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Abstract
To effectively and accurately segment images in the presence of intensity inhomogeneity 
and noise, a variational level set model based on maximum a posteriori (MAP) criterion 
is proposed in this paper. In the Bayesian framework, the posterior probability of the cor-
rected smooth image under the observation condition is described by a likelihood function 
of the observation multiplied by a prior probability of the corrected smooth image. In the 
model, the likelihood function of the observation is computed under the assumption that 
the observed image obeys the local Gaussian distribution with both varying means and 
variances; and based on Markov random field (MRF) model, the prior probability of the 
corrected smooth image is defined as a Gibbs energy function that is related to the total 
variation. Maximizing the likelihood function can effectively capture the local change of 
image intensity, and maximizing the prior probability can restrain the influence of noise. 
An alternating direction iterative algorithm combining with fixed point iteration and gra-
dient descent is introduced to solve the proposed model. The experiments for both syn-
thetic and real images validate the proposed model. In addition, compared with several 
state-of-the-art variational level set models, the proposed model show the best segmenta-
tion performance.

Keywords Variational level set · Markov random field · Image segmentation · 
Regularization

1 Introduction

Image segmentation is an important image processing technology that has been widely 
used in many application domains, such as computer vision [19, 20, 22], pattern recogni-
tion [5, 37, 47], biomedical image processing [6, 21, 23, 33] and so on. In the last decades, 
a large number of image segmentation methods based on different mathematical theories 
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have been proposed [7, 12, 35], among which variational level set method have been widely 
concerned due to its sound theoretical basis and promising experimental performance.

The variational level set method is based on the level set representation and curve evolu-
tion. It uses a partial differential equations (PDE) obtained by variational method to control 
the motion of the active contour to achieve image segmentation, where the active contour 
is represented by the zero level set of a level set function. The variational level set method 
has the following advantages over the classical parametric curve evolution methods: (1) It 
can handle the change of curve topology more effectively; (2) It is easier to incorporate the 
image information in the model, such texture, shape, structure and so on; (3) It is easier to 
be solved by using many classical PDE numerical methods.

The variational level set models can typically be classified into two categories: edge-
based model [16, 36, 40] and region-based model [8, 24, 31]. In edge-based models, the 
image gradient information is used to drive the contour moving towards the target bound-
ary. It can effectively segment images with sharp edges, but fails for ones with weak edges 
that may cause boundary leaking. In addition, it cannot capture the deep concave boundary 
and the boundary that is far away from the initial contour. The region-based models can 
conquer these drawbacks, in which the region information (such as mean value, variance, 
statistical distribution, etc) is used to drive the curve. The most famous one is the active 
contours without edges proposed by Chan and Vese (CV) [9] that is an approximation of 
the Mumford-Shah (MS) [32] functional. CV model uses the mean difference between the 
inner and outer regions of the active contour to drive the contour, which can effectively 
deal with weak edges. In addition, it is robust to the initialization of the active contour. 
Later, many scholars studied CV model and proposed many improved models [17, 41, 42, 
48]. For example, Tang et al. [41] proposed an improved CV model using L1 fitting term 
that can effectively segment image contaminated by salt and pepper noise. Chan et al. [9] 
proposed a piecewise smooth model to solve the problem of CV which can only segment 
piecewise constant images. Gu et al. [17] proposed a multiphase level set model that can 
capture more than two target objects. In [48], Zhang et al. proposed a variational level set 
model for multiscale image segmentation (MCV). However, the models mentioned above 
only use the global information of the images, so called global region-based model, which 
cannot effectively segment images with intensity inhomogeneity.

To address this problem, many local region-based models are proposed [2, 3, 13, 26, 
35, 38, 43, 49], which model the image in different small local regions, as contrasted to 
the global ones that model the image only in the target and background regions. Such local 
scheme enables us to capture the local changes of the image intensity. The local binary 
fitting (LBF) model [27] is a very famous one in which a local Gaussian fitting term with 
varying mean is used to model the image in a local region. So it can effectively segment the 
images with intensity inhomogeneity. Later, Zhang et al. [50] proposed a local image fit-
ting (LIF) model that achieves image segmentation by seeking the best local fitting image. 
Compared to the LBF model, LIF model has a comparable experimental performance, but 
higher computational efficiency. Wang et al. [44] combined the local information with the 
CV (LCV) energy and Liu et al. [28] proposed a local region Chan-Vese (LRCV) model. 
These two models combine the advantages of the local and the global models, which are 
robust to the initialization, and have higher efficiency. Darolti et al. [14] proposed to locally 
characterize the image by using local region descriptors (LRDs) to improve the segmen-
tation efficiency. Wang et  al. [45] proposed a local Gaussian distribution fitting (LGDF) 
model that uses both varying mean and variance in the Gaussian distribution fitting term. 
Such scheme can model the image more accurately. Moreover, some local region-based 
models are proposed to achieve simultaneous image segmentation and bias correction [10, 
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15, 29, 46, 49] by uneven grayscale image modelling. The local region-based models men-
tioned above can effectively segment images with intensity inhomogeneity since they can 
capture the local changes of the intensity. However, they are very sensitive to noise because 
noise can also cause local intensity changes that will be captured by the active contour and 
leads to missegmentation.

To address the drawbacks of the local and global models mentioned above, based on 
MAP criterion we propose a variational level set model to segment image with intensity 
inhomogeneity and noise in this paper. Two terms are introduced in the model, one is a 
local fitting energy that uses a Gaussian distribution with both varying mean and variance 
to fit the intensity in the local regions. Minimizing it we can drive the active contour mov-
ing towards the object boundary; and the other is a MRF regularization term defined by a 
Gibbs energy function that is related to the total variation (TV). The proposed model can 
effectively capture the local changes of the intensity, while eliminating the effect of noises. 
To solve the model, an alternating direction iterative algorithm combining with fixed point 
iteration and gradient descent is introduced. Finally, numerical experiments for both syn-
thetic and real images are conducted to validate of the proposed model.

The remainder of this paper is organized as follows. In Section 2 we review the famous 
LBF and LGDF model that are very relative to our present study. The Section 3 introduces 
the proposed model and the numerical algorithm. In Section 4, we test the models using 
some synthetic and real images. The paper is summarized in Section 5.

2  Background

2.1  The LBF model

The LBF [27] model uses local image information to segment images with intensity inho-
mogeneity. In the model, two functions f1(x)and f2(x) are used to approximate the intensity 
in a local region centered at x inside and outside the contour. By incorporating the regulari-
zation terms, the LBF energy is defined as,

where λ1, λ2, υ and μ are positive weighting parameters, Kσis a kernel function with a local 
property that is set as a Gaussian function in the numerical implementation, and ϕ(x) is the 
level set function [34] that is defined as,

in which C is the active contour, and M1(ϕ) and M2(ϕ) can be seen as the indicator func-
tions of  in(C)and  out(C), respectively, which are often defined as  M1(ϕ) = H(ϕ) and 
M2(ϕ) = H(−ϕ) = 1 − H(ϕ), where H is the Heaviside function.

In energy (2.1), the first two terms are the fitting energy that drives the active contour mov-
ing towards to the boundary of the object, the last two are regularization terms that stabilize 

(2.1)
ELBF = �1∬ �

K�(x − y)
(
I(y) − f1(x)

)2
M1(�(y))dydx

+ �2∬ �
K�(x − y)

(
I(y) − f2(x)

)2
M2(�(y))dydx

+ �∫
�
∣ ∇H(�(x)) ∣ dx + �∫

�

1

2
(|∇�(x)| − 1)2dx

𝜙(x) =

⎧⎪⎨⎪⎩

< 0 ifx ∈ in(C),

= 0 ifx ∈ C,

> 0 ifx ∈ out(C).
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the active contour during the evolution. By using calculus of variation and gradient descent, 
the minimizer of the level set function ϕ of the energy (2.1) can be expressed as the stationary 
solution of the following PDE,

with

where δε(·) is a Dirac function, div(·)is a divergence operator.
By calculus of variations, the optimal function  f1(x) and  f2(x) must satisfy the following 

Euler-Lagrange equations,

Solvingfi(x)from the last equation, we obtain,

In the LBF model, a local Gaussian fitting energy with varying mean is used, which ena-
bles it to better capture the local changes of the intensity, and effectively deal with intensity 
inhomogeneity. However, it is sensitive to the initialization, and it is easy to fall into a local 
minimum and leads to the missegmentation. In addition, it can not segment noisy images.

2.2  The LGDF model

In order to model the image more accurately, Wang et al. [45] proposed a local Gaussian dis-
tribution fitting (LGDF) model that uses both varying mean and variance in the Gaussian fit-
ting term energy, by incorporating the regularization terms, which is defined as,

By using calculus of variation and gradient descent, the minimizer of the level set function 
ϕ of the energy (2.4) can be written as the stationary solution of the following PDE,

where

(2.2)

��

�t
= −��(�)

(
�1e1 − �2e2

)
+ ���(�)div

(
∇�

∣ ∇� ∣

)
+ �

(
∇2� − div

(
∇�

∣ ∇� ∣

))

ei(x) = ∫
�

K�(x − y)||I(y) − fi(x)
||2dy

(2.3)∫ K�(x − y)(I(y) − fi (x))Mi(�(y))dy = 0

fi(x) =
K�(x) ∗

[
Mi(�(x))I(x)

]
K�(x) ∗ Mi(�(x))

, i = 1, 2

(2.4)
ELGDF =

∑2

i=1
∬

�
w(x − y)

�
log �i(x) +

(I(y)−ui(x))
2

2�2
i
(x)

�
Mi(�)dydx

+ �∫
�
∣ ∇H(�(x)) ∣ dx + �∫

�

1

2
(�∇�(x)� − 1)2dx

(2.5)
��

�t
= −��(�)

(
e1 − e2

)
+ ���(�)div

(
∇�

∣ ∇� ∣

)
+ �

(
∇�� − div

(
∇�

∣ ∇� ∣

))

ei(x) = ∫
�

�(x − y)

(
log

(
�i(x)

)
+

(
I(y) − ui(x)

)2
2�2

i
(x)

)
dy
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By using calculus of variation, the minimizers of ui(x) and �2
i
(x) of energy (2.4) can be 

written as the following closed-formulation,

and

Different from the LBF model in which varying mean is only used in the Gaussian fit-
ting energy, while LGDF model uses both varying mean and variance in the Gaussian fit-
ting term. Such scheme enables us to capture the local changes of the intensity more accu-
rately, and obtain the better performance in image segmentation. However, compared to the 
LBF model, the additional update of the variance in the LGDF will cost more computing 
time.

3  The proposed model

3.1  Model description

In this section, based on the MAP criterion, a variational level set model combing with 
local Gaussian fitting and Markov random field regularization is proposed, referred to 
simply as LGM. Let  I(x) : Ω → R be an given observed image that contains intensity 
inhomogeneity and noise, where Ω is the image domain. u(x) : Ω → Ris the true image, 
and n(x) : Ω → R is noise. Assuming that the image can be divided into foreground and 
background respectively denoted as Ω1and Ω2, we have the following formulation,

which is equivalent to,

Two assumptions are introduced in the following, which will be used to statistically 
model the image. (1)The observed image I(x) is piece-wise smooth and contains intensity 
inhomogeneity, which obeys a local Gaussian distribution in a small subregion, and (2) 
u(x)is a denoised version of the observation I(x), which conforms to a Markov random field 
stochastic mode.

3.2  Estimate u(x) using MAP

In this section, we use the observed image I(x) to estimate the true image u(x) by MAP 
criterion. By using Bayes formula, it is equivalent to maximizing the following posterior 
probability,

(2.6)ui(x) =
∫ �(x − y)I(y)Mi(�(y))dy

∫ �(x − y)Mi(�(y))dy

(2.7)�2
i
(x) =

∫ �(x − y)
(
I(y) − ui(x)

)2
Mi(�(y))dy

∫ �(x − y)Mi(�(y))dy

I(x) =

{
u1(x) + n(x) if x ∈ Ω1

u2(x) + n(x) if x ∈ Ω2

(3.1)I(x) = ui(x) + n(x), x ∈ �i, i = 1, 2.
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where P(u(x)| I(x)) is the posterior probability of u(x) under the observation condition I(x); 
P(I(x)| u(x)) is the conditional probability distribution of the observed image I(x), also 
known as the likelihood function. The structure of it is a probability of the observation 
I(x) in the case of true image u(x), so it is a likelihood function, which indicates the degree 
of similarity between the observed image and the true situation u(x). P(u(x)) is the prior 
probability of u(x), which imposes some prior information to the true image u(x). And the 
denominator p(I(x)) is the marginal likelihood of the observation I(x), which is actually a 
normalized parameter. It is always a positive constant and does not play no role in the opti-
mization. We can neglect it and rewrite Eq.(9) as,

which implies that maximizing posterior probability P(u(x)| I(x)) is equivalent to maximize 
P(I(x)| u(x))P(u(x)). In the following, we compute P(I(x)| u(x)) and P(u(x)) based on the 
assumptions in the subsection 3.1.

A. The calculation of P(I(x)| u(x))

With the assumption (1) that the observed image I(x) obeys a local Gaussian distribution 
in a small subregion, we firstly model the image in a local region. For each pointx ∈ Ωi, we 
consider a circular neighborhood centered at x with a small radius ρ > 0, which is defined 
as. Fory ∈ Ωi ∩ Ox, let Pi, x(I(y)| ui(x)) be the conditional probability of the observation I(y) 
in the subregionsΩi ∩ Ox. Since the observed image obeys a local Gaussian distribution 
in the subregion Ωi ∩ Ox, i.e.,I(y) ∼ N

(
ui(x), �i(x)

)
 , whereui(x)and σi(x) are the mean and 

standard deviation, respectively, Pi, x(I(y)| ui(x)) can be computed by,

With the fact that the image intensity is i.i.d., we can obtain the joint probability 
P(I(x)| u(x)) in the whole image domain Ω by multiplying each Pi, x(I(y)| ui(x)) fori = 1, 2, 
y ∈ Ωi ∩ Ox andx ∈ Ω,

which describes the joint probability density of the observation I(x) under the real 
conditionu(x).

B. The calculation of P(u(x)

Next, we compute the prior probability P(u(x)) of u(x). Let Pi(ui(x)) be the probability 
of u(x) in the subregion Ωi. With the assumption (2) that the true image u(x) conforms to 
a Markov random field, it means that the property of one pixel is only related to its nearby 
neighborhoods rather than the others away from it. And by Hammersly-Clifford theorem 

(3.2)P(u(x)|I(x)) = P(I(x)|u(x))P(u(x))
P(I(x))

(3.3)P(u(x)|I(x)) ∝ P(I(x)|u(x))P(u(x))

Pi,x

�
I(y)�ui(x)

�
=

1√
2��i(x)

exp

�
−

�
I(y) − ui(x)

�2
2�2

i
(x)

�

(3.4)
P(I(x)�u(x)) = ∏

x∈�

∏2

i=1

∏
y∈�i∩Ox

Pi,x

�
I(y)�ui(x)

�

=
∏

x∈�

∏2

i=1

∏
y∈�i∩Ox

1√
2��i(x)

exp

�
−
(I(y)−ui(x))

2

2�2
i
(x)

�
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[20], Markov random field is equivalent to a Gibbs one that can be described by a Gibbs 
distribution [16]. In this paper, we use the following formulation,

that is closely related to the total variation, in which Z is the normalized parameter; and 
T the regularization parameter that controls the flatness ofPi. Similarly, supposing u(x) is 
i.i.d., we can obtain the joint probability P(u(x)) in the whole image domain Ω by multiply-
ing each Pi(ui(x)) for x ∈ Ωi and i = 1, 2,

which describes the joint probability density of the true image u(x). Combining Eqs. (10), 
(11) and (12), we obtain the posterior probability,

By using MAP criterion, seeking the maximum posterior probability P(u(x)| I(x)) is 
equivalent to.

maximizing the following formula,

Taking a negative logarithm for (3.6), the maximization can be converted to the minimi-
zation of the following energy,

i.e., minimize the following energy, here the constants that cannot affect the minimiza-
tion are neglected,

where a =
logZ

T
 . For the convenience of calculation, we extend the integral region to the 

whole image domain Ω by using level set function and weighting function method.

3.3  Level set formulation

By introducing a weighting function ω(x − y) into the function (3.7), the objective function 
can be rewritten as,

Pi

(
ui(x)

)
=

1

Z
exp

(
−
1

T
|∇ui(x)|

)

(3.5)P(u(x)) =

2∏
i=1

∏
x∈�i

Pi

(
ui(x)

)
=

2∏
i=1

∏
x∈�i

1

Z
exp

(
−
1

T
|∇ui(x)|

)

P(I(x)�u(x)) ∝ ∏
x∈�

∏2

i=1

∏
y∈�i∩Ox

Pi,x

�
I(y)�ui(x)

�∏2

i=1

∏
x∈�i

Pi

�
ui(x)

�

=
∏

x∈�

∏2

i=1

∏
y∈�i∩Ox

1√
2��i(x)

exp

�
−
(I(y)−ui(x))

2

2�2
i
(x)

�

×
∏2

i=1

∏
x∈�i

1

Z
exp

�
−

1

T
�∇ui(x)�

�

(3.6)maxP(I(x)|u(x)) ⇒ max

{∏
x∈�

2∏
i=1

∏
y∈�i∩Ox

Pi,x

(
I(y)|ui(x)

) 2∏
i=1

∏
x∈�i

Pi

(
ui(x)

)}

min {− log P(� (�)��(�))} ⇒

min
�∑2

i=1
∫
x∈Ω

∫
y∈Ω1∩○x

− log Pi,x(� (�)���(�))+∑2

i=1
∫
x∈Ωi

− log Pi(��(�))

�

(3.7)
E =

∑2

i=1
∫

x∈�
∫

y∈�i∩Ox

�
log �i(x) +

(I(y)−ui(x))
2

2�2
i
(x)

�
dydx

+ a
∑2

i=1
∫

x∈�i
∣ ∇ui(x) ∣ dx
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Here, the weighting function ω(x − y) can be selected as a indicator function for Ox or 
a Gaussian function Gσ(x − y). By using level set functionϕ, the objective function (3.8) 
can be rewritten as,

Where M1(ϕ) = H(ϕ) and M2(ϕ) = 1 − H(ϕ), in which H(·) is the Heaviside function. 
In practice, the H(ϕ) is approximated by a smooth version Hε(x)defined as,

The derivative of Hε is defined as the following smooth Dirac function,

which will be used in the following numerical implementation.
In order to keep the level set function ϕ to be stable during the evolution, we employ 

a distance regularizing term in level set formulation [51] to penalize the deviation of the 
level set function ϕ from a signed distance function [30], that is defined as,

By minimizing energy D(ϕ) w.r.t ϕ it has ∇ϕ → 1, which means that ϕ is close to a 
signed distance function. As in typical level set methods, we need to regularize the zero 
level set by penalizing its length to derive a smooth contour during the evolution,

Combining the energy (3.9), (3.10) and (3.11), we obtain the total energy of the pro-
posed LGM model,

where the first two terms are data fidelity terms, the last two terms are regulariza-
tion terms, and ν and μ are two positive parameters that weight the D(ϕ) and L(ϕ), 
respectively.

(3.8)
E =

∑2

i=1
∫

x∈�
∫

y∈�i
�(x − y)

�
log �i(x) +

(I(y)−ui(x))
2

2�2
i
(x)

�
dydx

+ a
∑2

i=1
∫

x∈�i
∣ ∇ui(x) ∣ dx

(3.9)
E =

∑2

i=1
∬

�
�(x − y)

�
log �i(x) +

(I(y)−ui(x))
2

2�2
i
(x)

�
Mi(�)dydx

+ a
∑2

i=1
∫

�
∣ ∇ui(x) ∣ Mi(�)dx

H�(x) =
1

2

[
1 +

2

�
arctan

(
x

�

)]

��(x) = H�
�
(x) =

1

�

�

�2 + x2

(3.10)D(�) =
1

2∫ �

(|∇�(x)| − 1)2dx

(3.11)L(�) = ∫
�

∣ ∇H(�(x)) ∣ dx

(3.12)

ELGM = E + vD(�) + �L(�)

=
∑2

i=1
∬

Ω
�(x − y)

�
log �i(x) +

(I(y)−ui(x))
2

2�2
i
(x)

�
Mi(�(y))dydx

+�
∑2

i=1
∫
Ω
����(�)� Mi(�(�))dx

+
1

2
v ∫

Ω
(�∇�(x) − 1�)2dx

+� ∫
Ω
�∇H(�(x))�dx
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Remark According to the above analysis, we note that the proposed LGM model is actu-
ally a lcoal region-based model. We here illustrate the differences and advantages of it over 
two classical lcoal region-based models: LBF and LGDF. Compared to the LBF model, 
the proposed model uses a Gaussian distribution with varying mean and variance to fit the 
image in a local region, while LBF model only uses varying mean. Such scheme enables 
us to capture the local changes of image intensity more precisely and thus obtain accurate 
segmentation. Compared to the LGDF model, in addition to using the same fitting energy, 
the proposed model uses a MRF regularization term that is related to the famous total vari-
ation to regularize the mean image ui(x). Such prior constraint enables the proposed model 
to better eliminate the effects of intensity inhomogeneity and noise while capturing the real 
features of the image.

3.4  Numerical implementation

In this section, an alternating direction iteration algorithm is introduced to numerically 
solve the minimizer of energy ELGM in (3.12) w.r.t.ui,σiand ϕ. That is to say, it minimizes 
ELGM w.r.t. one variable while others are fixed.

• Minimize ELGM w.r.t. ui,σiand ϕ being fixed. By calculus of variations, the optimal 
uimust satisfy the following Euler-Lagrange equation,

To avoid the singularity of ∣ ∇ ui(x) ∣  = 0 as the denominator, a regularized |∇ui(x)|ϵ is 
used in practice, which is defined as,

where ϵ is a very small constant. Obviously, it is very difficult to solve ui(x) directly from 
the Eq.(20) due to the existence of gradient and divergence operators whose inverse are 
ill-posed. A fixed point iterative algorithm is employed to approximate the true solution of 
Eq.(20). The iterative scheme is given as following,

• MinimizeELGMw.r.t. σiwith ui and ϕ being fixed. The optimal σi(x) must satisfy the fol-
lowing Euler-Lagrange equation,

Solving �2
i
(x) from the last equation, we obtain,

(3.13)−∫
�

�(x − y)

(
I(y) − ui(x)

)

�2
i
(x)

Mi(�(y))dy − div

(
∇ui(x)

∣ ∇ui(x) ∣

)
Mi(�(x)) = 0

||∇ui(x)||� =
√(

∇x1
ui(x)

)2
+
(
∇x2

ui(x)
)2

+ �

(3.14)
un+1
i

(x) =

�(x) ∗
(
I(x)Mi(�(x))

)
+ �2

i
(x)div

(
un
i
(x)

|uni (x)|�
)
Mi(�(x))

�(x) ∗ Mi(�(x))

∫
�

�(x − y)

(
�2
i
(x) −
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• MinimizeELGMw.r.t. ϕ with ui and σi being fixed. By using calculus of variations and gra-
dient descent method, the minimizer of the energy functional ELGM w.r.t ϕ is equal to the 
steady-state solution of the following gradient descent flow equation,

where

To numerically solve the PDE (3.16), the finite difference method is used, which leads 
to the following iterative scheme,

where Δt is the time step.
In the above, we give the methods to solve each subproblem in the alternating direction 

iteration algorithm in detail. In the following, we state main steps of the algorithm for the 
proposed model. With an initializationϕ0, it alternately solves each subproblem until the 
convergence condition is met.

In the following, we analyze the computation complexity of the Algorithm 1. Suppos-
ing the number of pixels of the test image is M, the radius of the local window function ω 
is k, and the number of the loops is n, we can deduce that the complexity of the Eqs. (21), 
(22) and (24) is O(k2M2) since they involve matrix convolution and multiplication. There-
fore the total computation complexity of the proposed algorithm is O(3k2nM2) which can 
be further simplified as O(3k2nM2) ≈ O(M2) since k and n satisfies k, n ≪ M, which can be 
ignored in complexity analysis.

4  Experiment result

In this section, we test the proposed model and the corresponding algorithm by using some 
synthetic and real images. Furthermore, the proposed model is compared with several state-
of-the-art variational level set models to show its superior performance. The experiments 
are performed on a PC with Intel(R)Core(TM)i5-7500CPU@3.40GHz 3.40GHz, 8GB 
RAM, Windows7 operating system (64-bit operating system based on ×64 processor). The 
algorithms are programmed in MATLAB. The parameters of the model and algorithm are 
set as the following. Since the proposed model employs two regularization terms to regu-
larize the level set function, the initialization of the level set function can be flexible, and 
it doesn’t have to be initialized to a signed distance function. In this paper, it is defined as,

(3.16)
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where C is an initial contour. The regularization parameter ν in the proposed model weights 
the level set function close to a signed distance function. In the experiment, we tested it 
over a wide range ν ∈ [0.01, 1], and noted that the results are not very sensitive to it, so it is 
set as ν = 0.1 in all experiments. The parameter μ weights the arc length of the zero level 
set (i.e., active contour), which is assigned according to the following criteria. If the test 
data is a noise-free image, the parameter μ is set as a smaller value to alleviate the penalty 
for the arc length and achieve a fine segmentation (i.e., most details be detected); Con-
versely, if the test data is a noisy image, the parameterμ is set as a larger value to boost the 
penalty for the arc length and eliminate the effects of noise points. The parameter a weights 
the prior constraint of the image. We set a as a larger value to increase the prior constraint 
for noisy test data, and a smaller value to reduce the prior constraint for the noise-free test 
data. The other parameters are set as time step Δt = 0.1, the regularization parameter of 
Hε(ϕ) is set as ε = 3, the regularization parameter of |∇ui(x)|ϵ is set as ϵ =  10−6, the stopping 
criterion parameter κ =  10−3.

4.1  The experiments for noise free images

A. The performance of the proposed LGM model

This experiment aims to show the performance of the proposed LGM model and the 
algorithm for several noise-free images. The experimental results are shown in Fig. 1 test 
images are a synthetic image and three real images (flower, plane and leaf), which are 
shown in the first column. The synthetic image contains intensity inhomogeneity and blur-
ring edges. In addition, there are two holes in the object, which is difficult to be extracted 
during the evolution of the contour. The three real images contain complex background, 
obvious intensity inhomogeneity and deep concave edges. The second column shows the 
initializations of the active contour, where the first two are drawn by hand, and the last two 
are drawn by a circle equation. The third column shows the segmentation results of the pro-
posed model and the last column shows the final convergent contour. From the results, we 
observe that the proposed model can eliminate the effects of the intensity inhomogeneity 
and the complex background, and accurately extract the desired target objects. In addition, 
the blurring and deep concave edges are successfully captured by the proposed model. We 
note that the initializations obtained by hand or a circle equation both can achieve accurate 
segmentation. So, in the following experiments, the initial contours are set as a circle auto-
matically obtained by a equation.

(a)Test images           (b)Initialization        (c)Segmentation results    (d)Convergent contour

Fig. 1  The segmentation results of the proposed model for noise-free images. aTest images b Initialization 
c Segmentation results d Convergent contour
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To demonstrates the convergency of the algorithm, the plots of the LGM energy ver-
sus the iterations are shown in Fig. 2, where the test data are the four images in the first 
experiment, and the LGM energy is computed by (3.12). We can see from Fig. 2 that 
the LGM energy first decays sharply and then gradually stabilizes to a constant with 
the iteration increasing, which demonstrates that the proposed algorithm converges well 
numerically.

B. The comparisons with LBF and LGDF

In this experiment, the proposed LGM model is compared with two famous local 
variational level set models, LBF [27] and LGDF [45], where LBF is the first one to 
incorporate local information in the model to capture the local changes of the intensity, 
which can effectively segment image with intensity inhomogeneity; and LGDF is an 
improved version of LBF, in which the Gaussian distribution with both varying mean 
and variance is used to fitting the image in a local region. Such scheme enables us to 
obtain a finer segmentation than LBF.

(c)plane (d)leaf

(a)synthetic image (b)flower

Fig. 2  The plots of the LGM energy versus the iterations. a synthetic image b flower c plane d leaf
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Firstly, three synthetic images are used as the test data, which contain intensity inho-
mogeneity, uneven background, deep concave boundary. The segmentation results are 
shown in Fig. 3. The first column show the initialization, the following three columns 
respectively show the segmentation results of LBF, LGDF and the proposed LGM, and 
the last column shows the convergent contours of LGM. It can be seen that the proposed 
LGM can eliminate the influence of intensity inhomogeneity and uneven background, 
and accurately capture the desired objects. In addition, deep concave boundary and the 
holes in the object are also detected. LGDF also can obtain the satisfactory results, and 
there are few pseudo edges in the segmentation results. LBF has the worst performance, 
and a lot of pseudo edges are appeared in the segmentation results.

Next, three natural images are used as the test data, which contain more complex 
objects and backgrounds than synthetic images. The segmentation results are shown in 
Fig. 4. Again, the proposed LGM is compared with LBF (second column) and LGDF 
(third column). From the results, we observe that the LBF model over-segments the 
images with severe intensity inhomogeneity, there are a lot of pseudo edges appeared 
in the segmentation results. The LGDF model can obtain the satisfactory segmentation, 
only a few of the targets are missegmented. In contrast, the LGM model has the best 
performance, the objects are accurately detected and there is no missegmentation in the 
results.

At last, the models are tested on three medical images that are particularly challenging 
to segment due to the presence of severe intensity inhomogeneity, complex backgrounds, 
and low contrast. The segmentation results are shown in Fig.  5. It can be seen that the 
proposed LGM model can accurately capture the desired objects, and there is no misseg-
mentation and boundary- leakage in the results. While the LBF model often over-segments 
the images, and there are lots of pseudo contours appeared in the segmentation results. The 
LGDF model can yield the satisfactory segmentation results. However, from the Table 1, 
we observe that compared with the proposed model, LGDF requires more computing time.

     
(a)Initialization        (b) LBF            (c) LGDF          (d) LGM       (e) Contour of LGM 

Fig. 3  The segmentation result s or noise free synthetic images. a Initialization b LBF c LGDF d LGM e 
Contour of LGM
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From the experiment above, we conclude that LBF model can deal with intensity 
inhomo- geneity to a certain extent, it is still unable to segment images with complex 
foreground or back- ground. Compared with LBF, LGDF can better segment images with 
intensity inhomogeneity and complex foreground or background because the more precise 
fitting energy with varying means as well as variances is used in the model. The proposed 

(a) Initialization (b) LBF (c) LGDF (d) LGM (e) Contour of LGM

Fig. 4  The segmentation results for noise free natural images. a Initialization b LBF c LGDF d LGM e 
Contour of LGM

(a) Initialization (b) LBF (c) LGDF (d) LGM (e) Contour of LGM

Fig. 5  The segmentation results for noise free medical images. a Initialization b LBF c LGDF d LGM e 
Contour of LGM
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LGM has the best performance because besides the use of the precise fitting energy, the 
MRF regularization term is introduced in the model, which can further eliminate the inter-
ference of intensity inhomogeneity and complex background. In addition, Table 1 shows 
that compared to LGDF, LGM requires less computing time.

4.2  The experiments for noisy images

A. The experiments for noisy synthetic images

In this experiment, we test the models for noisy synthetic images. The Jaccard similar-
ity coefficient (JSC) [39] is employed to quantitatively evaluate the segmentation perfor-
mance, which is defined as,

where A and B are two sets respectively representing the ground truth and the segmentation 
results obtained by the models, and N(·) is the potential of the set counted by the number of 
the pixels in the set.

Test data are two synthetic images that are contaminated by Gaussian noise with vari-
ance ofσ2 = 10, 30, 60. In addition, the model is compared with CV [9], LBF [27], LIF [50], 
and LSACM [49] models. The segmentation results of two images are shown in Figs. 6 and 

JSC(A,B) =
N(A ∩ B)

N(A ∪ B)

Table 1  The CPU time of the three models for noise free images(/s)

Images T Oval Leopard Horse Swan Cell Ventricle Vessel

LBF 4.4822 3.1244 2.9507 4.7404 2.7765 2.6694 2.7439 8.6535
LGDF 8.5810 12.5798 34.7114 25.4512 10.6730 9.5606 7.8184 12.0608
LGM 5.2496 5.8787 14.0974 6.3911 4.7972 5.0525 3.8033 8.9379

 
Nosiy images CV LBF LIF LSACM LGM Contours 

Fig. 6  The segmentation results of noisy synthetic image I. Nosiy images CV LBF LIF LSACM LGM Con-
tours Noisy image CV LBF LIF LSACM LGM Contours
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7, respectively. In the two figures, we show the segmentation results of the noisy images 
with noise variance of σ2 = 10, 30, 60 from top to bottom. From the results, we observe 
that all these five models can accurately segment the images contaminated by weak noises 
(see first rows). But for the images with strong noises, the proposed model has the best per-
formance due to the use of MRF regularization. And the segmentation results obtained by 
the other four models contain more or less pseudo boundaries (see last rows). The JSC line 
charts shown in Fig. 8 further demonstrate this point.

B. The experiments for Gaussian noisy images

In this experiment, several real and synthetic images contaminated by Gaussian noise 
with different variances are used to test the models. In addition, the proposed LGM 

Noisy image CV LBF LIF LSACM LGM Contours

Fig. 7  The segmentation results of noisy synthetic image II

(a) (b)

Fig. 8  The JS coefficients of the segmentation results of the two noisy synthetic images
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model is compared with six state-of-the-art variational level set models (LBF, MCV 
[48], CV, LSACM, LIF and LGDF). Figures 9, 10 and 11 show the segmentation results 
of the images contaminated by Gaussian noise with 10, 20 and 30 variance, respectively. 
Table 2 lists the CPU time consumed by the models. From the experimental results, it 
can be observed that the proposed model has the superior performance than LBF, MCV, 

(a)Initialization (b) MCV (c) LBF (d) LGM (e) Contours

Fig. 9  The comparisons with MCV and LBF for Gaussian noisy images (σ2 = 10) (a) Initialization (b) MCV 
(c) LBF (d) LGM (e) Contours

(a)Initialization (b) CV (c) LSACM (d) LGM (e) Contours

Fig. 10  The comparisons with CV and LSACM for Gaussian noisy images (σ2 = 20) (a) Initialization (b) 
CV (c) LSACM (d) LGM (e) Contours
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CV, LSACM and LIF models. It can accurately capture the contours of the desired tar-
gets, and there are few pseudo boundaries appeared in the segmentation results. While 
the segmentation results obtained by the other five models contain more or less pseudo 
boundaries due to the influence of the complex background, noise and texture. LGDF 
can get satisfactory segmentation results, but it consumes more CPU time than the pro-
posed LGM model as shown in Table 2. The reason is that compared to LGDF, the MRF 
regularization is used in the LGM model, which takes very few iterations to converge.

 III. The experiments for speckle noisy and salt and pepper noisy images

This experiment aims to test the models for the images contaminated by speckle noise or 
salt and pepper noise. Again, the proposed model is compared with CV, LBF, LIF, LGDF, 
LSACM and MCV models. The segmentation results are shown in Fig. 12, in which the 
first two rows show the results of Star and Horse images contaminated by speckle noise 
of 0.01 intensity, and the last two rows show the results of Ventricle and Bird images 

(a)Initialization (b) LIF (c) LGDF (d) LGM (e) Contours

Fig. 11  The comparisons with LIF and LGDF for Gaussian noisy images (σ2 = 30) (a) Initialization (b) LIF 
(c) LGDF (d) LGM (e) Contours

Table 2  The CPU time of the different models(/s)

Images Noise Model Time Model Time Model Time

Car
Vessel Bear

σ2 = 10 LBF
LBF
LBF

2.0822
1.6423
2.6473

MCV
MCV
MCV

0.5276
0.5292
0.5303

LGM
LGM
LGM

3.1497
4.6504
2.1926

Tumor
Circle Flower bed

σ2 = 20 CV
CV
CV

2.6822
1.1728
0.8853

LSACM
LSACM LSACM

10.2306
17.4723
20.7142

LGM
LGM
LGM

3.6214
5.7168
6.5103

Ninetyeight
Cell Wrench

σ2 = 30 LIF
LIF
LIF

6.7964
4.2805
5.8782

LGDF
LGDF
LGDF

18.1431
7.5698
10.0505

LGM
LGM
LGM

9.1248
4.6429
5.2376
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contaminated by salt and pepper noise of 0.01 intensity; the first column shows the initiali-
zation, and the following columns respectively show the segmentation results of the seven 
models. Table 3 lists the CPU time costed by the models. From the results, we observe that 
LGDF and the proposed LGM have the best performance among these seven models, both 
of which can eliminate the effects of noise and intensity inhomogeneity, and accurately 
capture the desired targets, but Table  3 shows that LGM model requires less CPU time 
and is more efficient than LGDF model due to the use of MRF regularization. The other 
five models can not accurately capture the objects, and more or less pseudo contours are 
appeared in the result.

4.3  Quantitative analysis on Weizmann dataset

In this section, to further verify the effectiveness and the adaptability of the proposed 
model, we test the model on Weizmann dataset [1] that contains 200 images with one or 
two salient objects. The ground truths in this dataset are given by the providers, which are 
binary maps. Three matching coefficient indexes concluding JSC, Dice similarity coeffi-
cient (DSC) [39] and Volumetric overlap error (VOE) [11] are used to quantitatively evalu-
ate the performance, which are defined as,

Initial      CV        LBF       LIF       LGDF    LSACM     MCV      LGM

Fig. 12  The segmentation results of the images contaminated by speckle noise and salt and pepper noise. 
Initial CV LBF LIF LGDF LSACM MCV LGM

Table 3  The CPU time consumed by the different models(/s)

Images Noise CV LBF LIF LGDF LSACM MCV LGM
Time Time Time Time Time Time Time

Star
Horse

Speckle
(0.01)

1.8524
2.2845

4.3534
6.3863

3.9979
5.6093

11.4882
12.8013

21.9183
45.3302

1.6984
1.2154

5.8726
6.6054

Ventricle
Bird

Salt and pepper
(0.01)

2.2192
2.1061

3.8344
3.1085

2.7509
2.2599

9.1914
10.1892

13.4442
18.7612

1.1422
1.1795

4.5140
5.9142
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where A and B indicate the segmentation result obtained by the models and the ground 
truth, respectively. We note that the closer the JSC and DSC approaches 1, or VOE 
approaches 0, the higher the matching degree between segmentation A and ground truth B 
is, and the better the segmentation quality is. Again, we compare the proposed model with 
several level set models including CV, LBF, LGDF and MCV.

Figure  13 shows the segmentation results of three images in the Weizmann dataset. 
From the results, we observe that the proposed model can extract the object contour very 
accurately. There are very few pseudo contours appeared in the segmentation results. The 
DSC, JSC and VOE values are listed in Table 4. It can be seen that the proposed model has 
the largest DSC and JSC values and the smallest VOE values for the three images, which 

DSC(A,B) =
2N(A ∪ B)

N(A) + N(B)
,VOE(A,B) =

N(A − B)

N(A ∪ B)

(a)Initialization (b)CV          (c)LBF         (d)LGDF         (e)MCV        (f)LGM

Fig. 13  The segmentation results the three images in Weizmann dataset. (a) Initialization (b)CV (c)LBF (d)
LGDF (e)MCV (f)LGM

Table 4  The three index values 
of different models

Image Models CV LBF LGDF MCV LGM

Image1 DSC 0.4932 0.5234 0.6316 0.5222 0.7726
JSC 0.3864 0.4482 0.5792 0.3912 0.6218
VOE 0.5097 0.4091 0.3119 0.4094 0.2803

Image2 DSC 0.5520 0.4937 0.6224 0.5427 0.6510
JSC 0.3814 0.3278 0.5536 0.3812 0.5827
VOE 0.4406 0.5520 0.3814 0.4409 0.2513

Image3 DSC 0.9818 0.9895 0.9906 0.9850 0.9942
JSC 0.9704 0.9764 0.9813 0.9686 0.9845
VOE 0.0082 0.0066 0.0032 0.0076 0.0010

Weizmann
dataset

mDSC 0.6709 0.6938 0.7033 0.6852 0.7365
mJSC 0.6173 0.6322 0.6529 0.6383 0.7028
mVOE 0.2134 0.2263 0.1756 0.2181 0.1600
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further demonstrates the visualization results in Fig. 13. The last three rows show the mean 
DSC, JSC and VOE values of the models tested in the whole Weizmann dataset. We can 
see that the proposed model still has the best performance in terms of the three indexes 
among the five models, which further verify the effectiveness and the adaptability of the 
proposed model.

4.4  The adaptive initialization of active contour

Because the proposed model is a local region-based model, it is sensitive to the initializa-
tion of the active contour. In experiments, we found that if the initial contour is far away 
from the object, it cannot accurately capture the object. Therefore, we use the man-machine 
interaction method to select the initial contour to obtain satisfactory segmentation result. In 
the last experiment, we introduce a method to automatically select the initial active contour 
for different images. The main steps are as follows,

Step 1: Binary segmentation: Selecting a proper grayscale threshold based on histogram 
to segment the image as a binary map.
Step 2: Computing the center of the initial contour: Selecting the barycenter of the 
object area in the binary map as the center of the initial contour, which is computed by,

where xi is the coordinates of the pixels in the object area, and N is the number of pixels.

Step 3: Designing initial contour: Plotting a circle centered at X with ρ radius as the 
initial contour.

In the last experiment, we test the automatic initialization scheme stated as the above. 
Figure 14 shows the segmentation results of the proposed model with such automatic ini-
tialization scheme for three test images. The first column is test image, and the following 
three columns show binary map by threshold method based on histogram, initial contour 
obtained by the automatic initialization scheme, and segmentation contour by the proposed 
model. From the results, we can see that the proposed model with such automatic initiali-
zation scheme can obtain satisfactory segmentation results for simple images, such as the 
images in the first and second rows. However, for complex images such as the X-ray finger 
image in the last row, it cannot obtain the optimal segmentation result.

5  Conclusion

In this paper, based on MAP criterion, we proposed a variational level set model to seg-
ment images in the presence of intensity inhomogeneity and noise. A local Gaussian fitting 
term with varying means and variances and a MRF regularization term that is related to 
total variation are introduced in the energy. By energy minimization, the local Gaussian 
fitting term can effectively capture the local changes of the intensity, and MRF regulariza-
tion term can eliminate the effects of noise. The experiments demonstrate the effective-
ness and efficiency of the proposed model. In addition, we compared the proposed model 

X =
1

N

N∑
i=1

xi
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with several state-of-the-art variational level set models. The results show that it has the 
best performance. However, we noted that the proposed model is sensitive to the initializa-
tion, and can only detect a single target. In the future, we will focus on automatically ini-
tialization and multi-target detection techniques that combine variation level set and deep 
learning.
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