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Abstract
Human Activity Recognition (HAR) involves the recognition of human activities using
sensor data. Most of the techniques for HAR involve hand-crafted features and hence
demand a good amount of human intervention. Moreover, the activity data obtained from
sensors are highly imbalanced and hence demand a robust classifier design. In this paper,
a novel classifier “ICGNet” is proposed for HAR, which is a hybrid of Convolutional
Neural Network (CNN) and Gated Recurrent Unit (GRU). The CNN block used in the
proposed network derives its inspiration from the famous Inception module. It uses
multiple-sized convolutional filters simultaneously over the input and thus can capture
the information in the data at multiple scales. These multi-sized filters introduced at the
same level in the convolution network helps to compute more abstract features for local
patches of data. It also makes use of 1 × 1 convolution to pool the input across channel
dimension, and the intuition behind it is that it helps the model extract the valuable
information hidden across the channels. The proposed ICGNet leverages the strengths of
CNN and GRU and hence can capture local features and long-term dependencies in the
multivariate time series data. It is an end-to-end model for HAR that can process raw data
captured from wearable sensors without using any manual feature engineering. Integrat-
ing the adaptive user interfaces, the proposed HAR system can be applied to Human-
Computer Interaction (HCI) fields such as interactive games, robot learning, health
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monitoring, and pattern-based surveillance. The overall accuracies achieved on two
benchmark datasets viz. MHEALTH and PAMAP2 are 99.25% and 97.64%, respective-
ly. The results indicate that the proposed network outperformed the similar architectures
proposed for HAR in the literature.

Keywords Convolutional neural network . HAR . Inception . Gated recurrent unit .Wearable
sensors . Human-computer interaction . Pattern recognition

1 Introduction

HAR is the process of recognizing various human activities using sensor data. It has gained
significant attention from researchers in Human-Computer Interaction and ubiquitous com-
puting [51]. It plays a crucial role in identifying the user interaction with its surroundings and
thus can be used as an assistive technology for healthcare, rehabilitation, robotics, and building
an intelligent system based on adaptive user interfaces [60, 61]. Furthermore, when Artificial
Intelligence (AI), edge computing technology, and adaptive user interfaces are combined, they
can be used to create real-time HAR systems [24]. Such HAR systems can analyze and process
data within the terminal device where it is collected and helps reduce the latency and provide
fast service to the user of the system [27]. Adaptive interfaces can be integrated into the HAR
system depending on the specific application. Based on the analysis results, systems with
adaptive user interfaces can be used to take appropriate actions, display the results on the
screen, or store them in the storage. Such HAR systems can be used in a variety of scenarios,
including healthcare (to monitor patients and elders living alone or suffering from diseases like
Parkinson’s disease, dementia, and others), the smart home environment, tracking and main-
taining a healthy lifestyle, video surveillance, postural stability, humanoid robot development,
and others [5, 57].

HAR is inherently a pattern recognition task. The HAR framework consists of four steps:
data collection, data preprocessing and segmentation, feature extraction, and classification of
activities. An overview of the HAR framework is shown in Fig. 1. HAR provides a framework
for recognizing human activities by using multimodal data obtained from various sensors. The
first step in HAR is to capture the activity data. Various sensors used to capture human activity
data mainly include video-based sensors [57], depth sensors [4], wearable sensors [12],
smartphone sensors [55], and others.

HAR can be broadly classified into video-based and sensor-based activity recognition.
Video-based HAR uses cameras to capture images and videos to recognize human activities

Fig. 1 Overview of HAR framework
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and behavior. Computer Vision (CV) based HAR approaches use video sensors to capture
activity data. CV-based HAR approaches still suffer from many limitations like - they require
proper environmental conditions (like brightness, light, etc.), simultaneous identification and
tracking of multiple individuals in an image, occluded targets, and complex background
interference. The functioning of CV-based approaches also demands high data processing,
hence increases its overall operational cost. Additionally, video-based sensors have restric-
tions: they can’t be mounted/carried everywhere, difficult outdoor installation and mainte-
nance, privacy issues, occlusions, etc. On the other hand, the sensor-based HAR systems are
more feasible as they use wearable sensors, smartphone sensors, etc., to capture the activity
data. Wearable sensors and smartphone sensors dominate the field of HAR due to their ease of
use, low cost, easy installation, and ubiquity. Moreover, wearable sensor based HAR ap-
proaches are computationally less expensive in comparison with the CV-based approaches.
Sensors like accelerometers, gyroscopes, magnetometers, etc., are widely embedded in devices
like smartphones, smartwatches, and armbands that can be easily carried by the user. Conse-
quently, we mainly focused on wearable sensors based HAR in this work.

Wearable and smartphone-based sensors are used to collect activity data. The data so
collected are in time-series format. The second step in HAR is data segmentation, and the
most common approach to this is using a fixed-length sliding window and splitting the time
series data into segments of equal length. The next step is the extraction of features from the
data segments obtained in the previous step. Feature extraction is the most crucial step in the
process of HAR. Several traditional Machine Learning (ML) based techniques such as Support
Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), etc. [2, 9, 31, 38, 42],
achieved good performance in inferring human activities. However, these conventional pattern
recognition techniques rely largely on hand-crafted features and require domain expertise.

The use of Deep Learning (DL) techniques can simplify the HAR pipeline. DL is a subfield
of ML that has achieved excellent empirical performance in several fields like image classi-
fication, object detection, image segmentation, image synthesis, etc., [17, 48–50]. DL algo-
rithms have a structure comprising multiple layers of neurons stacked together to extract
hierarchical abstractions. Each layer takes its previous feature maps as input and uses a non-
linear function to transform them into new feature maps. This hierarchical abstraction allows
the DL algorithms to automatically learn the features that best describe the specific application
domain. DL employs a deep neural network (DNN) architecture that works on extracting
features and classification boundaries by minimizing a certain loss function. DL based
techniques don’t need any manual feature engineering and can learn the features automatically.
CNN, Recurrent Neural Network (RNN), Deep Belief Networks, and autoencoders are DL
algorithms abundantly exploited for HAR.

With the emergence of CNNs, the focus in ML research is seen to be shifting to network
engineering rather than feature engineering. CNNs are capable of automatic feature extraction
and hence don’t rely on manual feature extraction. Authors in [54] used a deep CNN to extract
features from the segmented frames. They used data obtained from an accelerometer and
gyroscope embedded in a smartphone and a multi-class logistic regression classifier for
classification. Their method performed inferiorly in detecting stationary activities like ‘laying’
and ‘sitting.’. The authors of [71] proposed converting the data collected by tri-axial acceler-
ometers into a picture format, then identifying human actions using CNN with three
convolutional layers and one fully connected layer. In [65], the authors proposed a deep
CNN network for feature extraction and classification of activities using activity data acquired
from inertial sensors. CNNs perform excellently for local feature extraction within the frame of
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data. Still, these approaches do not consider pattern sequences or remember changes in pattern
sequences over time, based on the length of gaps between them [43].

RNN’s capability to capture temporal context makes it suitable for sequence data [66].
RNN based method proposed in [3] for abnormal behavior and action recognition showed
good results but still had room for improvements. The traditional tanh RNN units suffer from
vanishing gradient problem and thus lacks in capturing long-term dependencies [7]. But in the
case of HAR data, it is necessary to capture long-term dependencies for good classification
performance. LSTM and GRU are the RNN variants that can capture long-term dependencies
[16] and are thus suitable for HAR. Authors in [26] proposed DNN, CNN, and RNN
approaches and performed experiments using three public datasets and concluded that the
RNNs outperformed CNNs significantly in detecting short-duration activities having natural
ordering, whereas, for prolonged activities like running and walking, they recommended the
use of CNNs.

Recognition of daily physical activities is essential to assess the individual’s risk of
musculoskeletal disorders, diabetes, cardiovascular diseases, and stress [19]. HAR is important
in health care to monitor the activities of patients and elders with conditions like dementia,
Parkinson’s disease, etc. Hence HAR can help detect the abnormalities in regular daily
activities and thus preventing any unfavorable consequences. It will be unsafe to compromise
in terms of accuracy of HAR systems as the area they are applied to includes healthcare and
monitoring of elders. Thus, it is crucial to design HAR systems that can recognize the user
activities with accuracy as high as possible. In addition to reasonable accuracy, a HAR model
with fewer parameters is desirable for use in real-time embedded applications. So, our primary
goal and motivation in this research work are to design a HAR system with fewer parameters
that can achieve reasonable accuracy. A system with fewer parameters will have lower
computational and memory requirements.

HAR techniques face significant challenges because the raw data from wearable and
smartphone-based sensors are largely imbalanced (class-imbalance) [13, 35] and noisy [1].
Moreover, several techniques proposed for HAR depend on heavy data preprocessing and
manual feature extraction [2, 31, 42]. Such techniques also demand human intervention and
expertise in the field. CNN-based approaches are good at local feature extraction but do not
take care of long-term dynamics in the sequence data, whereas modern RNN variants (LSTM
and GRU) are good at capturing long-term dependencies. Moreover, in [26], after extensive
experimentations (4000 experiments), the authors concluded that the RNNs outperformed
CNNs significantly in detecting short-duration activities having natural ordering, whereas, for
repetitive and prolonged activities like running and walking, they recommended the use of
CNNs.

Thus, to design a HAR system that can overcome the above challenges and achieve the best
accuracy when compared to the state-of-the-art HAR techniques, in this proposed work, we
choose to combine CNN and RNN to exploit their individual strengths and make the
architecture more accurate in recognizing human activities. The RNN variant used for the
proposed work is GRU, as it is less complex when compared to LSTM. A DNN based
Inception Inspired CNN-GRU hybrid architecture (ICGNet) is proposed in this paper for
HAR. It operates on raw sensor data with minimal preprocessing. The network proposed in
this paper uses a hybrid of CNN and GRU layers and exploits the advantages offered by both
of them. Thus, it is capable of extracting the local features and long-term dependencies in time-
series data. The CNN block applied in the ICGNet architecture is inspired by the famous
inception-v1 module [58]. It uses filters of different sizes parallelly on the input data and is
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thus able to capture multi-scale local features in the data. The CNN block designed for this
model uses 1 × 1 convolution [39] to perform channel-wise pooling and thus learns the
information across the channels. 1 × 1 convolution is also used to expand and reduce the
number of feature maps. For human activity data which is time-series in nature, it becomes
imperative to capture the temporal dependencies to recognize the activities precisely. The
GRU layers used in the ICGNet architecture enable it to capture the long-term dependencies in
the time-series data. Thus, the CNN block and the GRU layers altogether enable the network to
capture the diversity of data. The proposed network performance is validated on two publicly
accessible datasets viz. MHEALTH [5] and PAMAP2 [52]. The overall accuracies achieved
on MHEALTH and PAMAP2 are 99.25% and 97.64%, respectively.

The rest of this paper is arranged as follows: Section 2 presents the non-DL and DL-based
methods proposed for HAR in the literature. Section 3 includes dataset description and
preprocessing and methodology of the proposed work. Section 4 offers the list of experiments
performed, performance metrics used, and the results obtained. The conclusion of this research
work is drawn in section 5.

2 Related work

The ubiquitous nature of wearable and smart devices embedded with various inertial and other
sensors provides an excellent platform to monitor and infer user activities. In the recent past,
numerous works on HAR have explored the task of activity recognition by using data collected
by wearable inertial sensors like Accelerometers, Magnetometers, Gyroscopes, and Electro-
cardiogram (ECG), Heart rate monitor. Many of them used the conventional ML approaches,
while more recent ones have effectively exploited various DL-based methods. Some of these
HAR-based works using wearable sensor data are discussed in the following sub-sections.

2.1 Non-DL based approaches for HAR

Numerous frameworks for HAR based on Machine Learning (ML) approaches have been
proposed. For instance, authors in [35] extracted statistical features (i.e., standard deviation and
average) from the raw sensor (accelerometer) data. They analyzed multiple classifiers viz.
logistic regression, decision tree (j48), and Multi-Layer Perceptron (MLP); among them, MLP
achieved the best results, i.e., 91.7% accuracy value on the WISDM dataset. In [8], the authors
designed an ensemble of classifiers, namely J48, MLP, and logistic regression. They validated
the ensemble of classifiers on a public dataset comprising of six daily activities. An activity
recognition dataset, namely UCI-HAR, was introduced in [2]. The daily activities of 30
subjects were monitored and captured using inertial sensors embedded in a smartphone worn
around the subject’s waist. Angular velocity and acceleration signals were captured at a 50 Hz
sampling rate. These signals, after noise reduction and other preprocessing such as segmen-
tation, go through manual feature extraction. Overall, 561 features (including mean, standard
deviation, signal entropy, correlation, frequency signal kurtosis and skewness, and many
more) were extracted to describe each activity window. A multi-class SVM made use of these
features to classify the activities. In [31], authors combined various features viz. Gaussian
Mixture Model (GMM), Electrocardiogram (ECG), the Mel Frequency Cepstral Coefficients
(MFCC), and statistical features, and used a Binary Grey Wolf Optimized (BGWO) decision
tree classifier. An ensemble approach was proposed in [45]. The authors used an ensemble of
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several machine learning techniques viz. SVM, Random Forest, Multilayer Perceptron, Lo-
gistic regression, Naive Bayes, and KNN to boost the HAR performance. Jalal et al. in [30]
used gyroscope and accelerometer data and preprocessed it using Savitzky–Golay, median and
hampel filters. Several features, including binary, wavelet, and statistical features, were
extracted, and optimization was done using adam and adadelta. The Maximum Entropy
Markov Model (MEMM) was used for the highest entropy. Their technique achieved
90.91% accuracy on the MHEALTH dataset and 91.25% on the USC-HAD dataset. Hidden
Markov Models (HMM) were also used for HAR to extract sequential information of the time
series data [33]. HMMs are unsupervised approach and hence doesn’t require labeled data. But
capturing long-term temporal dependencies is difficult for HMMs.

Table 1 lists some of the representative works on HAR using different conventional ML
approaches. The ML techniques used for HAR majorly rely on manual feature engineering and
heavy data preprocessing. Moreover, they demand domain expertise. Though, the features
extracted were heuristic-driven. Still, there were no systematic or common feature extraction
methodologies to extract distinguishing traits for human actions successfully. Thus, making
the process of HAR complicated.

2.2 DL based approaches for HAR

Several DL-based methods were proposed to overcome the drawbacks and challenges asso-
ciated with the conventional ML techniques. Table 2 lists some of the representative works on
HAR using different DL approaches. DL techniques do not require manual feature engineer-
ing; instead, they are capable of automatic feature extraction and don’t require advanced
domain knowledge. In DL-based techniques, the focus is mainly on designing the network
architecture and selecting hyperparameters to obtain optimum performance.

With the advancement in processing capabilities in the recent past, DL-based techniques
have seen huge success in various fields like image segmentation, object detection, and several
recognition tasks. Several DL-based approaches like CNN, LSTM, CNN-RNN, etc., have
been proposed for HAR. Some of the DL based techniques are discussed below:

CNN based methods CNN has seen a surge in various applications area, including HAR.
Several CNN-based works have been proposed in the past decade. For instance, in [25], a
CNN-based multi-layer network was designed for HAR using accelerometer and gyroscope
sensor data. The authors used weight sharing for the CNNmodels to learn features and classify
the multimodal data. In [14], a CNN model using conditionally parameterized convolutions
was proposed for HAR in real-time. In [29], yet another CNN-based technique was proposed
for HAR using accelerometer data. It used CNN for local feature extraction and extracted
statistical features to capture the global characteristics of the time-series signal. The use of
statistical features makes this technique fall in the hand-crafted feature engineering approach.
A deep CNN architecture was proposed in [40] for the classification of multivariate time-series
data. The authors designed a novel scheme for input tensor transformation and the local
interactions among the variables were captured by the convolution operation. Another CNN
model was designed in [63] for HAR using the data obtained from smartphone sensors. In
[61], the authors extracted features using Gaussian kernel-based Principal Component Anal-
ysis (PCA) and then trained a CNN classifier using the extracted features. In [15], a divide and
conquer based 1D CNNwas proposed. Six different activity classes were first divided into two
groups of static activity class and dynamic activity class. Then within each class again, a model
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was used to classify individual activities. A minimum of three recognition models was required
in the proposed two-stage HAR, thus increasing the overall model complexity. The CNN-
based approaches can extract translational local features but fail to capture global temporal
dependencies in sensor data [47]. Thus, in this aspect, CNN alone architectures fall short in the
case of HAR, where capturing global dependencies in the time series activity data is crucial to
precisely detect the activities.

RNN based methods RNN is another DL-based algorithm extensively used for activity
recognition. HAR data obtained from wearable sensors are in the form of time series, and
hence the temporal dependencies need to be captured. RNNs are thus widely employed in
HAR as they are designed to capture temporal dependencies [66]. In [10], the authors proposed
an LSTM based network for HAR which was comprised of two LSTM layers. The model was
validated only on a single dataset containing six daily activities and achieved 92.1% accuracy.
A residual-bidirectional LSTM based network was designed in [70] for HAR using data
acquired by smartphone sensors. The residual connection used in the architecture helped the
model to converge faster, and the architecture achieved an F1-score of 90.5% on the OPPOR-
TUNITY dataset. In [67], a bi-dir LSTM network for human activity recognition was proposed
and used the data obtained from the gyroscope and accelerometer sensors embedded in a
smartphone. The network used raw sensor data from the UCI-HAR dataset and obtained an
accuracy of 93.79%; however, the method was validated only on a single dataset. Authors in
[62] designed an LSTM based network. The data obtained from the sensors were first
normalized and then fed to a stacked LSTM network and a softmax classifier. The model
was validated only on a single dataset (UCI-HAR) and achieved an accuracy of 93.13%. An
attention-based LSTM model was proposed in [69] for HAR. The authors applied temporal
attention to the hidden layer of LSTM and sensor attention to the input layer of the LSTM.
They also applied continuous attention constraints on both types of attention and validated the
model on three datasets. However, their method could achieve accuracy values below 90% on
all the three datasets used. Hammerla et al. [26] proposed deep, convolutional, and recurrent
models for HAR. They performed around 4000 experiments and established benchmark results
on three datasets. The LSTM and Bi-LSTM network they proposed achieved an F1-score of
91.2% and 92.7% on the OPPORTUNITY dataset and an F1-score of 88.2% and 86.8% on the
PAMAP2 dataset. The authors also concluded that RNN networks outperformed CNNs in the
detection of activities that have natural ordering but are short in duration, whereas CNNs
outperform RNN in the detection of activities that are repetitive and prolonged, like walking
and running. So, several approaches for HAR designed the network by combining both CNN
and RNN to take advantage of both in the same network. Some of these CNN-RNN hybrid
works are discussed in the following subsection.

CNN-RNN hybrid methods Several applications like residential load forecasting, soil mois-
ture prediction, digit recognition, etc. [46, 56, 68], in addition to HAR, benefit by using a
combination of the CNN and RNN networks. Various recent approaches for HAR proposed
network architectures comprising both convolutional layers as well as recurrent layers. For
instance, in [12], authors proposed a CNN-LSTM hybrid approach called ‘DEBONAIR’ to
recognize complex human activities. They designed separate convolutional subnetworks to
capture features from various sensor signals. Their model achieved an F1-score of 83.6% in
detecting seven complex activities from the PAMAP2 dataset. The network proposed in [64]
comprised two LSTM layers succeeded by convolutional layers, followed by a GAP layer, a
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BN layer, and a softmax layer. In [44], a CNN-LSTM based HAR classifier was designed. It
takes input data from multimodal sensors and performs the classification. Experiments were
carried out using the gyroscope and accelerometer data. Another approach for HAR [41]
proposed an LSTM-CNN architecture that achieved an accuracy of 96.2 and 98% on
MHEALTH and UCI-HAR datasets. The model presented in [20] used a hybrid of CNN
and GRU layers. The convolutional layers used three different filter sizes at both the
convolutional layers. The authors validated the model on three public HAR datasets viz.
PAMAP2, WISDM, and UCI and achieved accuracy values of 95.27, 97.21, and 96.20%,
respectively. The model showed good detection performance; however, its architecture is
complex, and the number of parameters is high. All these works demonstrated that the network
formed by the combination of convolutional and recurrent layers could achieve higher
accuracies when compared to CNN architectures. Thus, in this work, we have designed a
network that uses both CNN and GRU layers.

Inception based methods With the advent of ‘AlexNet’ [34], CNNs have become the most
used architectures to learn and extract features from the input data to distinguish one category
from others. Szegedy et al., by introducing ‘GoogleNet’ [58], took CNNs one step further in
extracting distinguishing features from the data while taking down the total number of model
parameters yet achieving higher accuracy. The key component of the Inception-v1 architecture
is the inception module, which comprises four branches, as shown in Fig. 6a: a 1 × 1 Conv
branch, 1 × 1 followed by 3 × 3 Conv branch, 1 × 1 followed by 5 × 5 Conv branch, and a
max-pooling branch. The 1 × 1 convolutions have two purposes, firstly to extract cross-
channel correlations, and secondly, to reduce (or sometimes increase or maintain the same) the
number of channels in the input (or input feature map) [39]. Inception-based methods used a
strategy of split-transform-merge, i.e., the input is split into few lower-dimensional features by
using 1 × 1 convolution. These features are then transformed by a set of transformations using
multiple-sized kernels (3 × 3, 5 × 5, etc.) and then finally concatenated. This strategy helps
them achieve higher accuracy without increasing the complexity compared to the deeper
architectures [59].

There are few other inception-based models proposed in recent researches for multivariate
time series classification. For instance, [22] proposed domain agnostic architecture
“InceptionTime” for the classification of multivariate time series data. It consisted of two
residual blocks, where each block contained three inception modules. Each block’s input is
transferred to the next block’s input via a shortcut connection, thus avoiding the problem of
vanishing gradients. The residual blocks were followed by a Global Average Pooling (GAP)
layer, and finally, the softmax layer classifies the input. The InceptionTime architecture could
achieve good classification performance over the UCI archive datasets. However, it wasn’t
validated specifically on any HAR datasets. Another inception-based architecture called
“iSPLInception” was proposed in [53]. The authors designed this architecture for HAR and
validated their model on four public datasets. The shorthand notation for iSPLInception
architecture can be written as Input layer - > BN layer - > modified inception module (using
1 × 1, 1 × 3, 1 × 5 1D convolution and 1 × 3 1D pooling) - > BN - > ReLU - > residual
connections (connecting the input of previous layer to the next inception module) - > ReLU -
> GAP1D (1 dimensional GAP layer) - > Softmax layer. The number of inception modules to
be used is scalable and depends on the depth parameter. The model achieved an accuracy of
89.09% on the PAMAP2 dataset. The architecture was complex, and the number of parameters
was very high.
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From the literature, we have made some observations. Firstly, CNNs are good at the
extraction of local features but couldn’t capture global characteristics of the sequence data.
Secondly, the RNN variants like LSTM and GRU can capture the temporal context in the time-
series data. Thirdly, the multi-branch inception-based architectures could capture the diversity
of information in the data by using a set of transformations by applying different filter sizes (3
× 3, 5 × 5, etc.) and then concatenating the feature maps obtained from all the branches. This
strategy helps the architecture achieve higher accuracy without increasing the computational
requirements compared to the deeper architectures. Lastly, 1 × 1 convolutions help extract the
cross-channel correlations and can also be used to scale the channel dimension. All these
observations help us develop the ICGNet model for HAR. In the proposed ICGNet model, we
have exploited the strengths of both convolutional and recurrent networks. This model consists
of a CNN and an RNN Block. The CNN block is designed by taking inspiration from the
inception_v1 module. As shown in Fig. 6b, the original inception module is modified and is
then used as the CNN block. The CNN block used in ICGNet significantly differs in structure
from the original inception module. The RNN variant used in the ICGNet model is GRU. The
detailed architecture of the proposed ICGNet is discussed in Section 3.

2.3 Contributions

The main contributions of this research are as below:

1. A CNN-GRU hybrid network is designed for HAR using data from wearable sensors.
CNN is good at local feature extraction, and GRU well captures the long-term dependen-
cies. Hence the hybrid network can capture the diversity of information within the data.

2. The CNN block is designed using multiple filter sizes applied over the input at the same
level. It is thus able to capture multi-scale information within the current segment of the
data. In addition to multi-sized filters, the CNN block also exploits the strength of 1 × 1
convolution operation to pool the information across the channels.

3. The proposed ICGNet uses raw sensor data with nominal preprocessing and does
automatic feature extraction without requiring any expert intervention.

4. The ICGNet model is validated on two benchmark datasets viz. MHEALTH and
PAMAP2. The overall accuracies achieved on MHEALTH and PAMAP2 are 99.25%
and 97.64%, respectively. The results show that the proposed model outperformed other
state-of-the-art HAR techniques using data from wearable sensors.

5. To validate the proposed approach, some standard benchmark deep learning models (deep
CNN, stacked LSTM, CNN-LSTM, CNN-GRU, and the inception-based iSPLInception)
from the literature have been considered and implemented with the standard public
datasets (PAMAP2 and MHEALTH). The performance of the models has been evaluated
using standard evaluation measures (Recall, Precision, F1-score, and Accuracy), and the
proposed ICGNet model outperformed all the benchmark models. We advocate the usage
of ICGNet as the optimal model for HAR.

6. The results of experiments indicate that the proposed model is less complex in terms of the
total number of parameters used compared with other state-of-the-art techniques. A
lightweight model is desirable for real-time embedded implementation and thus making
our model suitable for the purpose.
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3 Materials and methods

HAR is essentially a pattern recognition problem, which comprises steps like data preprocess-
ing and segmentation, feature extraction, and finally, classification of activities. Figure 2
depicts the complete process flow followed in this paper. The first block shows the capturing
of activity data through wearable body sensors. The captured human activity sequence data is
in time-series format and is segmented using the sliding window technique. The segmented
data frames are then forwarded to the CNN and RNN blocks for feature extraction, and finally,

Fig. 2 Block diagram of the proposed HAR framework

Fig. 3 a Placement of wearable sensors on the subject’s body. b Distribution of activity instances by the type of
activity for the MHEALTH dataset

5382 Multimedia Tools and Applications (2023) 82:5369–5403



the dense classifier layer with SoftMax activation classifies the data. Each block of the
proposed HAR framework is explained in the following subsections.

3.1 Datasets used and data preprocessing

The activity data collected by wearable sensors are in the form of a time series. The extraction
of temporal features is essential to recognize the basic actions and the changeovers in the
activities. The raw sensor data are the input for the activity recognition task, and the output is
the activity class. The datasets used in this paper for experiments are MHEALTH and
PAMAP2.

MHEALTH The MHEALTH (Mobile Health) dataset is made available by the UCI repository,
and it consists of data of 12 activities performed by ten subjects. The activities recorded in this
dataset are climbing stairs, cycling, frontal elevation of arms, jogging, jump front & back,
knees bending (crouching), lying down, running, sitting and relaxing, standing still, waist
bends forward, and walking. The data were recorded using sensors placed at the chest, right
wrist, and left ankle. Figure 3a shows the placement of sensors. The sensors used for
experiments were accelerometer, magnetometer, and gyroscope. The attributes recorded by
the accelerometer, gyroscope, and magnetometer captured in all three x, y, and z-direction are
(ax, ay, az), (gx, gy, gz), and (mx, my, mz), respectively. The use of multiple sensors helps
measure the motion experienced by different body parts, such as the rate of turn, acceleration,
and direction of the magnetic field. ECG measurements can be used for basic health monitor-
ing, monitoring the effect of various activities, and etc. Besides, the electrocardiogram (ECG)
signals were also recorded. Two attributes correspond to the ECG lead1 and lead2 signals. At
the chest, accelerometer and ECG signals were recorded; at the right wrist and left ankle,
accelerometer, gyroscope, and magnetometer signals were recorded. So, a total of 23
attributes/features were captured, comprising all three locations. All sensing modalities were
recorded at a sampling rate of 50 Hz. In this paper, data from 8 users are used for training, and
that from the remaining two users are used for testing. Figure 3b depicts the distribution of
samples by the type of activity.

Fig. 4 Distribution of activity instances by the type of activity for the PAMAP2 dataset
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PAMAP2 This dataset comprises a total of 18 daily activities recorded for nine subjects. Out of
18 activities, 6 are optional activities (like folding laundry, watching TV, etc.), and the other 12
are protocol activities like (running, rope jumping, cycling, etc.). The distribution of samples
by the type of activity performed is depicted in Fig. 4, which indicates that the PAMAP2
dataset has a class imbalance. The actions were recorded using three Inertial Measurement
Units (IMUs) and a heart rate monitor. The IMU carries 3-axis sensors to measure acceleration,
angular rate, magnetic field, and one temperature sensor. The three IMUs were worn by
subjects, one each at the chest, the wrist of the dominant arm, and on the dominant side’s
ankle. The signals from IMU were sampled at 100 Hz, and the data from IMU was sampled at
9 Hz. Each IMU records 17 features (temperature data, 3D acceleration data, 3D gyroscope
data, 3D magnetometer data, and orientation data). The dataset is comprised of a total of 52
features. For this research work, data of two subjects are used for testing, and data of the
remaining seven subjects are used for training. In this research work, a total of 21 features
captured using the accelerometer (ax, ay, az), gyroscope (gx, gy, gz), and temperature sensor
placed at the chest, hand, and ankle are used for the experiments.

The initial step in time-series data classification is to segment the data into fixed-size
frames. The segmentation of time-series data is shown in Fig. 2. Using the sliding window
technique, the raw data collected by wearable sensors is segmented into frames. The window
size selected for the proposed architecture is 256, i.e., each segment of data (or frame) will
contain 256 timestamps per frame and ‘n’ features (or channels) associated with each
timestamp, here n = 23 for the MHEALTH dataset and n = 21 for the PAMAP2 dataset.
Hence the size of the input vector is (256, n). For this research work, the data are normalized to
have values between 0 and 1.

3.2 CNN-GRU hybrid

DNNs are capable of extracting the features automatically without needing any expert
intervention. Hence, the use of DNN as a feature extractor helps build an end-to-end model
capable of handling everything from feature extraction to classification. The ICGNet archi-
tecture proposed in this paper is depicted in Fig. 8. The proposed network is a hybridization of
CNN and RNN layers. The proposed ICGNet architecture consists of both convolutional
layers and GRU layers, hence can be called as a CNN-GRU hybrid network. The below
subsections explain briefly how the proposed ICGNet uses the strengths of CNN, Inception
module, and RNN to extract features from the sensor data.

Fig. 5 Convolution operation on 1D input sequence data
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3.2.1 Inception module based CNN block

CNNs are widely used in multiple tasks such as image classification, time series
forecasting, etc., and provide decent performance due to their weight-sharing concept
[37]. The convolution operation on 1D sequence data is shown in Fig. 5. The
convolution layer is made up of a set of filters (or kernels). This set of filters are
applied to the input signal in a sliding window fashion. Each filter is a matrix of
integers that is applied on a subset of the input values of the same size as that of the
filter. This subset of the input is known as the receptive field of the filter. Hence, the
filter is said to have a local receptive field. The receptive field’s values are multiplied
by the filter’s corresponding values. All the values thus obtained are summated to
obtain a single value of a feature map. The filter is slid over the complete input, and
the convolution operation is performed at each position the filter is applied over the
input. Thus, the convolution layer’s output is the multichannel feature maps, where
the number of channels in the feature maps is equal to the number of filters in the
convolution layer.

The images or speech signals have a strong 2D structure, whereas time series data possess a
strong one-dimensional structure, i.e., the spatially or temporally close variables are strongly
correlated [37]. Extraction of local features is important to capture the local correlations. CNN
can capture these correlations and hence can extract local features by the property of local
receptive fields [37].

The proposed model’s convolution block is inspired by the inception module
introduced in [58]. However, the CNN block designed for ICGNet is not entirely
similar to the original inception module. Figure 6a depicts the structure of the
inception module. The inception module comprises four branches, a 1 × 1 Conv
branch, a 1 × 1 followed by a 3 × 3 Conv branch, a 1 × 1 followed by a 5 × 5
Conv branch, and a max-pooling branch. This module made use of two key concepts.
First, it used the idea of multiple-sized filters applied simultaneously over the input.
Different sizes of filters have different local receptive fields, and thus, these multiple-
sized filters will help compute more abstract features for local patches of data [58].

Fig. 6 Difference in the structure of CNN block of the proposed model and the Inception module a Inception
Module CNN block b Modified Inception module used as CNN Block in ICGNet
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The second key concept used in the inception module is 1 × 1 convolution. 1 × 1
convolution was first proposed in [39] and as a specific implementation of cross-
channel parametric pooling, which enables learning across the channels. 1 × 1
convolution provides channel-wise pooling rather than average or max-pooling across
width/height (in case of image data) or length (in case of 1D time-series data). In the
inception module, 1 × 1 convolution filters were also used for dimension reduction
and hence save the computational requirement.

In this work, the inception module is modified and used as the CNN block of the
proposed ICGNet. It is depicted in Fig. 6b. The CNN block of the ICGNet model
consists of multiple-sized filters applied parallelly over the input data. The modified
inception module employs filter sizes of 1, 3, 5, and 11. Different filter sizes applied
parallelly across the input enable the CNN to capture information at diverse scales
because different filter sizes will have different-sized receptive fields. Time-series data
exhibits one dimension less when compared to image data. In this paper, for 1D time-
series data, the convolution operation using a filter size of 1 will be referred to as 1
× 1 convolution. The modified inception module comprises four branches, viz. 1 × 1
followed by 1 × 1 Conv, 1 × 3 Conv followed by 1 × 1 Conv, 1 × 5 Conv
followed by 1 × 1 Conv, and 1 × 11 Conv followed by 1 × 1 Conv. The input to
the module is the 1D time-series data segmented into frames. Each frame is of the
length of window size (used for segmentation), i.e., 256, and of depth/channels equal
to the number of features in the input data. The input is passed through the
convolutional layer 1, and the generated feature maps are then forwarded to the
convolutional layer 2. The feature maps obtained from all four branches are
concatenated and passed to the RNN block of the ICGNet model.

In the proposed work, we have also used filters of size 1 to pool the input (and feature maps
from previous layers) across the channel dimension. Furthermore, as with other convolutional
layers, a non-linearity (mostly ReLU) is used with 1 × 1 convolution, allowing it to perform
significant computations on the input feature maps. As a result, 1 × 1 convolution followed by

Fig. 7 GRU cell
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ReLU non-linearity aids the model in learning across channels [39]. In this research, the
intuition behind using 1 × 1 convolution in the ‘branch 1’ of the first convolution layer is
mainly to learn the correlation across the features/channels. The 1 × 1 convolutions used in
the second convolution layer serve a dual purpose, the first is pooling across channels, and the
second is dimensionality reduction.

3.2.2 RNN block

CNNs are capable of extracting the local features and hence can capture temporal dependen-
cies within a frame of data. But convolutional layer doesn’t account for the inter-frame
temporal dependencies. The time series activity data have temporal dependencies beyond
the frame boundaries. To capture this temporal context contained in activity data, the use of
RNNs is desirable. But the traditional RNN suffers from the vanishing gradients problem and,
therefore, cannot capture long-term dependencies [7]. In the action recognition data, the long-
term dependencies are important and need to be considered to precisely classify the activities.
Thus, a variant of RNN called GRU is used in the proposed technique to capture the long-term
dependencies. GRUs can overcome the problem of exploding and vanishing gradients [16]
that existed with traditional RNN units. The RNN block of the proposed ICGNet architecture
(Fig. 8) is comprised of two consecutive GRU layers. Figure 7 shows the basic GRU cell. The
equations that represent the GRU cell are presented in Eqs. 1–4. The GRU cell consists of two
gates, namely an update gate and a reset gate. The update gate in the GRU cell helps determine
how much of the past information will be passed to the next state. This gate is updated
according to Eq. (1). The reset gate is used to determine how much of the information should
be discarded. It is updated according to Eq. (2). By virtue of these gates, the GRU cells can
remember the significant information from the past and thus can be helpful to model the
temporal context of the sequence data.

Gates:

zt ¼ σ Wzxt þ Uzst−1ð Þ ð1Þ

rt ¼ σ Wrxt þ Urst−1ð Þ ð2Þ
States:

est ¼ tanh Wsxt þ U rt⊙ st−1ð Þð Þ ð3Þ

st ¼ 1−ztð Þst−1 þ ztest ð4Þ
Where, xt is the present input, st-1 is the previous output; zt and rt are the update and reset

gates; st is the output from the GRU unit at timestamp ‘t’ and est is the candidate output. Wz,
Wr, Ws, Uz, and Ur are the weight matrices. st is updated usingest and the update gate zt decides
when to update st. Reset gate rt is used to calculate the candidate est new value and it tells how
relevant is st-1 for computing the next candidate for st.

The proposed model, by making use of CNN and GRU, exploits the strengths of both.
CNN takes care of the extraction of local features and that too at multiple scales due to the use
of multiple sized kernels, and GRU captures the long-term dependencies in the time-series
data. Consequently, the proposed architecture could capture diverse information of the sensor
data.
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3.3 Proposed ICGNet network architecture

The architecture of the proposed network is depicted in Fig. 8. The real-valued input vector,
obtained after data segmentation, is passed through a 1D convolution operation. The network
architecture has four parallel convolutional branches. The first 1D convolutional (Conv1D)
layer of branch1, branch2, branch3, and branch4 contains 32, 64, 64, and 64 filters respec-
tively. Each branch uses different convolutional filter sizes in the convolutional layer. Filter
sizes (f1, f2, f3, and f4) of 1, 3, 5, and 11 are used in the first, second, third, and fourth branches,
respectively. The use of different filter sizes simultaneously on the input data enables the
convolutional layers to capture multiple local dependencies in the data. Therefore, the network
can extract feature information of diverse scales. The activation function used in the
convolutional layer is ReLU. The convolutional layer outputs from the first, second, third,
and fourth branches are then passed through another 1D convolutional layer with a filter size of
1. The feature maps produced by the second convolutional layer from all four branches are
concatenated and passed to a 1D max pooling layer with a pool size of 2. The max-pooled
output is then flattened so that it can be passed to the two consecutive GRU layers. In ICGNet,
the number of GRU layers is chosen to be two, as suggested in [32]. The number of units used
in the first and second GRU layers is 32 and 16, respectively. The second GRU layer’s output
is forwarded to a dense layer with 64 units, followed by a batch normalization (BN) layer that
is succeeded by a dense output layer. The output layer uses the softmax activation function,

Fig. 8 Network Architecture of the proposed “ICGNet” model
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which generates the probability distribution over all the classes of activities and classifies the
input.

4 Experiments and results

The proposed network for HAR is validated using two public datasets viz. MHEALTH and
PAMAP2. TensorFlow backend and Keras framework are adopted to design the proposed end-
to-end classifier. The cross-entropy loss is minimized by training the model. A Keras callback
option of ‘ReduceLROnPlateau’ is used, which monitors the validation loss parameter and
reduces the learning rate (LR) by a factor of 0.2 after the ‘patience’ of 5 epochs. The minimum
LR value is set to 0.0001. To evaluate the performance of the proposed model, it is compared
with various approaches for HAR from the literature.

This section describes the evaluation metrics, details of models implemented for perfor-
mance comparison, experiments performed, and results obtained. The hyperparameters em-
ployed are summed up in Table 3. All the other hyperparameters are used in this research work
with their default values. All the experiments are executed on GeForce GTX 1660 Ti.

4.1 Hyper-parameter setting

The selection of hyper-parameter values is a vital part of designing deep learning models.
Hyper-parameters’ values are to be chosen such that the model achieves high performance.
There are mainly three methods (random-based, manual, and grid-search approach) to tune the
values of hyper-parameters [23]. The random-based approach uses some random set of values
for these parameters. The manual approach uses the results of validation data and the
experience in the field, and the grid-search approach uses a comprehensive set of values. In
this paper, hyper-parameters are selected using manual-based and grid-search based tech-
niques. To start with, a range of coarse values was selected and then based on the experience
and results of the validation data, this range was further narrowed down. The hyper-parameter
values obtained after this tuning are listed in Table 3.

Table 3 Hyper-parameters used for the proposed network

Phase Hyper-parameters Values used

Data Preprocessing Window size (or Input vector length) 256
Step-size 128
Number of input channels 23 (for MHEALTH dataset)

21 (for PAMAP2 dataset)
Architecture No. of convolution layer 2

Filter sizes f1, f2, f3, f4 1, 3, 5, 11
Pool_size 2
Padding same
DropOut 30%

Training Batch size 400
Maximum number of epochs 120
Learning rate Initial LR 0.001

Min LR 0.0001
Optimizer Adam
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4.2 Evaluation Metrics

The evaluation metrics used in this research work are Accuracy, F1-score, and Confusion
Matrix (CM). All these metrics are defined in terms of True Positives (TP), False Positives
(FP), True Negatives (TN), and False Negatives (FN). TP, TN, FP, and FN [6, 18] are as
defined below:

& TP: is when the sample’s predicted class is the same as that of the true class of the sample.
& TN: is when the predicted class and the true class do not correspond to the searched class.
& FP: is when the sample is predicted to be of searched class when it actually belongs to a

different class.
& FN: is when a sample actually belongs to a particular class but is predicted to be of a

different class.

Accuracy measures the percentage of correct predictions relative to the total number of
samples.

A ¼ TP þ TN
TP þ TN þ FPþ FN

ð5Þ

Precision (P) is the ratio of correctly predicted positives (TP) to the total number of samples
predicted as positives.

P ¼ TP
TP þ FP

ð6Þ

Recall (R) is the ratio of correctly predicted positives (TP) to the total number of positive
samples.

R ¼ TP
TP þ FN

ð7Þ

The F1-score measure is particularly significant in the case of HAR because human activity
datasets are mostly unbalanced. F1-score is independent of class distribution; hence we
evaluated the models using a weighted F1-score. It values each category’s correct classification
equally. F1-score is the harmonic mean of Precision and Recall values.

F1� score ¼ 2
X nc

nt

Pc � Rc

Pc þ Rc
: ð8Þ

Where, nc is the number of samples in class c, and nt is the total number of samples. Pc and Rc

are the precision and recall values for class c.
Confusion Matrix is a table that summarizes the performance of the classifier. It is a square

matrix where rows and columns respectively represent true labels and predicted labels. It gives
us a complete view of how the classifier is performing and what kind of errors it is making.
Thus, CM helps us to visualize the classifier’s performance.
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4.3 Results and discussion

The proposed ICGNet model is validated using two publicly available datasets viz.
MHEALTH, and PAMAP2. The proposed model is compared with various HAR techniques
proposed in literature that have reported results on MHEALTH and/or PAMAP2 datasets.
Additionally, we implemented some of the HAR related state-of-the-art (SoTA) works like
CNN [63], CNN-LSTM [47], stacked LSTM [44], CNN-GRU [20], and iSPLInception [53] to
thoroughly compare the proposed model’s performance. The same set of training and test data
are used for all these models and the ICGNet model for consistency and meaningful assess-
ment. This section presents the results of the experiments performed using both datasets and
the comparisons made.

4.3.1 Results of MHEALTH dataset

The MHEALTH dataset samples are divided on the basis of the user-id. Using the window-
size of 256, the total number of samples obtained is 2678, out of which 2148 samples are used
for training, and 530 samples are used for testing the model. The accuracy and loss plots for
training and testing obtained using the proposed ICGNet on the MHEALTH dataset are
depicted in Fig. 9. The obtained CM on test set of the MHEALTH dataset is shown in
Fig. 11a. From the CM, the proposed method is evident to perform well in detecting all the
twelve activities, be it a simple activity (sitting, standing, etc.) or a complex activity (like
cycling, knee bending, etc.).

The proposed ICGNet is compared with various SoTA HAR techniques using smartphone
and wearable sensors is presented in Table 4. The performance comparison is made using the
standard evaluation metrics viz. accuracy and/or F1-score. As can be seen from Table 4, the
proposed model significantly outperforms the compared HAR approaches. Jalal et al. in [30]
used inertial sensors data and preprocessed it using Savitzky–Golay, median and hampel
filters. Several features, including binary, wavelet, and statistical features, were extracted. The
MEMM was used for the highest entropy. Their technique achieved 90.91% accuracy on the
MHEALTH dataset. The recall values obtained for cycling, crouching, and frontal elevation of
arms were less than 90%. Moreover, their technique involved manual feature engineering and
a good amount of data preprocessing. The HAR system proposed in [31] used various features
viz. GMM, ECG, the MFCC, and statistical features, and used a BGWO decision tree
classifier. The technique achieved an accuracy of 93.95% on the MHEALTH dataset.

Fig. 9 Accuracy and loss plots for the MHEALTH dataset
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However, the method involves manual intervention to extract features, and it performed poorly
in detecting activities like knee bending and frontal elevation of arms. Nguyen et al. in [45]
used an ensemble of several ML techniques viz. SVM, Random Forest, MLP, LR, Naive
Bayes, and KNN to boost the HAR performance. Their method achieved accuracy and F1-
score of 94.72% and 94.12%, respectively. The deep CNN model ‘CNN-pff’ using a weight
sharing mechanism proposed in [25] achieved an accuracy of 91.94%, which is 7.49% less
than that of ICGNet. Also, the total number of parameters used was more than 9,00,000, which
is relatively high compared to the number of parameters 235,692 used in ICGNet. Using
Gaussian kernel PCA for feature extraction and a deep CNN to further use these features to
classify the activities, Ha and Choi [67] achieved an accuracy of 93.90%. Still, the accuracy
achieved is 5.53% less as compared to ICGNet. The LSTM-CNNmodel proposed by Lingjuan
et al. [41] uses a hybrid of LSTM-CNN where a CNN follows an LSTM layer. Their method
outperformed the baseline LSTM and CNN models in terms of accuracy value. However, the
ICGNet model provides a 3.9% relative improvement over the LSTM-CNNmodel. Chen et al.
[11] could achieve an accuracy of 94.05% on the MHEALTH dataset with their semi-
supervised CNN-LSTMmodel. The comparison results from Table 4 indicate that the ICGNet
outperforms the compared HAR approaches from the literature.

4.3.2 Results of PAMAP2 dataset

The PAMAP2 dataset samples are divided on the basis of the user-id. Using the window size
of 256, the total number of samples obtained is 13,518, out of which 11,656 samples are used
for training, and 1862 samples are used for testing the model. Figure 10 depicts the accuracy
and loss plots for training and testing obtained using the PAMAP2 dataset.

The CM obtained on the test set of the PAMAP2 dataset is shown in Fig. 12a. From the
diagonal elements of CM, it can be seen that the recall value for activity’ ascending stairs’ is
82%. The activity’ ascending stairs’ is mostly confused with ‘walking.’ Except for ‘ascending
stairs,’ the model is seen to perform very well to recognize all the other eleven activities.

The ICGNet model was compared with various techniques for HAR from the literature,
using the PAMAP2 dataset. Performance comparison of ICGNet and other HAR techniques
from literature is made using standard performance measures of F1-score or accuracy or both,
and the results of the comparison are displayed in Table 5. Chen et al. [12] used specific
convolutional subnetworks to extract features from different sensors signal. Their approach,
however, performed poorly in the detection of complex human activities and achieved an F1-
score of 83.6%, which is quite low when compared to ICGNet’s F1-score of 97.62%.
Hammerla et al. [26] proposed DNN, CNN, and RNN models for HAR. They performed

Table 4 Performance comparison of various HAR techniques using the MHEALTH Dataset

Approaches Accuracy (%) F1-score (%)

Gaussian-Kernel PCA+CNN [61] 93.90 –
DT classifier + BGWO [31] 93.95 –
Ensemble algorithms [45] 94.72 94.12
Adam + Maximum entropy markov model [30] 90.91 –
CNN-pff [25] 91.94 –
LSTM-CNN [41] 95.56 –
Recurrent Convolutional Attention model [11] 94.05 –
ICGNet (Proposed model) 99.25 99.28
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around 4000 experiments and established benchmark results on three datasets. The DNN,
CNN, LSTM, and Bi-LSTM network they proposed, achieved an F1-score of 90.4%, 93.7%,
88.2%, and 86.8% on the PAMAP2 dataset. The conditionally parameterized convolution
approach in [14] achieved test accuracy of 94.01% on PAMAP2; however, the dataset
distribution between training and test set used was not based on user-id; instead, 70% of data
of each class were randomly selected for the training set and the rest for the test set. The deep
CNNmodel presented in [63] achieved an accuracy of 91%, which is 6.6% less as compared to
that obtained using ICGNet. Zeng et al. [69] proposed an attention-based LSTM model. Their
approach helps visualize which part of the sensor signals are being attended by the model,
improving its interpretability. However, their model could achieve an accuracy value below
90%. The recurrent attention-based model introduced in [11] gives more insight into the input
data’s salient parts and makes the model understandable. The model designed was robust, but
the accuracy achieved was 83.4% which is quite low when compared to that achieved with
ICGNet. The ‘Dfternet’ proposed in [28] is a CNN-based approach that uses a dynamic fusion
strategy that enables the model to perform well. It also used a quantization mechanism that
helped it achieve desirable performance at low memory and computation requirements.
However, the F1-score achieved is 6.2% lesser than that of our ICGNet model. The results
presented in Table 5 show that our proposed approach outperforms the state-of-art HAR
techniques using the PAMAP2 dataset by a comfortable margin.

Table 5 Performance comparison of various HAR techniques using the PAMAP2 dataset

Models Accuracy (%) F1-Score (%)

DEBONAIR [12] – 83.6
DNN [26] – 90.4
CNN [26] – 93.7
LSTM-S [26] – 88.2
Cond Conv [14] – 94.01
CNN [63] 91.00 91.16
LSTM + Attention [69] – 89.96
Recurrent Convolutional Attention model [11] 83.42 –
CNN (Dfternet) [28] – 91.4
ICGNet (Proposed model) 97.64 97.62

Fig. 10 Accuracy and loss plots for the PAMAP2 dataset

5393Multimedia Tools and Applications (2023) 82:5369–5403



4.3.3 Qualitative analysis of the ICGNet

The training performance of the proposed approach onMHEALTH and PAMAP2 datasets has
been represented in Figs. 9 and 10, respectively. It has been observed that the graph (training
and testing) is less fluctuated, which simply indicates the learning stability during significant
feature extraction. Additionally, the absence of a large gap between training and testing graphs
ensures that overfitting is reduced. Further, the model has attained its highest accuracy within
50 epochs for PAMAP2 and 80 epochs for MHEALTH and remains stable throughout its
learning. Similarly, the loss plot started from 2.5 and went down to approximately 0.05. This
qualitative analysis validates the performance of ICGNet in terms of accuracy and loss plots.

4.3.4 Results of comparison with benchmarking models

We implemented some of the HAR related SoTA models viz. CNN [63], CNN-LSTM [47],
stacked LSTM [44], CNN-GRU [20], and iSPLInception [53] to thoroughly compare the
proposed model’s performance. We implemented these models as per the details shared in the
respective papers. The training and testing dataset used is the same as used for the ICGNet model
for consistency and meaningful assessment. The performance comparison is made based on the
standard evaluation metrics commonly used to gauge the performance of a classifier viz.
Accuracy (A), Precision (P), Recall (R), and F1-score. The confusion matrix is also provided
to get an insight into how the classifier is performing in recognition of each activity. The diagonal
elements of the CM reflect the Recall value obtained for the respective activity. The total number
of parameters (#param) required for each model is also used to compare the model’s complexity,
as the more the number of parameters required for a model, the more resources (like memory,
computational requirement, training and inference time, etc.) it will require. A more resource-
hungry model is not suitable to be used in real-time embedded environments.

Confusion matrices for all the methods are shared in Figs. 11 and 12 for MHEALTH and
PAMAP2 datasets. Table 6 shows the values of performance metrics obtained for all the
benchmark models and the ICGNet. The s-LSTMmodel has achieved the lowest accuracy and
F1-score values among all the compared approaches. The deep convolutional LSTM approach
proposed in [47] attained decent accuracy and F1-score values for both datasets. However, the
number of parameters required is the second-highest when compared to other approaches.

The CNN-GRU technique in [20] also used a combination of CNN and GRU layers. Despite
having similarities with it, our ICGNet sufficiently differs from it when the structure and
arrangement of CNN layers are compared. Our CNN block not only uses multiple filter sizes
at the same convolution level but also logically makes use of the 1 × 1 convolution operation to
reduce the total number of parameters utilized. The CNN-GRUmodel shows good performance
on both datasets, but compared to ICGNet, the accuracy and F1-score values attained by
ICGNet comfortably surpass those achieved by the CNN-GRU model. Also, the number of
parameters required by it is higher as compared to that of ICGNet. The iSPLInception model
attained good accuracy and F1-score values of 94.72% and 94.79% for theMHEALTH dataset.
But the total number of parameters required for iSPLInception is the highest compared to other
models. iSPLInception model took the highest number of epochs (350 epochs) and training
time to converge. As can be seen from the results, the ICGNet model has achieved the highest
accuracy and F1-score values of 99.25% and 99.28%, respectively, for the MHEALTH dataset
and 97.64% and 97.28% for the PAMAP2 dataset. Moreover, the number of parameters
required for the ICGNet is comfortably less than the other compared benchmark approaches.
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4.3.5 Results of statistical tests

To verify the significance of performance improvement achieved with the proposed ICGNet
model, the recall measure of the benchmark models and the ICGNet are compared by

Fig. 11 Confusion Matrices for MHEALTH dataset
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conducting a statistical test called ‘Wilcoxon signed-rank’ test [21] at a significance level of
0.05. The ICGNet model is compared with the benchmark models viz. CNN [63], CNN-
LSTM [47], stacked LSTM [44], CNN-GRU [20], and iSPLInception [53]. The diagonal
values of the confusion matrix give the Recall values for each activity. These Recall values

Fig. 12 Confusion Matrices for PAMAP2 dataset
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obtained for each model are then used to perform the statistical tests. Table 7 shows the test
results obtained. The p-values obtained for ICGNet versus other models are less than 0.05, thus
proving the statistical significance of the ICGNet.

4.3.6 Additional experiments for hyper-parameter tuning

The selection of hyper-parameter values is a vital part of designing deep learning models.
Several experiments were performed using the MHEALTH dataset to tune the values of batch
size, initial LR, number of convolution layers, first convolutional layer’s filter sizes (f1, f2, f3,
and f4 to be used in branches 1, 2, 3, and 4, respectively), and the window size to be used for
the segmentation of time-series data obtained from the sensors.

Selection of learning rate (LR) Selection of learning rate is critical to the training process. If
LR is too small, the model learns very slowly because it makes tiny updates to network
parameters. A too high learning rate value will cause unnecessary divergent behavior in the
loss function. Figure 13 shows the results of experiments performed using different initial
learning rate values. The results show that the initial LR of 0.001 gives the optimum results.

Selection of batch size (BS) Batch size is the batch sample size after which the network’s
weights get updated during the training process. When the total training data is very less the
batch size chosen is the same as the training data size. For large datasets, processing in batches
is adopted. Increasing the BS within an appropriate range can more accurately determine the
direction of gradient descent as well as lessen the training shock. However, increasing its value
beyond a certain range will slow down the updating of parameters. Several experiments were

Table 6 Performance comparison of the proposed model with the benchmarking DL models

Model PAMAP2 dataset MHealth dataset

P R Acc F1-score #param P R Acc F1-score #param

CNN [63] 91.06 91.95 91.08 90.75 329,612 93.99 92.83 92.83 92.37 330,508
s-LSTM [44] 88.78 88.73 87.54 87.11 263,072 86.34 86.04 86.04 85.60 264,104
CNN-LSTM [47] 93.32 91.20 92.21 92.01 1,099,020 95.45 94.23 94.15 94.15 1,100,172
iSPLInception [53] 90.55 90.15 89.90 89.71 1,333,568 95.51 94.59 94.72 94.79 1,334,280
CNN-GRU [20] 94.85 94.63 94.63 94.59 346,728 96.11 95.30 95.28 95.19 349,416
Proposed 97.78 96.93 97.64 97.28 235,692 99.27 99.31 99.25 99.28 237,356

Table 7 Comparison of models based on Wilcoxon signed-rank test

Models Wilcoxon signed-rank test
(p value)
MHEALTH dataset

Wilcoxon signed-rank test
(p value)
PAMAP2 dataset

ICGNet vs CNN [63] 0.0234 0.04
ICGNet vs s-LSTM [44] 0.002 0.041
ICGNet vs CNN-LSTM [47] 0.0312 0.0044
ICGNet vs CNN-GRU [20] 0.0156 0.0063
ICGNet vs iSPLInception [53] 0.0234 0.0293
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performed by varying the batch size between 64 and 600. The results of experiments
performed on different batch sizes are summarized in Fig. 14, and the results indicate that
the batch size of 400 gives the highest values of accuracy.

Selection of the number of convolution layers Selection of the number of convolution
layers is critical for the network’s performance. Convolution layers are used to extract relevant
features from the data. Multiple layers are stacked together to extract hierarchical abstractions.
However, increasing the number of layers beyond a certain point causes the saturation in
performance, and gradual degradation starts. Adding more layers to an appropriately deep
model may cause training error to increase. To investigate the impact of the number of
convolution layers, experiments were performed varying the number of Convolutional layers
in the ICGNet model. Three configurations of ICGNet were tested viz.: ICGNet with two
convolution layers (Fig. 6b), ICGNet with three convolution layers (Fig. 15a), and ICGNet
with four convolution layers (Fig. 15b).

The number of convolution layers to be used in the ICGNet model is decided based on the
performance metrics values, the total training time, and the total no. of parameters required for
each model configuration. Table 8 shows that as the number of convolution layers increases,
so do the number of parameters and training time, resulting in an increase in computation cost.
However, increasing the number of convolution layers doesn’t cause any increase in the
accuracy values. The 2-layer convolution configuration of the ICGNet model is found to be
optimum and hence chosen in this work.

Fig. 13 Accuracy values (in %), obtained for different values of Initial LR using the MHEALTH dataset

Fig. 14 Accuracy values (in %), obtained for different values of Batch Size (BS) using the MHEALTH dataset
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Selection of filter size Selection of filter size parameter is quite challenging because the
increased size of filter size (13 × 13, 15 × 15, 17 × 17, and so on) helps to obtain feature pool
in a stipulated time but fails to capture relevant features. At the same time, a smaller filter size
(1 × 1) gets the high-level details of the target data but suffers from computational time.
Hence choosing the correct set of filter sizes is a complex task. We selected a set of four values
for window size, and for each window size we experimented with different set of filter sizes.
Table 9 shows the accuracy and F1-score values obtained for varying window sizes along with
different filter sizes (f1, f2, f3, and f4) and their combinations used. The f1, f2, and f3 values are
fixed to 1, 3, and 5, respectively, and the value of f4 is varied. The results in Table 9 show that
the highest values for accuracy and F1-score are obtained for the window size of 256 and the
filter size values of 1,3,5, and 11 for f1, f2, f3, and f4, respectively. Whereas the second highest
values of accuracy and F1-score are obtained for the window size of 128 and filter sizes of 1, 3,
5, 11 corresponding to f1, f2, f3, and f4, respectively. Smaller window size of 64 didn’t perform
well in comparison to higher window sizes. The data, when segmented using a window size of
512, the model is observed to take almost around 250 epochs to converge. While with window
sizes 128 and 256, the model takes a maximum of 120 epochs or less to converge.

The hyperparameter values thus selected through the extensive set of experiments helped
the model reach its optimal performance. From the results of all the experiments, it can be said
that the model proposed for HAR in this research work is able to outperform various state-of-
the-art techniques for HAR using wearable and smartphones sensor data. The model is
successfully validated on two benchmark datasets.

Fig. 15 a 3-layer convolution block in ICGNet b 4-layer convolution block in ICGNet

Table 8 Performance comparison of different ICGNet model configurations based on the number of
convolutional layers

No. of Conv Layers Total no. of parameters Total training time (in seconds) Accuracy (%) F1-score (%)

2 237,356 30.586 99.25 99.28
3 250,452 41.217 99.06 98.92
4 259,460 46.253 98.87 98.87
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5 Conclusion

This work aimed to design an end-to-end classifier that performs everything from
extraction of features to classify activities. Our primary focus was to develop a HAR
model that is reasonably accurate and less complex so that it can be later deployed in
embedded devices. The proposed ICGNet exploits the strengths of both the convolutional
and recurrent neural networks and hence can capture the local correlations and long-term
dependencies in the raw sensor data acquired via sensors like accelerometers, gyro-
scopes, etc. The ICGNet’s CNN module uses multiple sized filters applied simultaneous-
ly over the input, which helps the CNN module compute more abstract features for local
patches of data. The CNN module also exploits the 1 × 1 convolution operation to pool
the input (and previous layer feature maps) across channels/features and reduce dimen-
sionality. The network’s convolutional layers are followed by GRU layers which can
capture long-term dependencies of the sequence data. Hence using all these key features
empowers the proposed network to capture multi-scale and diverse information in the
sensor data, thus enabling it to classify the activities accurately. It performs automatic
feature extraction on the raw data without using any hand-engineered features. The
proposed ICGNet contains a lesser number of parameters when compared to other SoTA
architecture; thus, it is computationally less expensive. The ICGNet is validated using
two public datasets, and the results of experiments demonstrate that the network
outperformed SoTA architectures proposed for HAR in the literature.

The proposed method deals with the individual’s physical activities and doesn’t
address the interaction between individuals and objects. Hence, we intend to include
and train the model with more complex activities to contain interactions among people
and surroundings. Our future work will focus on the real-time implementation of the
HAR system for fall detection and eldercare using IoT-enabled, low-cost inertial sensor-
based device, which mainly focuses on elders’ activities and for people with conditions
like Parkinson’s disease and dementia, etc.
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Table 9 Accuracy (A) and F1-score(F1) values (in %) obtained for different sliding window size (WS) and
various filter sizes combination used for f1, f2, f3, and f4 using the MHEALTH dataset

Filter sizes 1,3,5 1,3,5,7 1,3,5,9 1,3,5,11 1,3,5,13
WS

A F1 A F1 A F1 A F1 A F1

64 87.58 87.26 92.52 92.32 92.28 92.24 93.27 93.22 89.60 88.72
128 97.65 97.65 95.76 95.76 98.17 98.18 98.40 98.41 93.50 93.05
256 97.36 97.37 96.98 97.00 98.30 98.32 99.25 99.28 96.60 96.64
512 95.45 95.46 96.21 96.19 97.35 97.30 96.89 96.86 94.59 94.44
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