

4.1 Dataset

For action recognition and action tracking, we collected different datasets. The details of
data collection are provided as follows.

Action Recognition Dataset. We use a self-collected dataset – Lower Limb Sensor Sig-
nals Dataset. There are 44 types of lower limb movements performed by 24 people at
different time. One sensor, the MoTi wristband, is equipped at the ankle of the left and
right feet, respectively. The collected sensor signals include acceleration, gyroscope, and
quaternion. The details of action classes is provided in Table 1. Pre-processing by the
low-frequency filter, the original acceleration data is divided into body acceleration and
gravitational acceleration data [28]. The dataset is split into the training set and the test
set. The training set comprises all the actions performed by 20 of the 24 people, and the
remaining four people are used for the test set. Our model tries to classify the pattern
of action based on the IMU quantity varies over time. Take foot raise and foot kick for
examples, the changes of IMU quantity should have unique pattern for different actions.

Action Tracking Dataset. The IMU sensor is installed in the wristband while the user is
holding the Vive controller to simultaneously collect data in synchronized time stamps,
including the coordinates of Vive controller and the IMU signals. The IMU sensor and
Vive controller are equipped by the same hand so that the coordinates and sensor data
can be recorded simultaneously. All data are labeled with SI units. The IMU sensor is
connected to a mobile APP through Bluetooth, whereas the Vive controller is connected
to a computer under Unity environment. The mobile APP and Unity are triggered at the
same time to record the accelerometers and gyroscopes from IMU and x-, y-, and z-
coordinate of Vive controller in the VR environment. The displacement of x-, y-, and
z-coordinate of VR world coordinate can be calculated and saved. Figure 5 illustrates
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Table 1 Lower limb sensor signals dataset

Action #-of samples Action #-of samples

right foot moves to front 200 right foot kicks to back forward 200

right foot moves to back 200 right foot kicks to back backward 200

left foot moves to front 200 left foot kicks to back forward 200

left foot moves to back 200 left foot kicks to back backward 200

right foot moves to left 200 right foot kicks to left forward 242

right foot moves to right 200 right foot kicks to left backward 242

left foot moves to left 200 left foot kicks to right forward 280

left foot moves to right 200 left foot kicks to right backward 280

right foot treads forward 200 right foot kicks to right forward 200

right foot treads backward 200 right foot kicks to right backward 200

left foot treads forward 201 left foot kicks to left forward 202

left foot treads backward 201 left foot kicks to left backward 202

right foot raises to front forward 200 feet jump and open 191

right foot raises to front backward 200 feet jump and close 200

left foot raises to front forward 200 rotate ankle along right tiptoe 211

left foot raises to front backward 200 rotate ankle along left tiptoe 200

right foot raises to right forward 197 rotate ankle along right heel 200

right foot raises to right backward 197 rotate ankle along left heel 200

left foot raises to left forward 200 draw a circle with right tiptoe 200

left foot raises to left backward 200 draw a circle with left tiptoe 200

right foot kicks to front forward 240 walk forward 20

right foot kicks to front backward 240 walk backward 21

left foot kicks to front forward 280 run forward 20

left foot kicks to front backward 280

the process of data collection. We invited 8 subjects to collect the movement data. In the
beginning, subjects need to hold the Vive controller and IMU in hands. The frame rate
was set to 50 for both of Vive controller and IMU. During data collection, each subject
starts to move freely in ten minutes. There are about 80 minutes of movement data in the
end.

Fig. 5 Data collection with the HTC Vive and IMU sensors. The collection environment is built by Unity3D
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The IMU sensors intrinsically comprise an accelerometer, a gravity sensor, and a gyro-
scope to measure accelerator, Euler angle, quaternion, and timestamp. We developed a
mobile APP that connects to the IMU sensors through Bluetooth. The APP provides UI to
label data and is able to start and stop receiving sensor signals. The accelerator consists of
body accelerator and gravity. To extract the body accelerator, we use a low-pass filter with
0.25 Hz for passband frequency, 2 Hz for stopband frequency, 0.001 dB for passband ripple,
100 dB for stopband attenuation, and 32 Hz for sampling frequency.

The IMU signals contain the linear acceleration, the Eular angle, the quaternion, the
velocity, and the corresponding labels. The frame rate is set to 50 Hz. The collected sig-
nals may delay at some time, resulting in the time gap of two samples decreasing to 0.01
seconds or increasing over 0.05 seconds. Thus, thresholds are set. If the signal with time
gap to a previous sample fewer than 0.01 seconds is removed. The signal is interpolated if
the time gap is greater than 0.05 seconds. To collect the coordinates of the Vive controller,
we activate the Vive controller and the IMU sensor simultaneously when we start collect-
ing the data. We convert the coordinates of the Vive controller into displacement for each
timestamp.

4.2 Action recognitionmodel

The accelerometer, gyroscope, and quaternion in the dataset are essential attributes, which
are used to train the CAE model. Firstly, the stride-1 window is exploited to separate the
signals of the whole action in the training dataset into partial time-series data in a sliding
manner along the time axis (Fig. 3). This is used as the input data to train the CAE model.
The CAE model comprises convolution layers, fully connected layers, and transposed-
convolution layers. The encoder of the trained CAE model is used to extract features. Then,
the CAE features are clustered by the K-means Clustering method to learn the motion bases.
The Fig. 6 depicts the formation of SoCC feature.

The CAE feature and SoCC are concatenated into a new feature, CAE-SoCC. The dimen-
sion of CAE feature is 128 and that of SoCC is set to 20. Therefore, the dimension of
CAE-SoCC feature is 148. In the action recognition model, the LSTM model is trained to
predict the action class. The number of decision trees in the GBDT model is set to 1000.
The maximum depth of the tree is set to 7, and the sum of the sample weights in the child
node is 2.

Fig. 6 The example of SoCC feature. Sample i is the CAE feature which is the latent vector of i-th sliding
window data. The dark red, dark green, dark blue dots are cluster centroids. The sample i is closest to cluster
2 and far away to cluster 1. So, the SoCC of sample i is formed as [2, 3, 1]
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4.3 Silhouette analysis

Silhouette analysis [23] is used to evaluate the effectiveness of clustering. It is measured
based on the two factors: (1) the degree of cohesion within the cluster, and (2) the degree of
separation between different clusters. Silhouette coefficient s(·) quantifies the performance
of clustering. To compute the silhouette coefficient for a single sample i, the equation is
defined as follows:

s(i) = b(i) − a(i)

max {a(i), b(i)} (5)

=

⎧
⎪⎨

⎪⎩

1 − a(i)
b(i)

, a(i) < b(i)

0 , a(i) = b(i)
b(i)
a(i)

− 1 , a(i) > b(i)

(6)

where a(i) is the average distance between sample i and other samples in the same cluster,
showing the degree of cohesion within the cluster. The smaller the value of a(i), the higher
the degree of cohesion. b(i) is the average distance between sample i and all samples of
other clusters, which represents the degree of separation between clusters. The higher the
separation degree, the larger value the b(i) is.

The value of the Silhouette coefficient is between -1 and 1. When silhouette coefficient
is 0, it means that the sample is very close to the adjacent cluster; if it is 1, it means that
the sample is far away from the adjacent cluster. When it is -1, the sample is assigned to
the wrong cluster. When a(i) ¿ b(i), b(i)/a(i) – 1 will be negative. If most samples have
negative silhouette coefficients, the cluster is loose. By (5), Silhouette coefficient can be
calculated for one sample. The Silhouette coefficient can be plotted one by one for each
sample and for each cluster. The Silhouette coefficients for samples within the same cluster
are depicted using the same color.

4.4 Clustering results

K-means clustering method is adopted in our experiments. To compare the clustering results
under different cluster numbers, the number of clusters is set to 25, 30, 35, 40, and 44,
respectively. The average silhouette coefficient is calculated for different experiments. It
can be seen from Figs. 7, 8, 9, 10 and 11 and Table 2 that when the number of initial k is 30,
the average silhouette coefficient shows the highest value 0.093432. Based on this result,
the number of clusters is set to 30 for the rest experiments. The visualization of clustering
using t-SNE is presented in Fig. 12

4.5 Comparison of feature learning

In this experiment, the CAE feature, SoCC, and CAE-SoCC features are compared using
the same classifier. The SoCC feature is set as follows. Under the condition that the number
of clusters is set to 30, top 20 cluster numbers closest to the sample data is used to form
the SoCC feature. In other words, the dimension of SOCC feature is fixed to 20. XGBoost
is trained using different features in this experiment. The experimental results in Table 3
show that the CAE-SoCC feature has a higher classification accuracy than SOCC and CAE
features on Lower Limb Sensor Dataset.

Then, We choose two different classifiers in the experiments. LSTM is the prediction
model for time series data. The ranking loss is included to train LSTM. The other classifier
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Fig. 7 The average silhouette coefficient for 25 clusters is 0.092345

is a non-sequential model, XGBoost. It is widely used in Kaggle competitions and shows
great performance of classification and regression problems.

In this experiment, we use the CAE-SoCC feature to train different classifiers. Because
one-time window data is regarded as one input data of CAE, a single action may have
many outputs from the classifier. For XGBoost and LSTM trained without ranking loss, the
voting mechanism is applied to fuse these predictions into one final prediction. The LSTM
classifier trained with ranking loss takes consecutive window data as input. The prediction
of the last time window is used as the final decision of action recognition. It can be observed
from the Table 4 that the XGBoost classifier performs better than other classifiers.

Fig. 8 The average silhouette coefficient for 30 clusters is 0.093432
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Fig. 9 The average silhouette coefficient for 35 clusters is 0.078747

Compared to other deep learning based methods methodologically, Yang et al. [30] pro-
posed CNN-based architecture for multi-sensor human activity recognition problems, where
the CNN is composed of four convolutional layers and two fully connected layers. Qian
et al. [22] proposed DDNN architecture which comprised of spatial, temporal and statisti-
cal modules to extract different representations. Similarly, the statistical module contains
an auto-encoder to extract statistical features, whereas we use the auto-encoder for unsu-
pervised learning and clustering. Nafea et al. [20] proposed the two-stream architecture
containing CNN layers and BiLSTM layers. Wang et al. [29] proposed a hierarchical LSTM,
stacking two LSTM layers to extract different levels of features. These methods are simple

Fig. 10 The average silhouette coefficient for 40 clusters is 0.077352
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Fig. 11 The average silhouette coefficient for 44 clusters is 0.064532

and effective; however, most deep learning based models have the assumption that the action
signals are required to be well-aligned. Since our method processes the signals by sliding
window and encourages the detection scores to be monotonically increasing, the start time
and end time can be more flexible in our method. Our method is potentially more suitable
for continuous complex motion recognition.

4.6 Evaluation of action tracking

In this experiments, we used Mean Squared Error (MSE) to measure the performance of our
method. The formula of MSE is defined as follows.

MSE =
n∑

i=1

(yi − y
p
i )2 (7)

Different classifiers, LSTM, Bi-LSTM, and TCN, are adopted for comparison. Table 5
shows the comparison results of MSE loss. The LSTMmodel performs best among all three
models. The possible reason could be the short-term correlation of human actions. Bi-LSTM
and TCN have more complicated model structure and are suitable for long-term actions.
However, as the movement keep going, the accumulated positional errors may decrease the
tracking performance dramatically by these methods.

Table 2 The average silhouette
coefficient over the number of
clusters

K Average silhouette coefficient

25 0.092345

30 0.093432

35 0.078747

40 0.077352

44 0.064532
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Fig. 12 The visualization result using t-SNE

Table 3 The classification results
of features at different stages Feature type Accuracy

SoCC 44.52

CAE feature 70.32

CAE-SoCC feature 76.96

Table 4 The classification
results of different classifiers
using CAE-SoCC feature

Classifier type Accuracy

LSTM without ranking loss 57.26

LSTM with ranking loss 57.83

XGBoost 76.96

Table 5 MSE results in the test
set for different models Model name MSE Loss

LSTM 0.000033

Bi-LSTM 0.000045

TCN 0.000052

Table 6 MSE results in the test
set for the different number of
LSTM layers

#cells MSE Loss

1 0.0000400

2 0.0000240

3 0.0000103

4 0.0000240
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Fig. 13 Prediction result by LSTM. The picture shows the prediction result of hook punch, straight punch,
and beckon. The blue line is the target, and the orange line is the prediction result

According to the result above, we further investigate different cell number of LSTM to
compare the performance. Table 6 presents the results of MSE loss with different cells in
LSTM. It shows three cells of LSTM gives the lowest MSE. Figure 13 expresses the 3D
visualization motion tracking for actions, such as hook punch, straight punch, and beckon.
We can see that the motion tracking predicted by the model (the orange line) is very similar
to the target (the blue line).

4.7 Comparison to acceleration integration

In addition to use deep model to predict displacement, a conventional method [3] is to
integrate the acceleration to obtain the velocity by (8).

vt = vt−1 + at · t (8)

where vt is the velocity at time t , at is the acceleration at time t , and t is the time interval
between two samples. The integration result of velocity is in Fig. 14. We can see the velocity
of x-axis has increasing deviations as time changes. The velocity of y-axis and z-axis also
have slight deviations, respectively. Next, we used (9) to integrate the velocity over time to
calculate the displacement.

xt = vt−1 · t + 1

2
· at · t2 (9)

where xt is the displacement at time t . The displacement of the target ground-truth, pre-
diction of deep model, and integration results are compared in Fig. 15. The green line is
the integration result. The blue and orange lines are the target ground-truth and predic-
tion results from deep model, respectively. We can see that the integration results are much

Fig. 14 x, y, z axis of the velocity integrated by the acceleration. The blue line is the x-axis; the orange line
is the y-axis; the green line is the z-axis
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Fig. 15 x, y, z axis of the target, prediction and integration displacement. Green line is integration result, as
for blue and orange line are the target and prediction result respectively

worse than the prediction results from deep model. When applying integral method, slightly
small errors could be accumulated and cause significant deviations in displacement when
integration is applied.

5 Conclusion

We propose a novel method based on the representation of motion bases for action recogni-
tion and an evaluation of deep models for action tracking. In the action recognition, features
are learned from the CAE model. To further improve the CAE feature, the idea of feature
learning based on motion bases is proposed. Clustering method is applied and the centroids
of clusters are exploited as motion bases. The cluster number of top-k closest bases are
extracted as Sequence of Cluster Centroids feature. The experimental results show that the
CAE-SoCC feature is suitable for XGBoost classifier and demonstrate high accuracy for
action recognition.

In action tracking, our method learns the relationship between sensor signals and dis-
placement by deep learning model. It handles the accumulative errors caused by low-cost
IMU during tracking in MVR, where a space locator is not required at all. In addition, we
also compare the results of calculating the displacement by integrating acceleration. The
results show that the accumulative errors would be increased over time, and the result pre-
dicted by deep model is much better than the traditional method. In our work, the action
recognition framework is a two-stage framework consisting of clustering by clustering and
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classification by XGBoost and hence is challenging to integrate. Caron et al. [3] propose
DeepCluster that produces pseudo-labels from clustering procedures as ground-truth for
classification. This approach allows the clustering to train in an end-to-end fashion with
deep neural networks and can remove the stages in the framework.
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