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Abstract
With the development of multi-modal man-machine interaction, audio signal analysis is 
gaining importance in a field traditionally dominated by video. In particular, anomalous 
sound event detection offers novel options to improve audio-based man-machine interac-
tion, in many useful applications such as surveillance systems, industrial fault detection 
and especially safety monitoring, either indoor or outdoor. Event detection from audio can 
fruitfully integrate visual information and can outperform it in some respects, thus repre-
senting a complementary perceptual modality. However, it also presents specific issues and 
challenges. In this paper, a comprehensive survey of anomalous sound event detection is 
presented, covering various aspects of the topic, ı.e.feature extraction methods, datasets, 
evaluation metrics, methods, applications, and some open challenges and improvement 
ideas that have been recently raised in the literature.

Keywords Anomalous sound event detection · Feature extraction · Supervised learning · 
Unsupervised learning · Evaluation metrics

1 Introduction

Presentation of the topic Anomalous sound event detection (anomalous SED) is a relatively 
novel topic in audio and speech processing. It lies at the intersection of digital signal pro-
cessing, in particular audio and speech processing, anomaly detection and machine learn-
ing. The number of applications is growing fast, as it started as an alternative/complemen-
tary method to video analysis to encompass a large range of applications from industrial 
monitoring to home assistants. This topic covers two main fields, (a) anomaly/outlier/
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novelty detection, and (b) sound/ audio/acoustic event detection. Each topic belongs to sep-
arate realm, as anomaly detection is a general problem, whereas SED is a specific applica-
tion within signal processing and understanding.

Interest of the survey Automated surveillance applications are dominated by video. A 
count of some Google Scholar search results confirms this fact (Fig. 1), but at the same 
time shows that the interest in audio is relevant.

Compared to video, the audio modality offers some unique advantages: (i) In addition 
to the installation cost, audio stream acquisition is much less expensive in terms of band-
width, memory storage and computational requirements; (ii) omnidirectional microphones 
and/or microphone arrays can cover a 360◦ perception field, and are insensitive to lumi-
nosity and many weather conditions; (iii) unlike video, most human-hearing-range sounds 
can be detected in presence of physical obstacles, even if this may be a problem for some 
tasks, e.g., localization; (iv) some relevant events for audio surveillance, like gunshots and 
screams, are more perceptible through audio than video; (v) audio data have more chance 
to be classified into categorical and strictly separable events than video scenes.

Another key remark is that, in principle, anomalous audio event detection has a wider 
scope than just surveillance. This survey covers examples of works showing that anomalous 
SED is able to provide solutions for a large range of other applications, such as (i) indus-
trial equipment monitoring, including fault detection and machine condition monitoring, 
(ii)  audio scene segmentation for automatic summarization and language acquisition, 
(iii)  healthcare monitoring, using biological audio signals such as the phonocardiogram 
(PCG) and respiration or cough sounds, for early heart or respiratory disease diagnosis.

Present survey Several available surveys and reviews focus on anomaly detection. An 
inventory of these works has already been presented in [20], where previous anomaly 
detection reviews were categorized according to the described techniques or to the target 
applications. Technique based reviews include those relying on classification, clustering, 
nearest neighbour, statistical, information theoretic and spectral techniques. Application-
based reviews are mostly interested in cyber-intrusion, fraud, medical anomaly, industrial 
damage, image processing, textual anomaly ad sensor networks.

On the other side, several reviews have recently had SED applications as a target topic 
such as [10, 19, 21, 142]. Also, a systematic review about anomalous SED [88] has been 
recently made available on arxiv.org, but still not published in any field-related journal. 

Fig. 1  Topic interest: Number of 
results of some Google Scholar 
queries
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However, to the best of our knowledge, no extensive survey specifically focusing on anom-
alous SED has been recently published in indexed journals or proceedings.

2  Survey methodology

2.1  Anomaly definitions and assumptions

This survey is focused on anomaly detection, so it covers specifically those SED appli-
cations where the challenge is to recognize anomalous events rather than to segment an 
acoustic scene into known, typical event categories (event recognition/classification). 
Therefore, it is first necessary to define the notion of anomaly/novelty /outlier. In [124], this 
is characterized by means of (a) its scarcity, as anomalous/novel/outlier events occur less 
frequently than “normal” events; (b) its characteristics, as anomalous/novel/outlier events 
should have different characteristics than “normal” events; (c) its meaning, as such events 
should carry a specific and a different meaning than normal events. However, such a defini-
tion may be questionable, as: (i) scarcity as a criterion for anomaly definition may lead to a 
high rate of false positives, as many normal events could also occur less frequently; (ii) dif-
ference in characteristics, as can be measured by a high distance in the feature space, may 
not be enough to decide about outlierness; (iii)  a-priori definitions of anomalous events 
refer to a classification where the qualification of outlierness depends above all on the lim-
ited number of classes. To overcome this narrow domain-related way of defining anomaly/
novelty/outlier events, Xiang & Gong [143] suggest to define anomaly as an event that 
occurs infrequently; however, the concept of outlierness depends on the context and may 
change over time. In the same line, Dee & Hogg [31] define anomalies those events that 
cannot be explained by a “normal” model, as reported in [124].

2.2  Challenges of anomalous SED

2.2.1  Time‑structured data

In addition to specifying the type of the acoustic event, SED aims at labeling its onset and 
offset instants. This reminds similar applications like speaker diarization [130] and auto-
matic music transcription [14], where the interest is focused on turn changes rather than 
individual events [126].

2.2.2  Polyphony vs. monophony

Naturally, real life audio data should not be necessarily monophonic, however salient 
events are more likely to be detected in monophonic sounds, or at the presence of a reduced 
level of background noise.

In a recent review, [19] argued that SED should be more challenging for polyphonic 
sounds than for monophonic ones, for the following reasons: (a) Since polyphonic 
sounds contain a mixture of signals, single sound events can easily coincide, hence 
become less likely to be identified as advanced by [43, 44, 72]; (b) For the same rea-
sons, the extracted features within a frame for example do not necessarily correspond to 
each separate audio signal, but rather to the mixture of sounds [47]; (c) Because of the 
mixture effect in polyphonic sounds, the number of events to be detected is not known 
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a priori. We also believe that these difficulties are confirmed by the absence of a model 
able to represent a mixture of sounds. In fact, whereas speech/music signal generation 
can be achieved using a source-filter model or a generative vocoder, like WaveNet [92] 
or World [81], the reverse operation, ı.e. identifying the components in a polyphonic 
sound is still problematic.

Some proposed solutions in case of multi-source audio data have been proposed. For 
instance, source separation can be achieved using a multi-source probabilistic model 
[127], whereas a noise reduction technique can be applied in case of a dominant source 
in presence of background noise [136]. Also approaches used for SED vary according 
to polyphony or monophony: probabilistic methods, such as PLSA (probabilistic latent 
semantic analysis) [78] are applied to detect overlapping audio events, whereas analyti-
cal methods like non-negative matrix factorization (NMF) are more adapted to detect 
non-overlapping audio events [28].

2.2.3  Anomalous data scarcity

Another major problem is related to the inherent scarcity of data, intrinsic in the defini-
tions of anomaly. Some methods are better suited to this problem, in particular semi-
supervised and unsupervised methods [132].

2.3  Sources

The aim of this survey is to present a comprehensive overview about anomalous SED 
and to provide a structured view of the topic. To this end, 128 papers were selected 
according to the following criteria:

– Papers were collected within the interest areas of audio/ signal processing and 
machine learning.

– Papers were identified primarily by accessing authoritative repositories of works 
in these areas, particularly the DCASE challenges, the ICASSP, EUSIPCO, Inter-
Speech conferences, and relevant IEEE Transactions (IEEE T. Neural Networks and 
Learning Systems, IEEE T. Audio and Speech Processing, IEEE T. Multimedia). 
Google Scholar searches provided links to additional works.

– The topic of papers was specifically anomaly detection.
– Priority was given to more recent works, dating back at most from 2013, although 

some works using more traditional approaches were older.
– Since the surveyed topic is relatively recent, most of developed methods are not 

shared by different authors, especially when the method or the application are too 
specific. Therefore, we found that for each particular method or application, there are 
usually a few contributions (generally equal or less than 2).

– However, the number of contributions is growing very fast since 2017. A compari-
son of the publication dates on Google scholar shows that for the sequence of key 
words {anomalous, sound event detection, machine learnnig}, the total number of 
publications is 27700, among which 62.5% date only from 2017, and more particu-
larly 28.7% from 2020.
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2.4  Scope and organization of the survey

The organization of the remainder of the paper is as follows: The next Section 3 presents 
the main datasets, with a focus on public ones, and especially those used for developing 
and benchmarking in the state of the art. In Section 4, features are thoroughly described, 
either the hand-crafted ones, or those relying on feature extraction techniques, particu-
larly applied for anomalous SED. We also opted to present first the standard evalua-
tion metrics in Section  5; then, in Section  6 the modeling techniques are thoroughly 
detailed. For every type of method, we opted to present first an overview of the general 
framework, then to expose the models developed under each framework. Following this 
organization logic, we present in Section  7 an inventory of the main applications of 
anomalous SED. Finally, Section 8 presents the open challenges and the problems that 
are still awaiting more satisfactory solutions, in addition to some ideas that were pro-
posed in the literature to improve the overall or some particular issues in the surveyed 
topic.

3  Datasets

anomalous SED is most often approached as a data-driven problem. Therefore a variety 
of datasets has been elaborated to allow training and developing models, for each spe-
cific domain of application (cf. Table 1).

Table 1  Most used datasets for training and benchmarking of anomalous SED models

Field Application Datasets Authors and references

Industrial monitoring Motor sound monitoring ToyADMOS (Koizumi et al., 2019) [62]
Industrial machine inspec-

tion
MIMII (Purohit et al., 2019) [107]

Traffic monitoring Road audio surveillance MIVIA (Foggia et al., 2015) [37]
Car crash monitoring AXA (Sammarco et al.  2018) [118]
Environmental noise moni-

toring
WASN (Alsina-Pages et al., 2019) [6]

General purpose SED Office sounds Office-live (OL) (Stowell et al., 2015) [126]
[80]

Office-synthetic (OS) (Stowell et al., 2015) [126]
Real-life SED TUT dataset (Mesaros et al., 2016) [80]

Google’s Audio Set (Gemmeke et al., 2017)[40]
Freesound (Fonseca et al.,2017)[38]
Urbansound 8K (Salomon et al.,2014)[117]
SINS (Dekkers et al., 2017)[32]

Human healthcare Phonocardiogram anomaly MITHSDB (Syed et al., 2007) [129]
AADHSDB (Shmidt et al.,2010) [119]
AUTHHSDB (Papadaniil et al.  2013) [94]
Other PCG datasets (Liu et al., 2016) [71]

Respiration sound anomaly ICBHI (Rocha et al., 2017) [112]
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3.1  Industrial equipment monitoring

3.1.1  Motor sound monitoring

ToyADMOS [62] is a dataset dedicated for motor sound monitoring, developed for the 
DCASE 2019 challenge. It consists of recorded sounds of three toy motors: a toy car designed 
for product inspection task, a toy conveyor designed for fault diagnosis of a fixed machine, and 
a toy train designed for fault diagnosis of a moving machine. The database is divided into three 
subsets, individual sounds (IND), continuous sounds (CONT) and environmental sounds (ENV).

3.1.2  Machine condition monitoring

MIMII [107] is a sound dataset for Malfunctioning Industrial Machine Investigation and 
Inspection. It includes various normal and anomalous sounds, recorded in real-life conditions. 
It has been recently proposed as supporting material for the industrial machine inspection 
task in DCASE 2020 challenge. Normal and anomalous sounds come from different sources, 
namely valve, pump, fan and slide rail.

3.2  Traffic monitoring

3.2.1  Road events

MIVIA dataset [37] was designed for an audio-based road surveillance system. Recordings 
were realized in a real road environment at 23 locations in the province of Salerno, Italy, cov-
ering city center, highways and country roads. Two audio events, car crash and tire skidding, 
are considered, whereas all other events are considered as background noise. The total dura-
tion of the database is approximately one hour, divided into 57 audio clips.

3.2.2  Road crash test

AXA dataset [118] was collected at 2016 for the crash test campaign in Switzerland, organ-
ized by AXA insurance company. It contains 6.2 GB of audio data, exclusively recorded 
inside car cabins. 46 audio clips of car crashes are included, annotated with the car speed and 
the impact angle at the crash time.

3.2.3  Road noise characterization

WASN dataset [6] was recorded in the framework of DYNAMAP European Life+ project. 
It consists of 156 hours and 20 minutes of audio clips recorded at 24 acoustic nodes distrib-
uted on the A90 highway surrounding the suburban area of Rome. It was recorded with the 
main concern of collecting environmental noise samples, necessary for the study of different 
anomalous sound events.

3.3  Generic sound event detection datasets

Notwithstanding anomalous SED is a particular case of SED, several works have relied 
on generic SED databases to develop models for anomalous SED. This has particularly 
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been the case of DCASE challenges [74, 104, 138, 139], where some databases have 
been utilized both for general-purpose and anomalous SED tasks.

3.3.1  Office sound events

For the purpose of sound event detection in the framework of DCASE 2013 challenge, 
two databases were prepared: event detection office live (OL) and event detection office 
synthetic (OS) [126]. Both were designed for detecting predominant events in the pres-
ence of background noise.

The OL dataset consists of 24 recordings of individual sounds per class for training, 
3 recordings of scripted sequences for validation, and 11 recordings for test.

The OS dataset consists of 12 synthetic sequences created from clips from the OL 
dataset with varying duration. These were equally divided into 3 subsets, each having a 
different level of event density: low (1.11), medium (1.27) and high (1.81).

3.3.2  Acoustic scene analysis

The TUT acoustic scenes 2016 is a database for environmental sound research. A sub-
set, named TUT sound event dataset, was used for the DCASE 2016 challenge [80]. The 
TUT acoustic scenes database was recorded in 15 acoustic scenes, varying from outdoor 
and indoor environments. The audio events were labeled and inventoried, as detailed in 
[80].

3.4  Urban sounds

Different datasets describing different sound sources are gathered in the framework of 
Freesound [38], which is a large repository containing more than 160,000 audio record-
ings provided by several contributors under a creative commons (CC) license. In par-
ticular, UrbanSound 8K provides different types of urban sounds, such as human, nat-
ural, mechanical and music sounds, distributed on 1302 audio recordings of different 
duration, varying from 1-2 sec for gunshot to 30 sec for jackhammer or idling machine 
[117].

3.4.1  Multiple events

Google’s Audio Set is a corpus of audio segments extracted from YouTube, con-
taining YouTube identifiers, start time, end time and one or more labels for each 
segment. Each audio clip has a duration of 10 seconds, except those extracted 
from shorter video clips. In total, Google’s Audio Set contains 1789,621 seg-
ments covering 4971 hours, including more than 100 instances for 485 audio 
event categories [40].

3.5  Healthcare

Heart anomaly diagnosis through sound has also been an interesting subject of anoma-
lous SED. In 2016, the PhysioNet/CinC challenge tried to collect heart sound databases 
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from cardiology departments from worldwide universities. Nine teams were admitted 
for participation, each providing its own database. In this survey, only the most relevant 
ones are cited (cf. Table 1) . Further details about the challenge and the participating 
teams and their databases are in [71]. In such databases, the PCG (Phonocardiogram) 
has been recorded for different categories of diseases, such as mitral valve prolapse 
(MVP), aortic disease (AD) and miscellaneous pathological conditions (MPC) in [129], 
coronary artery disease (CAD) in [119], aortic stenosis (AS) and mitral regurgitation 
(MR) in [94].

4  Features

Initially, anomalous SED was based on standard features usually used for audio sig-
nal characterizations in the time and frequency domains, using different types of hand-
crafted audio features. However, with the subsequent development of end-to-end learn-
ing methods, data-driven feature extraction, or representation learning, is currently a 
popular alternative.

It is worth noting that since anomalous SED spans a large set of applications, 
no particular standard sets of audio features have been designed for the particular 
purpose of anomaly detection in audio signals. In fact, most of models developed 
for anomalous SED rely on standard low-level features, commonly used for SED, 
or on tailored techniques of feature extraction, through either feature learning/
embedding or basic signal or spectrogram-image processing methods, as will be 
detailed hereafter.

4.1  Hand‑crafted audio features

Different sets of hand-crafted audio features have been proposed in the literature for anom-
alous SED. However, most of them are based on the same concept, ı.e., statistical descrip-
tors of low-level quantities computed in the time, frequency and multi-resolution domains.

4.1.1  Low‑level descriptors (LLD)

Ntalampiras et  al. 2011 [87] presented an inventory of the main LLD’s used as input 
features for novelty detection in SED. The main rationale behind merging different-
domain types of features is the general thought that this may improve robustness and 
performance of the SED system [87]:

MPEG-7 audio protocol features namely spectrum flatness, waveform min, waveform 
max and fundamental frequency (F0). The advantage of using these features is their 
compact representation of the waveform shape, periodicity and flatness of the spectrum 
in different frequency bands. The extraction of these features is standardized by the 
MPEG-7 audio protocol [57].

Mel-frequency cepstral coefficients (MFCC) The Mel-frequency cepstrum is a rep-
resentation based on the cosine transform of a log-power spectrum, computed on a bio-
logically-motivated nonlinear scale of frequency, ı.e. the Mel scale [125]. The computed 
coefficients, ı.e. the MFCC, have long been used for speech and speaker recognition for 
their considerable efficiency and their ability to capture the gross spectral characteristics 
of an audio event. Usually, 13 MFCC coefficients, in addition to their first and second 
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derivatives ( Δ−MFCC and Δ−Δ−MFCC ), are extracted from the Mel-log spectrum, 
including MFCC(0) that represents the log-energy [108].

Other cepstral coefficients In addition to MFCC, other coefficients are extracted from 
the cepstrum, such as linear prediction cepstral coefficients (LPCC), derived from LPC 
(Linear predictive coding) and Gammatone frequency cepstral coefficients (GFCC) using a 
Gammatone filter bank, instead of the Mel-scale filter bank. Both types of coefficients have 
been used in general-purpose audio event detection, either as low-level descriptors [8], or 
as high-level ones, i.e.as a bag of features (super-features) [103].

Intonation and Teager energy operator (TEO) based features These features describe 
the change of speech and intonation in case of anomalous vocal events, such as stress in 
speech. Associated to other speech-related features, such as F0 , Δ−F0 and harmonic-to-
noise ratio (HNR), they are useful to recognize speech signal produced under anomalous 
conditions.

Perceptual wavelet packet (PWP) integration analysis Using multi-resolution-based 
parameters is thought to reflect the degree of variability of wavelet coefficients within a 
particular frequency band.

4.1.2  DCASE 2013 challenge standard feature set

To the best of our knowledge, there has not been a dedicated LLD feature set especially 
proposed for anomalous SED, neither in literature nor in any DCASE challenge. In fact, 
LLD features are mainly focused on extracting some particular acoustic cues from the sig-
nal, that could characterize the phenomenon searched, independently from the frequency of 
its occurring.

For instance, a standard set of features was proposed in the first challenge for detection 
and classification of acoustic scenes and events (DCASE 2013) [126]. These LLDs can be 
divided into temporal (energy, zero-crossing rate), spectral (spectral roll-off, flux, entropy, 
variance, aperiodicity bands energy, etc.) and MFCC, in addition to time-frequency 

Table 2  DCASE 2013 challenge 
standard feature set for acoustic 
scene classification (ASC) and 
sound event detection (SED) 
tasks [126]

Type Low-level descriptor # of
features

Energy MFCC0 4
Harmonic Fundamental frequency (F0) 4

Audio harmonicity 4
Perceptual TL-Sone (Total loudness 32

in Bark scale)
Temporal Autocorrelation coefficient 13

Zero-crossing rate 4
log-attack time 1
Temporal centroid 1

Spectral Audio spectrum roll-off 4
Audio spectrum spread 4
Audio spectrum centroid 4
Audio spectrum flatness 16
MFCC1-12 96
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features, extracted from the wavelet analysis, such as PWP coefficients. Table 2 shows the 
complete list of these standard features. Each LLD is represented by a set of statistical 
functionals, e.g., mean, variance, skewness and kurtosis.

4.2  Feature extraction methods

Another way to compute features consists in using data-driven feature extraction methods. 
Different types of input are used, such as raw audio, spectrogram images or low-level fea-
tures like MFCC. The output is a latent representation of the signal. A popular approach is 
to train a specialized type of neural network, e.g., an autoencoder (cf. Table 3).

4.3  Rationale for feature extraction

In this paper, we focus on feature extraction as a mapping that allows transforming the 
input, ı.e.the audio signal/frame, into a vector that can be the input to a machine learning-
based anomaly detection model, such as DNN, CNN, one-class SVM, etc. Feature extrac-
tion is an alternative way to hand-crafted/engineered feature computing, since it allows 
discovering latent knowledge. In [25, 149], feature extraction methods are thoroughly 
explained using either clustering-based feature subset selection or feature evaluation and 
selection, respectively. There are different ways to derive features from a signal, namely 
hand-craft feature computing (either as low-level or high-levels descriptors (cf. Table 2)) 
and feature extraction, using either simple/deep/ variational autoencoders, or from spectro-
gram image-based CNN (cf. Fig. 2). The main difference between the hand-crafted features 
and the extracted ones lies in two main aspects, as follows:

Hand-crafted features: They are calculated using explicit formulas, as they correspond 
to some properties of the audio signal, such as fundamental frequency, energy, noise level, 
etc. Therefore, they can be easily interpreted, and/or analyzed to provide a clear view about 
the relationship of each property and outlierness. For instance, a peak of energy in a nar-
row frequency band may indicate the presence of an abrupt event. In audio and speech 
processing, such a type of features has long been used in event recognition, mainly as input 
to machine learning-based classifiers or anomaly detection models.

Hand-crafted features thoroughly exploit experts’ knowledge, and are generally very 
specific and well fitted to the specific application for which they have been designed. On 
the other hand, and for the same reasons, known features may not perform as well on dif-
ferent tasks, and new features are very difficult, time-consuming and overall expensive to 
obtain.

Feature extraction: It is relatively new, and intends to replace hand-crafted features, 
by embedding the data into an appropriate feature space learnt from the data themselves. 
Actually, the fast development of deep learning made it possible to reduce the raw audio or 
the spectrogram image into a vector of values that are collected at a hidden layer (e.g., the 
code layer for autoencoders) or at the output layers (e.g., for a CNN), respectively.

It has been demonstrated in several works that using such a vector as input to the anom-
aly detection system provides outstanding results, much better than those obtained by clas-
sical features. However, this increased performance is obtained at the expense of interpret-
ability, as we do not have an a-priori knowledge about their physical meaning. In fact, all 
what we know about such collected features is that they are obtained during the training 
process, and therefore we believe they may represent well the signal. This is confirmed by 
the fact that using these features in an inverse transform, e.g., the decoder network, allows 
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reconstructing the signal, with some error. If this error is minimum, then we can assume 
that the features collected at the code layer provide a good representation of the signal, 
even if we do not really know to what they correspond. Therefore, these features can be 
used for other tasks such as classification or anomaly detection.

4.3.1  Feature extraction by autoencoders

The autoencoder is a neural network whose objective function approximates the identity 
map. It is an unsupervised learning technique, commonly used to extract features from 
unlabeled data. The mean square difference between the given input and the obtained out-
put is minimized; then, the value of a hidden layer is used as an encoded representation of 
the input.

Simple and deep autoencoders A simple autoencoder has only one hidden layer. It is 
therefore parameterized by weights ( w ∈ ℝ

mxn , w̃ ∈ ℝ
nxm ) and biases ( b, b̃ ∈ ℝ

m ), as 
follows:

Fig. 2  Feature extraction by spectrogram-image transfer learning for anomalous SED [83]
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where x = (x1, x2,… , xm) ∈ ℝ
m , x̃ = (x̃1, x̃2,… , x̃m) ∈ ℝ

m and h = (h1, h2,… , hn) ∈ ℝ
n are 

respectively the inputs, the outputs and the hidden layer code, and f, f̃  are non linear acti-
vation functions, such as the sigmoid function, f (z) = 1

1+e−z
  [85].

It can be shown that the encoding obtained from a simple linear autoencoder, ı.e. with 
f (z) = f̃ (z) = z , spans the n principal components of the data space, recovering therefore 
the same embedding as PCA of order n. In this sense we may state that an autoencoder is a 
nonlinear generalization of PCA. Regularisation can also be added to encourage sparsity or 
reduce noise sensitivity [137]

A deep autoencoder can be split into two parts: (a) the encoder, from the input layer 
to the middle layer, and (b) the decoder, from the middle layer to the output layer. The 
encoded features are obtained at the output of the encoder layer, whereas the recon-
structed input is recuperated at the output layer. Hence, to reduce the dimension of the 
input space, the encoder layer should have a lower dimension than the input layer. The 
encoder layer provides a useful transformation of input features, that allows, first dis-
covering hidden structure in the input features, and secondly generating new features 
through the non-linear transformation of the input features by the activation functions 
of the hidden layers.

Perez-Castanos et  al. [97] have utilized autoencoders to extract features from a 
Gammatone audio representation in an unsupervised way. This approach has been 
recently presented in DCASE 2020 challenge Task 2 for industrial monitoring.

Variational autoencoder (VAE) This is also a reconstruction network, as it learns a com-
pressed representation of the input to reconstruct the output. However, the encoder layer of 
VAE stores the parameters of a probability distribution, e.g., mean and variance, represent-
ing the input in a latent space. Then, the decoder uses the probability distribution to gen-
erate an approximated reconstruction of the input data. The main issue in VAE is how to 
choose the parametric probability distribution. Given a feature vector X, VAE aims to find 
the probability of X with respect to its representation Z:

To find P(X|Z) and P(Z), the VAE tries to infer P(Z) using the a-priori distribution P(Z|X), 
which is determined by variational inference by minimizing the loss given by

where ||.||2 is the L2 norm and KL is the Kullback-Leibler divergence, given by:

Hence, the goal of VAE is to train the encoder output Q(Z|X) such that the divergence 
between Q(Z|X) and P(Z|X) is minimized. For instance, if P(Z) is a Gaussian distribution, 
the encoder generates the mean and the variance, that will be used to generate P(Z|X). 
Then, the decoder layer reconstructs the approximation of X using (2), [66].

In the work of Koizumi et al. [61], the optimization of an acoustic extractor for anoma-
lous sound detection based on Neyman-Pearson lemma is proposed. The acoustic feature 

(1)
{

h = f (wx + b),

x̃ = f̃ (hw̃ + b̃),

(2)P(X) = ∫ P(X|Z)P(Z)dZ.

(3)logP(X) = −{||X − X̂||2 + KL(Q(Z|X)||P(Z))},

(4)KL(A||B) = ∫ pA(x) log
pB(x)

pA(x)
dx.
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extractor is optimized to extract a set of acoustic features using a variational autoencoder 
maximizing the true positive rate ( TPR ) under a given false positive rate ( FPR).

4.3.2  Feature extraction based on spectrogram image processing

One-dimensional convolutional neural networks are applied by Lim et al. [69] at each input 
time-frequency frame to extract spectral features. A more elaborated approach is proposed 
by Kao et al. [54], where a region-based CNN (RCNN) is developed for SED. The overall 
approach will be described in Section 6. Every 30 seconds, an audio clip is admitted as 
input to extract high level features. For each 46-ms frame (with 50% overlap), 64-dimen-
sional log filterbank energies are calculated and aggregated to generate the input spectro-
gram. The process is exemplified in Fig. 3.

More recently, Muller et  al. [83], substituted the classical solution of using autoen-
coders by utilizing image transfer learning, to extract features from the Mel-spectrogram 
(cf. Fig. 2). Hence, a d-dimensional feature vector is computed using a feature extractor 
f ∶ ℝ

TxF
→ ℝ

d for each audio sample xi ; T, F being the time dimension and the number of 
frequency bins, respectively. First, the Mel-spectrogram is computed for each audio signal 
in the training set, using 64 Mel-bands and a Hann window of length 1024 with 256 hop 
size. Then 64x64 Mel-spectrogram patches ( ≈ 1 sec) are extracted in a sliding window and 
converted to RGB images. Afterwards, the feature vector is extracted for each patch using 
neural network models pretrained on ImageNet [33], such as AlexNet [65], ResNet [45], 
and SqueezeNet [50].

4.3.3  Feature extraction based on signal processing methods

Two types of features are extracted for SED, ı.e.single-channel and binaural features. First, 
single-channel features consist in log Mel-band energy (mbe), that have already been used 
for SED in [2, 3, 17, 95]. mbe features are extracted in a 40-ms Hamming window. Then a 
40-channel Mel-log filterbank is applied in the frequency range of [0, 22.5 KHz], so that 
a single 40-coefficient vector is extracted for each frame. Secondly, binaural features are 
also mbe features, however extracted from multi-channel audio. Hence, for an N-channel 
audio signal, Nx40 outputs are extracted for each frame. Another type of such features are 
the multi-resolution binaural features, where these features are extracted for each chan-
nel using different window sizes. For instance, in [128], three different window lengths, 
ı.e.1024, 4096 and 16384, are utilized to extract ( 40x3x2 ) features from each stereo audio 
frame.

Adavanne & Virtanen [4] achieved low-level spatial feature extraction from multi-chan-
nel audio for SED. Convolutional RNN are extended to handle many types of these multi-
channel features by learning for each type separately. The main finding is that the network 
learns sound events in multichannel audio better from separate layers of features than from 
a stacked vector of concatenated features. The proposed spatial features outperform mon-
aural features when used by the same network in terms of F1-score, when tested on TUT 
dataset [2].

In [56], the main purpose was extracting features for different anomalous SED from 
sub-sampled audio signal. To achieve that, a feature reconstruction model based on LSTM 
network is proposed. The main advantage consists in reconstructing an approximation of 
the feature vector of the original signal from the sub-sampled signal.
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4.4  Feature selection for anomalous SED

In addition to feature extraction, feature selection is useful in anomalous SED for: 
(i)  reducing the computation time, (ii)  improving prediction performance, and (iii)  bet-
ter understanding the role of hand-crafted/extracted features. Therefore, its application to 
anomaly detection, in particular for audio data is quite necessary.

4.4.1  Feature selection methods

There are several methods of feature selection methods, that can be split into three main 
families: Filter methods They use variable ranking techniques to select features by order-
ing. In fact, filtering means that features are selected before any classification is under-
taken. Filtering methods can be based on thresholding or ranking. Basic filter methods 
used for evaluating feature relevance are, e.g. Pearson correlation coefficient, mutual infor-
mation and Kullback-Leibler (KL) divergence. Also, more elaborated filter methods are 
based on information gain (IG) ratio and Chi-square. IG ratio is a measure that weighs 
a feature from a high-dimension feature space; whereas the Chi-square measure assesses 
two types of statistical measures: a test of independence and a test of goodness of fit. The 
test of independence allows estimating how much a class label is independent of a feature, 
whereas the test of goodness of fit describes how well the model, based on the selected 
features, fits the set of observations [109]. Wrapper methods In these methods, the predic-
tor is used as a black box and the predictor performance as the objective function to evalu-
ate the variable subset. An optimal subset of features is searched heuristically by using a 
search algorithm, that aims to maximise the objective function, i.e. the classification per-
formance. Amongst these search algorithms, classification trees (CT) are used even though 
they may lead to an exponential number of searched subsets. Other computationally lighter 
search algorithms are e.g. genetic algorithms (GA) and particle swarm optimization (PSO). 
Embedded methods The aim of this type of methods is to further reduce the computa-
tion time required for reclassifying the different subsets of features, as done by wrapper 
methods. To do so, the feature selection is incorporated/embedded as part of the training 
process. For instance, a greedy search algorithm is proposed in [22] to evaluate the features 
subsets initially selected by MI. A further improvement is given in [22] where the MI is 
estimated using Parzen window method.

4.4.2  Feature selection techniques for anomalous SED

The main motivation for using feature selection in anomalous SED can be summarised in 
the following rationale [16]: (a) The problem of misclassification of a decision rule does 
not increase as the number of features increases, as long as the class-conditional densi-
ties are completely known; (b) In general no non-exhaustive sequential feature selection 
procedure can be generated to produce the optimal subset. Following both principles, a set 
of feature selection techniques has been particularly applied to the problem of anomalous 
SED:

Sequential feature selection (SFS)  It is a wrapper feature selection technique, that sup-
ports both forward or backward approaches. In the forward, respectively the backward, 
strategy, the number of features starts from 0, respectively from N (total number of fea-
tures), to increase, respectively decrease, in function of the performance of the objective 
function, which is the same as the performance of the classifier.
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mRMR feature selection  This is a filter method that selects the features that max-
imise the MI between the selected features and the class labels. Each feature subset 
is evaluated using the same objective function used in wrapper methods. The features 
subsets are nested, so that S1 ⊆ S2 ⊆ … SM−1 ⊆ SM where M is the number of feature 
subsets.

PCA feature selection:  Principal component analysis (PCA) can be considered as a fea-
ture extraction and a feature selection method at the same time. In fact, PCA is a linear 
transformation defined as Y = X × H , where X and Y are the matrix of original features and 
of extracted features, respectively, and H is the matrix of eigenvalues. Thus, PCA returns 
the eigen-vectors that have the highest eigen-values, so that it selects the features which 
linear transformation is the largest. Therefore it can be considered as a feature extraction 
method as features are transformed, and a feature selection method as only the highest ones 
are kept.

The aforementioned three methods were applied to anomalous SED with valuable per-
formance for different sound types and different tasks (cf. Table 4).

5  Evaluation metrics

The evaluation metrics for SED are somehow standardized in the framework of DCASE 
challenge events. In fact, since the first DCASE challenge, in 2013, a set of metrics was 
proposed. These metrics can be categorized as frame-based, event-based and class-wise 
event-based [79, 126]. It should be emphasized that along this survey work, no metrics spe-
cifically tailored for anomalous SED have been encountered in the literature. For instance, 
all DCASE challenge tasks about anomalous SED use the same metrics proposed for the 
other general purpose SED tasks (cf. Table 5).

5.1  Evaluation metrics for supervised sound event detection

5.1.1  Frame‑based metrics

These metrics are calculated at each frame, of a fixed duration, and then averaged on the 
total number of frames in the audio signal. The classical frame-based metrics are precision 
(P), recall (R) and F1-score, defined by (5)

where TP , TN , FP and FN are respectively: The number of true positives, ı.e. anomalous 
events detected as anomalous, true negatives, ı.e. normal events detected as normal, false 
positives, ı.e. normal events detected as anomalous, and false negatives, ı.e. anomalous 
events detected as normal. Hence, P gives the rate of correctly estimated samples among 
the predicted ones, whereas R yields their rate among the ground truth ones. F1 is the geo-
metric mean of P and R . F1 is more significant than overall accuracy ( Acc ), defined by (6), 
as it shows whether a high accuracy hides a low value of P or R

(5)P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P + R
,

(6)Acc =
TP + TN

TP + TN + FP + FN
.
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In addition, the audio event error rate (AEER) is calculated for SED in an analog way to 
speech recognition as in (7)

where N is the number of all events to detect, D is the number of deletions (missing events), 
I is the number of insertions (added events) and S is the number of substitutions, defined as 
S = min{D, I} [126].

5.1.2  Event‑based metrics

For this type of evaluation, the onset and onset-offset times are taken into consideration. In 
onset-based evaluation, an event is considered as correctly detected if its onset time toler-
ance is less than 100 ms. For onset-offset-based evaluation, the onset tolerance is also set 
to 100ms, whereas the offset tolerance is calculated as 50% of the event duration. Hence a 
duplicated event is counted as a false alarm. Then, P , R , F1 and AEER are calculated for 
event-based evaluation types.

5.1.3  Class‑wise event‑based evaluation

This type of evaluation is useful to ensure that the metrics are not biased by repetitive 
events. P , R , F1 and AEER are calculated for each class of events and then averaged on the 
number of event classes.

It is worth noting that the aforementioned metrics have been adopted in DCASE 2013, 
2016 and 2017 challenges as standard metrics [79, 126].

5.2  Evaluation metrics for unsupervised sound event detection

In DCASE  2020 challenge, another type of evaluation metrics was added to evalu-
ate Task 2, ı.e.unsupervised anomalous SED for machine condition monitoring [59]. It 
consists in AUC (Area Under the ROC (Receiver Operating Characteristic) Curve) and 
p-AUC (partial-AUC ), defined by (8) and (9), respectively:

(7)AEER =
D + I + S

N
,

Table 5  Main evaluation metrics used for anomalous SED with the references that recommended their use 
for each type of learning

Type of learning Evaluation metric Formula Recommending references

Supervised learning Precision (P), Recall (R), F1-score (F1) (5) (Mesaros et al., 2016) [79]
Accuracy (Acc) (6) (Mesaros et al., 2016) [79]
Audio event error rate (AEER) (7) (Stowell et al., 2015) [126]

Unsupervised learning Area-under-ROC curve (AUC) (8) (Koizumi et al., 2020) [59]
Partial area under-the-ROC curve ( p-AUC) (9) (Koizumi et al., 2020) [59]
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where H(x) = 1 if x > 0 and 0 otherwise, {x−
i
}
N−

i=1
 and {x+

j
}
N+

j=1
 are the normal and anomalous 

test samples, respectively, sorted in descending order of anomaly scores, N− and N+ are the 
number of total normal and anomalous samples respectively. p-AUC is calculated as an 
AUC for a low false positive rate (p) set in the range of [0,1]. The introduction of p-AUC is 
useful to check whether anomalous SED is frequently signaling false alarms. Therefore, it 
is important to fix low false positive rate while trying to increase the true positive rate [59].

6  Methods and models

Classically, SED has been achieved using generative methods, such as Gaussian mixture 
models (GMM) and Hidden Markov models (HMM), where the contextual and temporal 
cues of the signal are taken into account. However, to improve over these methods, other 
approa- ches such as discriminative one-class support vector machines (OC-SVM) and 
deep neural networks (DNN) have been employed. In the following, for each type of mod-
eling, ı.e.generative, discriminative or learning-based, an overview of the general method 
is presented, before detailing its application to anomalous SED.

6.1  Generative modeling

6.1.1  Overview

Gaussian mixture model (GMM) is a linear combination of parametric (Gaussian) distri-
butions. GMM clustering identifies q single models that represent the largest possible set 
of audio events. First, a GMM with diagonal covariance matrix is constructed for audio 
samples labeled as normal. Then, for each pair of the normal set, the distance between their 
Gaussian distributions is calculated using Kullback-Leibler (KL) divergence. Finally, the 
model with the minimum distance is selected as the one representing the normal class. The 
KL divergence is theoretically calculated using (4); however, due to the lack of a closed-
form solution for GMM, it is approximated as

if the set of samples {xn}n=1,2,…,N is large enough [87].

6.1.2  Generative models for anomalous SED

Probabilistic anomaly detection for audio surveillance Ntalampiras et  al. [87] utilized 
three generative methods for probabilistic novelty detection for acoustic surveillance under 

(8)AUC =
1

N−N+

N−∑

i=1

N+∑

i=j

H(A�(x
+

j
) −A�(x

−

i
)),

(9)p-AUC =
1

⌊pN−⌋N+

⌊pN−⌋�

i=1

N+�

i=j

H(A�(x
+

j
) −A�(x

−

i
)),

(10)KL(A||B) ≃ 1

N

N∑

n=1

log
pB(xn)

pA(xn)
,
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real-world conditions, namely a universal GMM model, a universal HMM model and a 
GMM clustering model. In addition, a maximum a posteriori adaptation model (MAP) is 
used to update the parameters of the Gaussian components [110].

Context-dependent GMM-HMM Heittola et  al. [48] proposed a context-dependent 
SED. This approach comprises two stages, an automatic context recognition stage and a 
SED stage. Contexts are modeled by GMM, whereas sound events are modeled using a 
3-state left-to-right HMM.

6.2  Discriminative modeling

6.2.1  Overview

One-class support vector machine (OC-SVM) is a variant of the SVM algorithms, which 
finds a linear separation between two classes in feature space [121]. Generally speaking, 
OC-SVM is a SVM, typically using the Gaussian kernel, which divides the input space into 
normal data and outliers. The training is performed on normal data. For each sample, if the 
decision function is positive, then the sample is called normal, otherwise it is an outlier. A 
detailed description of the OC-SVM problem formulation and algorithm is presented in 
[120].

6.2.2  Discriminative models for anomalous SED

In the work of Aurino et  al. [9], an OC-SVM model is developed to detect burst-like 
anomalous sound events, such as gunshots, broken glasses and screams. The features are 
extracted from time and frequency representation of the audio signal and then fed into the 
OC-SVM classifier.

The problem of high-dimensionality and large scale anomaly detection is addressed by 
Erfani et al. [36] using OC-SVM and deep learning. High dimensionality is usually a prob-
lem in audio, due to the typical high dimensional representations. The proposed solution 
relies on robustness in anomaly detection for high dimensional spaces using an unsuper-
vised feature extractor and a robust anomaly detector. In fact, the classical OC-SVM anom-
aly detector is effective at producing decision surfaces from well-behaved feature vectors, 
but it is proved to be less efficient at modelling variations in large and high-dimensional 
datasets. Therefore, unsupervised deep belief networks (DBN) are used to learn robust fea-
tures to be used by OC-SVM for anomaly detection. Two variants of the OC-SVM are 
proposed, including support vector data description (SVDD) and plane-based OC-SVM 
(PSVM). The main difference between both variants is that SVDD essentially finds the 
smallest possible hypersphere around the majority of the training samples, excluding the 
points defined as anomalies, whereas PSVM tries to find a hyperplane separating best the 
data from the origin.

OC-SVM are also used in ensemble-architecture to model anomalous SED. For instance, 
Foggia et al. [37] proposed a two-layer approach based on low-level audio feature extraction, 
and high level bag-of-words approach to classify events into short and sustained ones. Finally 
an ensemble SVM is used for event classification. Also, an ensemble OC-SVM parallel to an 
MLP network is used by Rovetta et al. [114] to calculate the resulting anomaly score for audio 
events. In their approach, The OC-SVM yields a primary anomaly score, whereas the MLP 
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probability output indicates the event class score. The multiplication result of both scores is 
thresholded to indicate whether the event classified by the MLP is actually an outlier.

6.3  Supervised learning methods and models

anomalous SED can be approached as a classification problem if the training set is fully 
labeled. Therefore, different methods and models have been developed using labeled datasets 
(cf. Table 1). In particular deep learning techniques have been extensively investigated, such 
as recurrent and convolutional neural networks and multitask learning. Several supervised 
learning methods and models have been developed for anomalous SED, in particular in the 
following DCASE challenges: 2016 Task 3 and 2017 Task 2, ı.e. Rare SED [138, 139] , 2017 
Task 3 (real-life SED) [138] and 2019 Task 4 (SED in domestic environments) [74].

6.3.1  Convolutional recurrent neural networks modeling

Overview The particularity of this method is that, while most previous SED works generate 
predictions at frame level first, and then use post-processing to predict the onset/offset times-
tamps of events from a probability sequence, the proposed method generates predictions at 
event level directly, and can be trained end-to-end with a multitask loss, which optimizes the 
classification and localization of audio events simultaneously. The end-to-end region-based 
convolutional recurrent neural network (R-CRNN) method for anomalous SED proceeds as 
follows: First a R-CRNN is applied to extract frame-level features from a 64-dimensional log 
filterbank energy spectrogram, as described in Section 4.3.2. Then a region proposal network 
(RPN) takes anchor intervals with fixed sizes to refine them at each frame, and then outputs k 
interval proposal. The cost function of the RPN is [54]

where i is the index of anchor intervals, pi and p∗
i
 are the predicted and the ground-truth 

probabilities of containing target events for anchor i respectively, Lcls is the cross-entropy 
cost function for binary classification. For the regression term, Lreg is the regression cost 
function, ti and t∗

i
 are the predicted and the ground-truth coordinate vectors of event inter-

vals, and � is a tradeoff coefficient to balance the classification error and the regression 

(11)L({pi}, {ti}) =
∑

i

Lcls(pi, p
∗

i
) + �

∑

i

p∗
i
Lreg(ti, t

∗

i
),

Fig. 3  End-to-end CRNN model for anomalous SED [54]
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error, so that the multitask cost function optimizes binary classification and temporal local-
ization simultaneously. Finally the SED classifier takes the event proposals generated by 
the RPN as input to generate audio event predictions, as shown in Fig. 3. Different variants 
of this methods were developed, including 1D-CRNN and R-CRNN, yielding better results 
than baseline methods, ı.e.DNN and CNN, when tested on DCASE 2017 challenge dataset 
for SED.

Recurrent and convolutional neural networks models for anomalous SED A hierarchic 
and multi-scaled approach based on MLP-CNN for rare SED was proposed by Vesperini 
et al. [135] in the framework of DCASE 2017 challenge Task 2 (rare SED). This hierarchic 
approach comprises two stages: First, an MLP network to classify audio frames, then a CNN 
network whose role is to refine classification by operating at multiple resolutions and discard-
ing blocks containing background events that have been misclassified by the MLP as rare 
events.

Lim et al. [69] developed a 1D-ConvNet architecture that is applied at each input time-
frequency frame to extract spectral features. Then an RNN-LSTM network is used for classifi-
cation thanks to its ability to incorporate the dependencies of the extracted features.

In the proposal of Dang et al. [30] at DCASE 2017 challenge Task 2, different architectures 
are tried out for rare SED. The first model is a CNN applied to log Mel-filterbank spectro-
gram, the second one is also a CNN applied to a feature set composed of MFCC and log Mel-
filterbank spectrogram-extracted features, whereas the third model is a convolutional RNN 
(CRNN) applied to multiscale MFCC.

To cope with anomalous event scarcity in the training set, He et al. [46] developed a dilated-
gated CNN (DG-CNN) to improve the detection accuracy and computational efficiency. The 
loss function includes a discriminative penalty term to reduce insertion errors:

where y(i) and ŷ(i) are the actual and the predicted labels, respectively, and �p is a weight for 
positive samples only.

6.3.2  Weighted and multitask learning

Weighted loss functions are also used to counterbalance the anomalous data scarcity. multi-
task learning is an implicit regularization method that is expected to improve the generaliza-
tion ability of a network [69].

Overview Phan et  al. [102] proposed a combined weighted and multitask loss function. 
The weighted loss tackles the common issue of imbalanced data in background vs. foreground 
classification, whereas the multitask loss enables the network to simultaneously model the 
class distribution and the temporal structures of the target events.

i) Weighted loss for foreground/background classification: A general observation in SED 
shows that frames labeled as background noise are much more abundant than foreground 
frames. This makes the classifier biased towards background samples. The typical cross-
entropy loss used for audio event classification is given by (13):

(12)
L = −

1

N

∑N

i=1
[𝜔

p
y
(i) log(ŷ(i))+

(1 − y
(i))(y(i))2 log(1 − ŷ

(i))],

(13)E(𝜃) = −
1

N

N∑

1

yn log(ŷn(xn, 𝜃)) +
𝜆

2
||𝜃||2

2
,
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where � denotes the network’s parameters (weights and biases), � the weight of the reg-
ularization term and ŷn(xn, 𝜃) the probability obtained for a feature vector x. To balance 
this loss function towards the foreground samples, a weighted loss is proposed as in 
(14):

where �fg and �bg are foreground and background flag functions returning 1 if xn is fore-
ground and 0 if background, respectively, �fg and �bg are penalization weights for false neg-
ative errors for foreground and background samples, respectively.

ii) Multitask loss for event classification: This process aims to jointly model 
event classification and the temporal onset and offset distance from the center 
frame. Therefore a multitask loss function is tailored so that the output layer pro-
vides both the probability of the event class ŷ = (ŷ1, ŷ2,… , ŷC) where C is the num-
ber of event classes, and the estimated vector d̂ = (d̂on, d̂off) of the distances from the 
onset and the offset frames to the center frame, respectively. It is important pointing 
out that the class probability is returned by a softmax activation layer, whereas the 
distance vector is given by a sigmoid activation. Hence, the multitask loss is calcu-
lated by (15)

where

and

Eclass(�) , Edist(�) and Econf(�) are the class, the distance and the confi-
dence losses, respectively; whereas I(d, d̂) = min(don, d̂on) + min(doff, d̂off) and 
U(d, d̂) = max(don, d̂on) + max(doff, d̂off) return the intersection and the union of the target 
and the predicted event boundaries, respectively. Hence, the confidence loss penalizes both 
classification and distance estimation errors.

This method was tested on DCASE 2017 challenge Task 2 (rare SED) using two differ-
ent DNN and CNN architectures. The yielding results were much better than the baseline 
system in terms of AEER and F1-score.

Multitask learning models for anomalous SED Xia et al. [141] proposed a multitask 
learning classification scheme for SED to cope with the problem of ignoring the frame 
position within the audio events. Therefore, a joint learning based multitask learning 

(14)Ew(𝜃) = −
1

N
(𝜆fg

N∑

n=1

�fg(xn)yn log(ŷn(xn, 𝜃)) + 𝜆bg

N∑

n=1

�bg(xn)yn log(ŷn(xn, 𝜃)) +
𝜆

2
||𝜃||2

2
,

(15)E
mt

=�classEclass(�) + �distEdist(�) + �confEconf(�) +
�

2
||�||2

2
,

Eclass(𝜃) = −
1

N

N∑

n=1

yn log(ŷn(xn, 𝜃)),

Edist(𝜃) = −
1

N

N∑

n=1

yn||d − d̂n(xn, 𝜃)||22,

Econf(𝜃) = −
1

N

N∑

n=1

yn||yn − ŷn
I(dn, d̂(xn, 𝜃))

U(dn, d̂(xn, 𝜃))
||2
2
.
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system is built, where the first task is to detect the acoustic event type and the second 
task is to predict the frame position information.

In the work of Phan et al. [100], a multitask and multilabel framework based on con-
volutional RNN (CRNN) is proposed to unify the detection of isolated and overlapping 
audio events. The network jointly determines first whether and secondly when an event 
of a certain category occurs, by estimating the onset and the offset positions at recurrent 
time step.

Another model developed by Phan et  al. [101] is based on a CNN-DNN archi-
tecture coupled with a novel weighted and multitask loss function and phase-
aware signal enhancement. The proposed approach is characterized by the follow-
ing aspects: (i)  the loss functions are tailored for event detection in audio streams, 
(ii)  the weighted loss is designed to tackle the common issue of imbalanced data in 
background/foreground classification, (iii) the multitask loss enables the network to 
simultaneously model the class distribution and the temporal structure of the target 
events.

The innovative idea presented by Imoto et  al. [51] is to leverage multitask learn-
ing for SED and ASC in order to improve the performance of SED. In fact, both tasks 
are related since most of anomalous sound events occur in particular acoustic scenes. 
Therefore, exploiting the knowledge about ASC may be helpful to identify anomalous 
events.

6.4  Semi‑supervised anomalous SED method and models

Generally, anomaly detection in raw audio methods suffer from the lack of anomalous sam-
ples in the training set. In most cases, training is made using only normal data. In particular 
for time series, another level of complexity is added by the contextual nature of anomalies. 
Therefore, some semi-supervised learning methods and models have been recently pro-
posed. In fact, semi-supervised learning has been proved to be quite efficient in related 
problems, such as speech recognition , as reported in [111]. However, it has been noted 
that with such a type of learning, the quantity of unlabeled data should be at least 10 times 
that of labeled samples to obtain the same level of performance as supervised learning, as 
reported in [150].

6.4.1  Random forests semi‑supervised model

One of the first semi-supervised models for audio event classification was proposed by 
[150]. It leverages low-level descriptors, such as those listed in Table 2, as input features to 
train random forests on labeled and unlabeled data. This choice is motivated by the ability 
of random forests to provide good generalization, especially for a high-dimensional feature 
space. In fact, each tree is modeled to fulfil a feature selection based on feature ranking 
through implicit information gain. Besides, feature sub-spaces are assigned randomly to 
the trees. A thorough description of random forests and their use in semi-supervised learn-
ing can be found in [29]. Training has been achieved by re-sampling the labeled samples 
and allocating them a higher weight, than unlabeled data, and by iterating the semi-super-
vised learning process. Hence, such a strategy succeeded to improve the performance of 
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semi-supervised learning in terms of F1-score, in comparison to the baseline supervised 
classifier [150].

6.4.2  Semi‑supervised teacher‑student model

In [70], a teacher-student model is implemented for weakly-labeled semi-supervised 
SED. The purpose of such a guided-learning model is to leverage the teacher model, 
initially tailored for audio tagging, to predict the time boundaries of target events. The 
learning process is of type end-to-end, where both labeled and unlabeled data are pre-
sented as input, to update the parameter sets, �, �′ , of both student and teacher models, 
respectively, through the following loss function:

where LT and LS are the loss function of the teacher and the student models, respectively, 
Lunsupervised and L

′

unsupervised
 are the loss functions calculated on the unlabeled data, respec-

tively as

where S�(x) and T �

�
(x) are the frame-level predicted probabilities of the student and the 

teacher models, respectively, Φ is the clip-level prediction probability, J is the cross-
entropy loss function, x are the input data and a is a regularisation term.

The application of such a guided-learning model in DCASE’2018-Task4 (weakly-
labeled semi-supervised SED) using labeled and unlabeled data gave a better perfor-
mance, in terms of event-based F1-score, than both the baseline and the teacher models 
[70].

(16)L = LS + LT + Lunsupervised + aL
�

unsupervised

(17)Lunsupervised = J(Φ(T
�

�
(x)), S�(x))

(18)L
�

unsupervised
= J(T

�

�
(x),Φ(S�(x))

Fig. 4  GAN-based model architecture for anomalous SED [23]

5561Multimedia Tools and Applications (2022) 81:5537–5586



1 3

6.4.3  Generative adversial network (GAN) modeling

Overview The anomaly detection GAN-based network architecture proposed by Chen 
et  al. [23] is composed of a compression GAN and a GMM-parameter estimation network 
(cf. Fig. 4).

The GAN-based compression network includes a discriminator network and a generative 
autoencoder with an auxiliary encoder. The generator G aims to reconstruct the input spec-
trogram images, whereas the discriminator D tries to discard the ”fake” images from the 
original ones. Both networks are competing, therefore the adversial loss Lavd is calculated 
by (19):

The image reconstruction loss Lirec is calculated as the distance between the pixel-based 
representation of the original and the reconstructed images (cf. (20))

For the auxiliary encoder, a latent representation loss Lzrec is calculated as the distance 
between the latent features of the input image Ge(x) from the generator, and the encoded 
latent features of the image generated from the auxiliary encoder Ge� (x

�) (cf. (21))

The estimation network is used to estimate the GMM density parameters instead of using 
the classical expectation maximization (EM) parameter re-estimation approach. The esti-
mation network is implemented as a multi-layer network with a softmax output func-
tion, so that the mixture-component membership is predicted as a K-dimensional vector 
�̂� = (�̂�1, �̂�2,… , �̂�K) , where K is the number of Gaussian distributions and 𝛾k is the prob-
ability that the input sample belongs to the kth distribution. The estimation loss Lest is given 
by (22)

where E(zi) is the sum of the energy function of a sample input defined by (23)

where �̂�k , 𝜇k and Σ̂k are the weight, the mean and the covariance matrix of the kth mix-
ture component, respectively. The second term in (22) is for regularisation, used to 
avoid the singularity problem in GMM. �1 and �2 are meta-parameters in the estimation 
network.

Finally, the overall loss is calculated as the weighted sum of all losses (cf. (24))

where wirec , wadv , wzrec and west are the weights corresponding to each network, respectively.

(19)Ladv =min
G

max
D

(Ex∼p(x)[log(D(x)] + Ex∼p(x))[log(1 − D(G(x))]).

(20)Lirec = Ex∼p(x)||x − G(x)||1.

(21)Lzrec = �x∼p(x)||Ge(x) − Ge� (x
�)||2.

(22)Lest = 𝜆1

N∑

i=1

E(zi) + 𝜆2

K∑

k=1

d∑

j=1

1

Σ̂k
jj

,

(23)E(z) = − log(

K∑

k=1

Φ̂k

exp(−
1

2
(z − �̂�k)

T Σ̂k−1 (z − �̂�k))

√
2𝜋Σ̂k

),

(24)L = wirecLirec + wadvLadv + wzrecLzrec + westLest,
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Generative adversial network models for anomalous SED In the work of Chen et  al. 
[23], a novel Gaussian mixture generative adversial network (GM-GAN) is proposed under 
semi-supervised framework, where the underlying structure of training data is not only 
captured in spectrogram reconstruction space, but can also be further restricted in the space 
of latent representation in a discriminant manner. This method was applied to detect anom-
alous events using DCASE 2017 challenge dataset for Task 2 (rare SED). The benchmark-
ing with other generative methods such as convolutional autoencoders (CAE) and WaveNet 
[92] yielded better results in terms of AUC parameter.

6.4.4  Few shot learning

The method proposed by Koizumi et al.(a) [60], called SNIPER (few-Shot learNIng with 
ensured true-PositivE Rate), aims to reconstruct normal and overlooked audio events by 
training the model only using few shots of anomalous events. Therefore, a cascaded anom-
aly score is defined as the aggregation of anomaly scores of unknown anomlaous sounds 
and the similarity of K recorded anomalous sounds calculated by a specific anomaly 
detector. Performance of anomaly detection in sounds can be measured by TPR and FPR , 
ı.e.true positive rate and false positive rate, respectively, so that the training algorithm is 
optimized to maximize TPR and to minimize FPR . TPR and FPR are defined by (25) and 
(26), respectively

where

and

where �A is the set of parameters of the normal model, � is a predefined threshold;
Few-shot with metric learning In the proposal of Shimada et  al. [122], the prob-

lem of few-shot learning for sound event recognition is revisited. The challenge is how 
to perform few-shot learning using not only chunks of sounds for training, but real 
audio containing background noise and other events. The proposed solution consists 
in a metric learning with background noise for the few-shot detection. For so doing, 
the main recommendations are : (i)  Introducing background noise as an independent 
detection class, (ii)  implementing a suitable loss function that emphasizes this class, 
(iii) choosing a corresponding sampling strategy that assists training, (iv) providing a 
feature space where the event classes and the background noise class are sufficiently 
separated.

Attention network for one-shot learning In continuation to their work presented 
in [60], Koizumi et  al. have recently proposed a similarity function for one-shot 
anomaly detection called SPIDERNet: SPecific anomaly IDentifiER Network 

(25)TPR(�k,�) = � H(x,�)p(x|y ≠ 0)dx,

(26)FPR(�k,�) = ∫ H(x,�)p(x|y = 0)dx,

(27)H(x,𝜙) =

{
0 ifA(x

t
, 𝜃

A
) < 𝜙(normal)

1 ifA(x
t
, 𝜃

A
) ≥ 𝜙(anomalous)

(28)A(xt, �A) = − ln p(xt|y = 0, �A)
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[63]. The goal of this novel method is to update anomalous SED by training often 
one overlooked anomalous sample. A previous solution consists in using mem-
ory-based one-shot learning. However, this method detects only short anoma-
lous sounds such as collision sounds because its similarity function is based on 
a naive MSE error between the input and the memorized spectrogram. The pro-
posed approach proceeds by detecting various anomalous sounds using only one 
shot samples, a VAE-based feature extractor for measuring similarity in embed-
ded space, and an attention mechanism for absorbing time-frequency stretching. 
To train the SPIDERNet, J normal samples are selected from the normal sounds, 
whereas only one sample is available for each type of anomalous sounds. To 
increase the number of anomalous sounds, data augmentation is achieved by a 
random circular shift in the wave-domain. Then training is performed to minimize 
a cost function based on a similarity score between the input and the memorized 
spectrograms. Benchmarking with other similarity score methods, such as autoen-
coders and naive MSE show a better performance of the proposed method, when 
tested on machine condition monitoring audio datasets, like ToyADMOS [62] and 
MIMII [107], in terms of AUC score.

6.5  Unsupervised learning models for anomalous SED

Unsupervised learning provides a large choice of methods to deal with unlabeled data. 
For instance, clustering has been applied for anomaly detection in different domains 
[1]. In particular, for anomalous SED, reconstruction-based and metric learning-based 
methods have been an alternative to supervised/ semisupervised learning, to get around 
the issue of annotation.

Fig. 5  The WaveNet network architecture for anomalous SED [42]
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6.5.1  Autoregressive neural networks models (Wavenet) for anomalous SED

Overview In the work of Komatsu et al. [42], anomalous SED is achieved using an autore-
gressive neural model, namely WaveNet [92], to model and reconstruct the waveform. 
The use of WaveNet is motivated by its ability to model detailed structures, such as phase 
information, so that it is expected to detect anomalous sound events with more accuracy 
than other conventional reconstruction-based anomaly detection techniques. WaveNet is 
an end-to-end acoustic modeling tool based on convolutional neural networks (cf. Fig. 5). 
WaveNet approximates the conditional probability of a waveform given its auxiliary fea-
tures by canceling the effect of past samples of a finite length (cf. (29) and (30)):

where R is the number of past samples, h is the vector of auxiliary features and x1 , x2 , … , 
xn−1 are the ( N − 1 ) past samples of the waveform ( � ). WaveNet has been successfully used 
to model acoustic waveforms, in particular for raw audio reconstruction and speech synthe-
sis [93]. It is optimized through backpropagation using a cross-entropy objective function 
given by (31)

where Θ , is the network’s parameter set (weights and biases), y = (yt,1,… , yt,C) is the 
one-hot vector of the target quantized signal and ŷt = (ŷt,1,… , ŷt,C) is the posterior of the 
amplitude class, t and c are the indices of the waveform samples and their amplitude class, 
respectively; T and C represent the number of waveform samples and the number of ampli-
tude classes, respectively. anomalous SED using WaveNet is evaluated through the uncer-
tainly of the prediction, quantified as an entropy of the posterior and calculated by (32):

Finally, the posterior entropy is compared to a dynamic threshold calculated by (33)

where � is the threshold value, � and � are the mean and the standard deviation of the 
entropy sequence, respectively, and � is a heuristic hyperparameter.

Also, Rushe & Mac Namee [116] built a WaveNet model with two stacks of 10 layers 
of causal dilated convolutions. In each stack, residual and skip connections are used along 
with an exponentially growing dilation rate. Data is normalized to have zero-mean and 
unit-variance. Each sample is generated using a softmax distribution of a quantized integer 
range of 256 values. In each layer, 512 filters are used for skip connections and 256 filters 
for residual ones. Training is performed by minimizing the cross-entropy loss, whereas the 
reconstruction error is measured using MSE error. The developed WaveNet model, along 

(29)p(�|�) =
N∏

n=1

p(xn|x1, x2,… , xn−1, �),

(30)WaveNet(�|�) ≃
N∏

n=1

p(xn|xn−R−1, xn−R,… , xn−1, �),

(31)E(Θ) = −

T∑

t=1

C∑

c=1

yt,c log(ŷt,c),

(32)e𝜃 = −

C∑

c=1

ŷt,c log2 ŷt,c.

(33)� = � + ��,
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with a baseline convolutional autoencoder model were applied on the dataset of rare SED 
proposed at DCASE 2017 challenge Task 2. The results evaluated with AUC score show a 
clear advantage of using WaveNet for all types of indoor and outdoor sounds.

6.5.2  Autoencoder and metric learning models

In the proposal of Wei et  al. [140] at DCASE  2020 challenge Task  2, a reconstruction 
autoencoder is used to calculate the anomaly score through metric learning. Therefore, dif-
ferent types of autoencoders are tested, such as deep autoencoders, variational autoencod-
ers, etc.

In the system proposed by Giri et al. [41], the addressed problem is how to detect pre-
viously unseen anomalous sound events when the training set contains only normal data. 
The classical approaches like GMM and DNN seem unable to seize all the aspects of the 
problem. Therefore, a new approach is proposed, using a novel neural density estimation 
technique based on the group-masked autoencoder, that estimates the density of an audio 
time series by taking into account the intra frame statistics of the signal. In comparison to 
the baseline autoencoder approach, this method has shown better results.

Deep autoencoder models Deep autoencoder-based reconstruction is used by Marchi 
et al. [75] for acoustic novelty detection. In this work, the auditory spectral features of the 
next short-term frame are predicted from the previous one by means of LSTM denoising 
autoencoders. The error between the input and the reconstructed frame is used as activation 
signal to detect anomalous events.

More recently, Purohit et  al. [106] trained a deep autoencoder on GMM distributions 
with hyperparameter optimization to detect anomaly in acoustic signals. The method bap-
tized DAGMM-HO (deep autoencoder based on GMM with hyperparameter optimization) 
applies the conventional autoencoder-GMM to the audio domain. Optmization is obtained 
by reducing dimensions, and statistical modeling is thought to improve anomaly detec-
tion performance. In addition, the hyperparameter sensitivity problem of the conventional 
DAGMM is solved by performing hyperparameters optimization based on gap statistics 
and the cumulative Eigenvalues.

Complementary set variational autoencoder The problem of unseen anomalies is 
addressed by Kawachi et al. [55]. Actually, a drawback of conventional supervised learning 
consists in its unsuitability to detect unseen anomalies, ı.e. anomalous examples that have 
not been encountered in the learning phase. Therefore, unsupervised learning, and in par-
ticular deep autoencoders are chosen to resolve this issue. However, unsupervised autoen-
coders suffer from the reverse problem, as they are able to detect unseen anomalies, but 
not capable to detect seen anomalies, even if some data are available. Therefore, this work 
[55] presents an ano- maly detector able to find both seen and unseen anomalies in acoustic 
data. The proposed approach consists of a novel probabilistic representation of anomalies 
to solve the raised problem. Hence, normal and anomaly distributions are defined using the 
analogy between a set and a complementary set. Then, these distributions are applied to an 
unsupervised VAE to turn it out to a supervised method.

6.5.3  Density estimation models for anomalous SED

Density estimation aims at learning the underlying probability density of an independent 
and identically distributed set of samples. Therefore, neural networks represent a classical 
approach to learn such a density, especially for high-dimensional data [84]. In particular, 
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for anomaly detection, density estimation provides an intuitive tool, since normal and 
anomalous samples should be clustered into high and low density regions, respectively 
[64].

Unsupervised DNN-based normalizing flows In a recent work of Koizumi et al. [144], 
the addressed problem is how to solve unsupervised anomaly in general, with a particular 
focus on anomalous SED. A previous solution consists in density estimation, whereas the 
proposed solution relies on DNN-based density estimators (normalizing flows). However 
the problem is how to adapt such density estimators to the change in normal data distri-
bution. The proposed solution consists in designing a new DNN-based density estimator 
that can be easily adapted to the change of the distribution. Hence the system is a unified 
model of normalizing flows and adaptive batch normalizing (AdaFlow) that enables DNN 
to adapt to new distributions.

Temporal trajectory mixtures The problem addressed by Chakrabarty & Elhilali [18] 
is how to define the “normal” behaviour of a crowd in an environment, such as an airport, 
a train station or a sport field as normal or not. The problem stems from the difficulty to 
define ”normal” behavior of a crowd. The proposed solution consists of successfully cap-
turing the heterogeneous nature of audio events in an acoustic environment, to be used as 
a reference against which anomalous behavior can be detected in continuous audio record-
ings. The proposed approach is based on a methodology for representing sound classes 
with a hierarchical network of convolutional features and mixtures of temporal trajecto-
ries (MTT). The framework comprises unsupervised and supervised learning to provide a 
robust scheme for detection of abnormal sound events in a subway station. It uses as input 
the time-frequency representation of the audio signal to be processed by three main com-
ponents: (a) An acoustic modeling block using restricted Boltzmann machine (RBM), (b) 
a dynamic modeling block using MTT, and (c) an abnormal sound event detection block 
using a likelihood measure to yield the decision about sound abnormality [18].

KL-divergence based models In [15], an unsupervised framework is proposed to resolve 
the problem of SED for unlabeled data. A previous work presented in [15] relies on GMM 
training on purely normal data and estimation of the KL divergence between the input and 
the output. This approach is improved in [15] by trimming the quarter of the most diver-
gent Gaussian distributions from the mixture model, in order to enhance the KL divergence 
performance (Table 6).

7  Applications

Since a few years, the fast development of methods and models for anomalous SED has 
allowed its extension to a wide range of applications, spanning different fields. Besides, 
the inclusion of anomalous SED as a research topic in related events such as DCASE and 
PhysioNet challenges, has contributed to developing novel models for real life problems 
(cf. Table 7).

7.1  Audio surveillance

Surveillance systems are getting more and more multimodal. Therefore, a variety of anom-
alous SED models have been designed for several audio surveillance applications.
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7.1.1  Urban traffic monitoring

For instance, anomalous SED has been used in urban traffic monitoring using several 
approaches. Foggia et al. [37] developed a two-layer model, using bag-of-words based 
feature extraction and ensemble OC-SVM classifier to detect hazardous sounds on the 
road, in particular car crash and tire skidding.

The concern of the work of Lee et  al. [67] was pedestrian’s safety by sending an 
alarm message online. The method is developed using a set of statistical techniques for 
feature mining and a three-component heuristic. Ntalampiras [86] proposed a non-intru-
sive, passive monitoring framework based on audio modality. Thus, a universal back-
ground model (UBM) is trained with the goal to recognize and detect a large number 
of audio events encountered in urban areas. Sammarco & Detyniecki [118] proposed a 
system named CrashZam for car cash detection using in-car installed microphone sig-
nal. Two models were developed, the first using spectral features extracted from the 
raw audio signal, whereas the second is based on learning features from spectrogram 
images.

7.1.2  Novelty detection in general‑purpose audio surveillance

The approach proposed by Valenzise et  al. [133] leverages audio data extracted from 
video surveillance systems to detect and localize alarming audio events such as screams 
and gunshots. Each event is identified using a GMM classifier trained on temporal, 
spectral and perceptual audio-extracted features.

In the work of Colangelo et  al. [26], audio events (glass breaking, gunshots and 
screams) mixed with different types of background noise (car passing by, crowd, etc.) 
at different SNR levels, are classified by an anomalous SED model using hierarchical 
RNN trained on spectrogram image-extracted features. Probabilistic anomaly detection 
is used by Ntalampiras et  al. [87] to detect abnormal and life threatening situations, 
where GMM and Kullbalck-Leibler (KL) divergence are utilized to train and detect 
anomalous events.

7.1.3  Anomalous sound event detection in DCASE challenge events

The goal of the first DCASE challenge, organized in 2013 [126], was to develop general 
sound recognition in any environment. The challenge comprised detection and classifica-
tion tasks of acoustic scenes and events.

Among The DCASE 2016 challenge [77], only Task 3, SED in real-life audio, can be 
considered as rare SED, and thus belonging to the realm of anomaly detection. In real-life 
SED, the events of interest are arbitrarily rare and classes are often unbalanced. Besides, 
the main particularity of this task is temporal annotation, ı.e.onset and offset timing.

In DCASE 2017 challenge [76], in addition to Task 3, real-life SED, also Task 2, rare 
SED, is an anomaly detection problem. The audio data were generated by mixing back-
ground acoustic scenes and rare target sound events.

In DCASE 2019 challenge, Task 4, SED in domestic environments [131], can be consid-
ered as anomalous SED, since the goal was detecting the type and the timing of any occur-
ring event using weakly-/unlabeled data from different real-life SED datasets (cf. Table 1).
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7.2  Industrial equipment monitoring

In the industrial realm, early anomaly detection is an important and cost effective mainte-
nance tool. Therefore, a special attention has been paid to industrial equipment monitoring 
among the emergent applications of anomalous SED.

7.2.1  Rare sound event detection on IoT

In the work of Janjua et al. [52], IoT data streams are used for rare SED. The method is 
based on unsupervised learning, where data are first segmented into micro clusters, which 
are in their turn agglomerated in macro clusters. Uematsu et  al. [132] utilized anomaly 
detection through IoT to collect information from diverse sensors such as microphones for 
machine condition monitoring. The approach relies on normality modeling based on DNN 
applied to acoustic features extracted from the spectrogram of the recorded sound. Another 
IoT-based anomalous SED application is proposed by Yamoto et al. [145]. In this work, a 
maintenance IoT-based platform able to analyze sound datastreams in edges is designed to 
analyze only anomaly data in cloud and to order maintenance online.

7.2.2  Machine condition monitoring

In DCASE  2020 challenge [59], Task  2 is launched to present models able to identify 
anomalous sounds issued from a target machine . The challenge consists in detecting 
unknown anomalous sounds under the condition that only normal sounds are provided in 
the training set. Therefore, unsupervised learning was proposed as a modeling technique.

Ahn et al. [5] proposed a system of acoustic anomaly detection for machine condition 
monitoring. The system was designed to capture acoustic signals and to classify them using 
machine learning. The system also includes a server for sound management and model 
training, a mobile client for sound capturing and real-time classification, and a workbench 
acting like a user interface.

Another method of anomalous SED for machine condition monitoring is proposed by 
Becker et al. [13], with application to additive manufacturing, in particular for 3D printing. 
Thus, a machine learning model is developed to detect flaws and errors of a 3D printer with 
varying difficulty using audio recordings from the printing machine. Acoustic features such 
as MFCC and Mel-filterbank energies are extracted to be trained by an LSTM-based multi-
class classifier.

In the system designed by Cooper et  al. [27], anomaly detection is searched in mill-
ing tools using acoustic signals and generative adversial networks (GAN). The proposed 
approach is based on training a GAN on only a single readily obtained class of acoustic 
data, and then inverting the generator to perform anomaly detection.

For the same goal, Dong et al. [89] proposed a method for SMD machine monitoring 
based on anomaly detection using the residual error of a reconstruction autoencoder. This 
unsupervised learning method tries to specify if the sound of a SMD machine is normal 
or anomalous based on the reconstruction of the spectrogram images performed by an 
autoencoder.

Another application of anomaly detection in motors with feature emphasis using only 
normal sounds is proposed by Ono et al. [91]. The goal of this work is to detect operating 
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motor anomalies from sounds without using abnormal data, so that training is made only 
on normal data. The proposed approach is based on calculating the distance between the 
feature vector and the model learned from the normal data only.

Also, the problem of audio anomaly detection in rotating machinery is addressed by 
Prego et al. [105]. The method is based on leveraging rotating machinery sound record-
ings to extract spectrogram-image-based features. Then a similarity measure is calculated 
between reference and degraded signals using either a 2D-cross correlation or KL diver-
gence measure.

For acoustic anomaly detection in industrial processes such as painting, cutting and 
welding, Duman et al. [35] proposed an approach based on applying unsupervised convo-
lutional autoencoders on log Mel-spectrograms. Data augmentation is used to compensate 
the lack of training data by superimposing industrial environment noise at different levels 
to the recorded audio clips. This work has been continued in [12] using sequential convolu-
tional-LSTM autoencoders and an Euclidean distance-based reconstruction error to detect 
anomalous sounds.

Kao et  al. [58] used anomalous sound detection to monitor equipment in commercial 
buildings, such as in machine rooms with HVAC system components. Then audio data is 
analyzed by an ensemble of machine learning algorithms to be judged as normal or abnor-
mal. The audio data were recorded using mobile phone from machine rooms and an eleva-
tor shaft. The collected audio data is analyzed and processed by an ensemble of machine 
learning classifiers.

7.3  Speech and music processing

A classical domain of application of anomalous SED is speech and music processing, since 
speech/speaker turn change and music annotation have been among the first applications of 
anomalous SED. Besides, it can be used for developing further speech and music-related 
applications.

7.3.1  Speech analysis and recognition

One of the earliest works of anomaly/novelty detection in speech was presented by Omar 
et  al. [90], where the problem of automatic segmentation of audio streams according to 
speaker identities, environmental and channel conditions, as a preprocessing step for 
speech/ speaker recognition and audio data mining is addressed. Therefore automatic seg-
mentation is proposed based on a cumulative sum algorithm for automatic audio segmenta-
tion, that minimizes the missing probability of a given false alarm rate.

Later, Borges & Meyer [15] developed an unsupervised approach in the aim to perform 
anomaly detection for a self-diagnostic speech activity detector. The anomalous events are 
estimated by measuring the KL divergence (cf. (4)) between the Gaussian distribution of 
input features and a nominal world model.

7.3.2  Music processing

The method designed by Lu et al. [73] aims to systematically identify anomalies in music 
datasets. Therefore, an unsupervised model that integrates categorical regression and robust 
estimation techniques to infer anomalous scores in music clips is developed. The model 
was applied to detect corrupted, distorted or mislabeled audio samples on commonly used 
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features in music information retrieval. Also, Vallim et al. [134] developed a new change 
detection algorithm that ensures model modification corresponding to actual data changes. 
It is mainly intended to detect changes in music audio streams. The proposed approach is 
based on a new stability concept adapted for unsupervised change detection.

7.4  Healthcare

Another important field of application of anomalous SED is the study of biological sounds, 
such as respiration sounds and the phonocardiogram (PCG). In fact, several works have 
proved the efficiency of anomalous SED for early disease detection. Respiration anomaly 
is studied through anomalous sound detection by Ye et al. [147]. In their work, adaptive 
modeling of the mainstream of respiration is achieved, as well as detecting irregular pat-
terns. For so doing, FLAC (local auto-correlation on complex Fourier values) features 
are analyzed through online learning, in order to adapt the respiration sound pattern CCI-
PCA (candid covariance-free incremental-based PCA). More recently, in [99], respiration 
sound database ICBHI [112] has been analysed to classify anomalous respiration and to 
detect lung disease. To fulfill that, the authors used a very deep CNN network, such as 
VGG-7 [123] to classify log-Mel spectrogram images of the recorded respiration sounds. 
Furthermore, to ensure the tradeoff between model performance and complexity, a knowl-
edge distillation model has been implemented. In such a scheme, the parameters of the best 
classification model (Teacher model) are leveraged to train another classifier with fewer 
parameters (Student model), yet having nearly the same performance.

In order to analyze heart anomalies through sound, the PCG (phonocardiogram) signal 
is used by Dissnayake et al. [34] and Zahibi et al. [148] in ambulatory monitoring to evalu-
ate heart hemodynamic states and to detect a cardio-vascular disease. Both approaches are 
based on developing automatic classification method of anomaly detection, ı.e.normal or 
abnormal, and quality, ı.e.good or bad, of PCG recording with and without segmentation, 
respectively.

8  Open challenges and proposals for improvement

Despite the fast development of methods and models for anomalous SED, it still suffers 
from some problems, mainly related to the inherent issue of anomalous data scarcity. 
Besides, some criticism was expressed regarding the learning and evaluation methodolo-
gies. Therefore, some ideas and solutions were suggested (cf. Table 8).

8.1  Rare and imbalanced data

Handling imbalanced datasets, where anomalous data are a minority is still an open chal-
lenge for the topic of this study. Therefore, some works have recently addressed this prob-
lem, either using data augmentation, or a tailored learning method, where a higher weight 
is attributed to the least represented class. Then, classification with neural networks and 
application to sound event detection is treated in [7].
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8.1.1  Data augmentation

Data augmentation, i.e. simulating virtual data, either by replication or simulation, can 
help increasing the amount of anomalous data. For instance, [141] proposes to generate 
virtual training data categorically using an auxiliary GAN classifier. Then soft labels of 
acoustic events are calculated to represent the acoustic event localization information. In 
[24], a novel data augmentation method, based on dynamic time warping (DTW) [98], 
is proposed. It is achieved in three main steps: (i) Randomly choosing multiple instances 
from a same event, (ii) rescaling each instance, (iii) randomly generating the weight vector 
and computing the weighted DTW average. Finally the weighted average is returned as a 
new sample.

8.1.2  Weighted learning

To cope with the issue of data imbalance, the common approach consists in using class 
weights in the objective function while training. In [7], a more elaborated approach pro-
ceeds by mapping the input to clusters in an embedding space in order to balance the learn-
ing by incorporating inter-cluster and inter-class margins. The proposed approach consists 
in learning the embedding using a novel objective function, qualified as triple-header 
cross-entropy. The experimental evaluation results show that this method is more effective 
for SED with imbalanced data.

Recently, [115] proposed a novel type-2 fuzzy set approach for hazardous events detec-
tion from traffic audio data. Since hazardous events, i.e.car accidents, tire skidding, harsh 
braking, etc.  are a minority in the dataset, the weights of such classes have been manipu-
lated in the type-2 fuzzy membership function, so that the weight of each class is inversely 
proportional to the class samples. Then a membership degree is calculated for each event 
using an upper/optimistic membership component and a lower/pessimistic one. Finally, 
interval comparison is performed to select the event for which the membership is highest.

8.2  Learning methodology

Recently, Baumann et al. [11] suggested a reflection about the necessity of performing SED 
training and test methodology in a more realistic way. The outcome is a novel approach 
based on (i) eliminating much prior knowledge on the test data, (ii) assuming additional 
unknown acoustic events both in training and test data, which in practice have to be identi-
fied as background, (iii) by taking this into account while training, the robustness in real-
world scenarios can be significantly increased, (iv) evaluating the advantage of multi-event 
classifiers over single-event ones.

8.3  Effect of temporal dimension of the input signal

The scope of the study presented by Rossi et al. [113] is to study the effect of environmen-
tal temporal evolution of the input signal on the performance of audio surveillance RNN 
models. The proposed approach is based on varying the length of the input sequence and 
the size of the time window used for feature extraction, in order to compare the tempo-
ral correlations extracted at the feature level with the one learned by a representational 
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structure. The obtained results show that sequential models are not necessarily the best fit-
ted to work with temporal data, and that optimization of the temporal dimension, ı.e.input 
sequence or window size, remains an open issue.

8.4  Performance measures

Since 2010, Forman & Scholz [39] have demonstrated that F1-score, accuracy and AUC 
may be biased by the method by which they are calculated, especially when calculated for 
cross-validation-based learning and under high class imbalance conditions, that is indeed 
the case of anomalous SED. Therefore, some recommendations are provided to carry out 
these measures in imbalanced data, using some adapted variants of F1-score and AUC , and 
taking care of the criteria of reducing FPR and enhancing TPR [39].

8.5  Computational efficiency

In a recent work, Mulimani & Koolagudi [82] developed a novel parallel method for 
extracting significant information from spectrograms using MapReduce programming 
model [49] for audio-based surveillance systems, in order to recognize acoustic events in 
surrounding environment. The relevance of this work consists in how to extract features 
from spectrograms in a big noisy audio dataset, which is very demanding in terms of com-
putational time. The proposed solution consists in parallel computing using MapReduce 
programming model in Hadoop. This method was applied on spectrograms of event data 
from MIVIA database [37], showing a better computational time efficiency and a high rec-
ognition rate of critical acoustic events in different noisy conditions.

9  Conclusion

A survey of anomalous SED based on machine learning has been presented in this paper. 
Despite the relative novelty of this topic, the state of the art has grown in an impressive 
way in the last decade. Actually, since the organization of the first DCASE challenge in 
2013, a large number of methods and models in various domains of application has been 
developed and presented in the main related events and publications.

As a final note, we would like to conclude with some reflection remarks: (a) Through 
this survey we focused on deep learning techniques, as they are the state of the art in anom-
aly detection in general, and anomalous SED in particular. However, other machine learn-
ing techniques like discriminative methods, such as OC-SVM, and generative methods like 
GMM and HMM have also been quite successful, and it would be potentially interesting 
to pursue their development. (b) The use of hand-crafted features is decreasing in favor 
of feature extraction/embedding methods and end-to-end modeling. Nevertheless, low-
level audio descriptors have the advantage to help understanding the physical meaning of 
the signal parameters and their role in the acoustic dynamics. Therefore, some interaction 
between the two types of feature computing should be investigated. (c) Anomalous SED is 
very useful, and perhaps will be one of the main future technologies in public safety, there-
fore more concern about improving the evaluation metrics should be taken, so that they can 
reflect all aspects of anomalous event detection. (d) For the same purpose, i.e.public safety, 
anomalous SED could be in a near future embedded in everyday life appliances, to provide 
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vital services such as alarm messaging by mobile phones or home assistants. Therefore, the 
computational efficiency has to be improved to make that happen.
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