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Abstract
The Intrusion Detection System plays a significant role in discovering malicious activi-
ties and provides better network security solutions than other conventional defense tech-
niques such as firewalls. With the aid of machine learning-based techniques, such systems 
can detect attacks more accurately by identifying the relevant data patterns. However, the 
nature of network data, time-varying environment, and unknown occurrence of attacks 
made the learning task very complex. We propose a deep neural network that utilizes the 
classifier-level class imbalance solution to solve this problem effectively. Initially, the net-
work data is preprocessed through data conversion followed by the min-max normalization 
method. Then, normalized data is fed to neural network where the cross-entropy function 
is modified to address the class imbalance problem. It is achieved by weighting the classes 
while training the classifier. The extensive experiments are performed on two challenging 
datasets, namely NSL-KDD and UNSW-NB15, to establish the superiority of the proposed 
approach. It includes comparisons with commonly employed imbalance approaches such 
as under-sampling, over-sampling, and bagging as well as existing works. The proposed 
approach attains 85.56% and 90.76% classification accuracy on NSL-KDD and UNSW-
NB15 datasets, respectively. These outcomes outperformed data-level imbalance methods 
and existing works that validate the need to incorporate class imbalance for network traffic 
categorization.
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1  Introduction

With the rapid developments in internet and communication technologies, the volume of 
stored data increases significantly, which augmented the volumes of traffic flowing through 
networks from all over the world [1]. With the surge in traffic over networks, cyber-attacks 
are also rapidly increasing due to novel attacks and mutations of older ones. The frequency 
of attacks exploiting systems’ flaws is expected to escalate as more and more devices con-
nect with the internet [43]. Thus, network security has become a requisite research domain 
to protect data and networks from malicious users and attackers. Several security solutions 
have been available to secure networks from external and internal attacks; however, pre-
venting them is still challenging due to the intrinsic limitations of security policies, fire-
wall, access control scheme, and antivirus software [31]. Intrusion Detection Systems 
(IDS) are deployed to monitor or analyze the ongoing events for detecting potential attacks 
to deal with these large-scale network threats. It provides real-time protection against inter-
nal and external attacks by blocking them upon detection [56].

Intrusion Detection Systems are classified into host-based IDS (HIDS) and network-
based IDS (NIDS) primarily [82]. The HIDS relied on the signature of the known attacks 
to determine the vulnerability of the system. This approach is commonly restricted to a host 
system running a specific operating system and requires an updated database of attacks, 
limiting its ability to detect novel attacks [61]. On the other hand, NIDS targets network 
behavior by analyzing the format and content of network data packets which makes it more 
suitable to detect unknown attacks as well. However, this approach has its own challenges, 
including a high false-positive rate due to non-linear nature of the problem, data imbal-
ance originating from attacks, lack of numerical representation of some features, and high 
dimensionality [27]. To overcome these challenges, machine and deep learning techniques 
have emerged as a promising tool in contrast to contemporary statistical methods and 
knowledge-based expert systems [9, 15].

Deep learning has recently emerged as a disruptive technology in this domain also and 
became hugely popular due to higher accuracy and flexibility with little domain knowledge 
[32, 63]. The neural networks can discover the relevant patterns to discriminate the attack 
from the regular traffic through series of non-linear transformations [40]. Also, a little 
domain knowledge is required to construct models since categorical and strings attributes 
of the network can be converted into numerical form through integer or one-hot encoding 
schemes. Many forms of deep learning such as deep neural network (DNN) [35], autoen-
coders (AE) [4], convolutional neural networks (CNN) [42, 74], and recurrent neural net-
works (RNN) [70, 83] have been utilized so far to provide the solutions to this challenging 
problem. Nevertheless, the performance bottlenecks in recognizing attacks from regular 
traffic still exist due to overfitting and class imbalance problems [26, 27, 74]. Overfitting is 
common in this domain due to the lack of highly representative training data points from 
real-world applications corresponding to the true data distribution. For instance, there is a 
huge disparity in performance on the popular but outdated dataset KDDCup’99 for training 
(>95%) and test sets (<90%) [69]. Consequently, a more challenging dataset NSL-KDD 
was developed from the KDDCup’99 dataset but suffered from the same problem. There-
fore, multiple datasets are required to validate the IDS model. When insufficient training 
data is supplied to neural networks, the model captures noise or superficial information. 
Another problem associated with the IDS is the class imbalance which refers to the uneven 
distribution of class samples in the dataset where majority class outnumbers the minority 
class significantly. When such data is provided to neural networks, they tend to be biased 
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towards the majority class which causes poor performance on the unseen data. Therefore, 
further improvements can be made to obtain better-generalized models by considering the 
above issues while developing IDS.

This paper presents a neural network based approach to categorize the network traffic 
into normal and attack classes. The key contributions of this work are two-fold. Firstly, we 
showed data normalization and selection of neural network components such as initializa-
tion and activation functions play an essential role in identifying the anomalies from the 
traffic data through empirical analysis. Secondly, the crucial issue of class imbalance has 
been tackled at the classifier level. A cost-sensitive loss function is designed for imbal-
anced training and demonstrated to be more valuable than the data level approaches for 
obtaining generalized classification models. The experiments are performed on challeng-
ing NSL-KDD and UNSW-NB15 datasets to assess the performance. The results are also 
compared with the previous works to measure the improvement in classification perfor-
mance. The obtained outcomes show that the balanced NN outperformed not only machine 
learning approaches but also advance deep learning approaches, including CNN and RNN. 
These outcomes also validate the data preprocessing and class imbalance as a crucial bar-
rier impeding the development of better IDS models.

The rest of the paper is organized as follows: Section 2 discusses the previous work on 
IDS using NSL-KDD and UNSW-NB15 datasets. The proposed IDS methodology using 
NN has been provided in Section 3, and the experimental outcomes are provided in Sec-
tion 4. Section 5 concludes the work.

2 � Literature survey

Numerous approaches have been proposed to build effective IDS from network traffic data 
by employing data preprocessing, feature reduction with feature subset selection, PCA and 
AE, machine learning and deep learning techniques. Initially, we briefly review the exist-
ing machine learning based approaches to identify their shortcomings and then present the 
neural network based efforts to solve this problem.

The machine learning based approaches had dominated the research in NIDS for the 
last two decades. These works mainly employed data normalization [44, 57], class imbal-
ance [68]–[60], feature selection [59, 72], ensemble learning [16, 76], fuzzy rules [39] and 
comparison of various classifiers [34, 86] over several datasets. But, these approaches fail 
to address the inherent complex characteristics of the data distribution and usually lack 
in performance. The feature selection methods were unable to improve the classification 
accuracy and suffer from overfitting problem as observed from many studies [59, 72], and 
our experiments [62]. The feature extraction also suffers from similar issues [55], and the 
comparisons of different learning algorithms or ensemble learning [16, 76] were also not 
able to yield satisfactory performance. The class imbalance problem which is inherently 
manifested in IDS has been addressed by a few researchers at the data level. For instance, 
Wu et al. [68] combined k-means clustering and SMOTE and Tan et al. [67], and Priya-
darsini [60] used SMOTE on full set of features with random forest classifier. The latter 
authors also performed feature selection using artificial bee colony algorithm.

On the other hand, deep learning showed significant improvements comparatively. Sev-
eral forms of the artificial neural network (ANN) have been used to solve this problem, 
including self organization map (SOM) by Ibrahim et  al. [23] for classifying attacks on 
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KDDCup’99 and NSL-KDD datasets. Almi’ani et  al. [3] clustered the outputs of SOM 
with k-means where largest cluster represents normal traffic while smaller one indicates the 
attack using NSL-KDD problem. Moukhafi et al. [51] used it with genetic algorithm over 
KDDCup’99 and UNSW-NB15 datasets. The works based on feedforward neural networks 
include comparing several backpropagation training algorithms on NSL-KDD [25] and 
selecting features on UNSW-NB15 dataset [48] using MLP classifier. Ding and Wang [12] 
and Kim et al. [35] used slightly different DNN models to detect anomalies in KDDCup’99 
dataset. The convolutional-based approaches have been utilized in [42] where ResNet 50 
and GoogLeNet models were used to identify attacks through conversion of NSL-KDD 
data into images. Using CNN, Wu et al. [77] proposed a cost-sensitive imbalance approach, 
Nguyen et al. [54] detected DoS attacks and Verma et al. [74] applied Adaptive Synthetic 
(ADASYN) sampling on NSL-KDD dataset to overcome the class imbalance. Some works 
focused on the feature transformation through AE, where Azar et al. [84] transformed the 
NSL KDD dataset and compared four classifiers. Zhang et al. [85] added a softmax layer 
to AE for the NSL-KDD problem whereas Khan et  al. [78] proposed a two-stage semi-
supervised approach using AE for KDDCup’99 and UNSW-NB15 problems. Al-qatf et al. 
[4] used the combination of AE and SVM for solving binary and multiclass problems. 
Dong et al. [13] selected features with the multivariate correlation analysis and fed them to 
LSTM to solve NSL-KDD and UNSW-NB15 classification problems. Yin et al. [83] used 
RNN to solve binary and multiclass classification problems whereas Tchakoucht and Ezzi-
yyani [70] used multi-layered echo-state machine on NSL-KDD and UNSW-NB15datsets.

Recently, Sethi et  al. [64] used Deep-Q-Network to discriminate normal and attack 
samples on UNSW-NB15 dataset. Wu et al. [78] combined Deep Belief Network (DBN) 
and feature weighing to develop the IDS using NSL-KDD dataset. The deep neural net-
works have been used with PCA reduced data dimensionality in [63] for NSL-KDD data-
set and extra trees ranked features of UNSW-NB15 and AWID datasets in [29]. Ashiku 
and Dagli [7] used CNN to classify attacks present in UNSW-NB15 dataset whereas Su 
et al. [66] proposed multi-layered BAT-MC model comprising of multiple CNN layers, a 
bi-directional LSTM layer, and an attention layer to detect anomalies in network traffic. 
Wu et al. [79] combined AE and kernel machine learning to solve the NSL-KDD problem. 
The stacked AE was used for feature transformation, kernel approximation was performed 
with random fourier feature selection approach, and linear SVM was used for learning. 
Ieracitano et al. [24] proposed combining AEs and LSTM for the same problem. Mighan 
and Kahani [49] extracted latent features using stacked AE and used SVM for classifica-
tion. Jaing et al. [27] used the combination of under and oversampling to deal with the data 
imbalance problem where One-Side Selection (OSS) was used to reduce the noise samples 
in majority category, and SMOTE was used to increase the minority samples. A deep hier-
archical model combining CNN and Bi-directional LSTM was employed for classification. 
Using CNN, the cost-sensitive approaches to handle class imbalance were proposed in [21, 
38] with focal loss functions for NSL KDD, UNSW-NB15, and Bot-IoT datasets.

The analysis of existing works reveals that the neural network based approaches are 
becoming more prevalent with the recent advances in deep learning. The majority of the 
researchers have developed end-to-end models using deep neural networks, CNN, and 
LSTM approaches for classification of traffic and employing AE primarily to reduce data 
dimensionality. These models yield some fruitful outcomes in terms of data dimensional-
ity as well as better classification. However, the current works focus more on advanced 
deep learning approaches to alleviate the performance bottlenecks in this domain instead 
of resolving the class-imbalance issue. As a result, this relevant issue has been tackled in 
few works only where data and classifier level methods have been suggested. Additionally, 
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recent efforts are directed towards cost-sensitive approaches. So, there is scope to develop 
the neural network based generalized IDS models through classifier-level balanced 
learning.

3 � Materials and methods

This section provides the details of the datasets considered in the study and the proposed 
approach for the classification of normal and attacks network traffic.

3.1 � Datasets

In this paper, two challenging datasets, NSL KDD and UNSW-NB15, are collected from 
public sources to develop effective IDS. A brief description of both datasets is given as 
follows:

3.1.1 � NSL KDD dataset

The KDDCup’99 dataset has been commonly used to solve network intrusion with ML 
techniques. The classifiers tend to overfit it due to numerous redundant records. The num-
ber of repeated samples belonging to attacks far exceed the normal class sample in both 
training (more than 90%) and testing (more than 80%) sets of this dataset, which intro-
duced significant bias and resulted in high accuracy. To resolve this issue, a more chal-
lenging NSL KDD set was proposed that consists of KDDTrain+ and KDDTest+ having 
125,973 and 22,544 samples respectively. The details of the dataset are provided in Table 1 
along with the class balance ratio.

3.1.2 � UNSW‑NB15 dataset

Another widely used dataset is the UNSW-NB15 which is developed with IXIA Perfect 
Storm tool at Australian Centre for Cyber Security. Unlike conventional datasets, it con-
tains several modern synthesized attacks, including worms, fuzzer, generic, and recon-
naissance. The attributes are categorized into five groups: flow, basic, content, time, and 
additional generated features. Table 2 provides the details about this dataset along with the 
class balance ratio.

3.2 � Proposed work

Figure 1 shows the flowchart of the proposed IDS approach with neural networks. The raw 
traffic data from networks contain heterogeneous feature types such as binary, numerical 

Table 1.   Description of NSL 
KDD dataset

Set Instances Classes Balance Ratio
(Attack/Normal)

Normal Attack

KDDTrain+ 125,973 67,343 58,630 0.87
KDDTest+ 22,544 9,711 12,833 1.32
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and categorical. Initially, categorical is converted to numerical form using integer encoding 
to attain homogeneity. Afterward, data is normalized to have a uniform data distribution 
for all features. Then, normalized data is fed to the neural networks model to differentiate 
the traffic into normal and attack. The model is trained with the cost-sensitive loss function 
through class weights to deal with the imbalance issue. The weight for each class is com-
puted based on a heuristic measure which is proven to be useful for better performance. 
The detailed methodology is provided as follows:

3.2.1 � Data preprocessing

Data preprocessing is a prerequisite step in modeling neural networks for analyzing com-
plex features. It includes the transformation of categorical data and rescaling of data 
through normalization. Both NSL-KDD and UNSW-NB15 datasets consist of numeric and 
categorical attributes. In these datasets, three features are categorical while 38 features of 
NSL-KDD and 39 features of UNSW-NB15 are numeric. The categorical features are con-
verted into numerals using integer encoding scheme. For instance, ‘protocol’ attribute in 
NSL-KDD defines TCP, UDP, and ICMP protocols to make the connection. To convert 
this attribute into the numeric form, each protocol is assigned with an integer. In this case, 
TCP, UDP, and ICMP values are converted into 1, 2, and 3 respectively.

After converting all features, it is essential to rescale them in a uniform range for better 
performance. The unnormalized features with different ranges introduce bias in learning as 

Table 2.   Description of 
UNSW-NB15 dataset

Set Instances Classes Balance Ratio
(Attack/Normal)

Normal Attack

Train 175,341 56,000 119,341 2.13
Test 82,332 37,000 45,332 1.22

Neural Networks Class Weights

IDS Model

Raw Data

Data Normalization Data Conversion

Data Acquisition

Data Preprocessing

Training

Sources

Fig. 1.   Flowchart of the proposed IDS approach

8504 Multimedia Tools and Applications (2022) 81:8499–8518



1 3

the greater numeric feature values dominate the smaller ones [65]. The training algorithms 
of neural networks also fail to converge due to an uneven range of features [19]. Thus, data 
is normalized with the min-max method on the basis of the empirical analysis involving 
several normalization methods. This normalization has been widely used in existing IDS 
approaches also [4, 23]. In this method, the features are rescaled to the interval [0, 1], and 
it is given as follows:

where xi represents the ith feature of data (denoted as x) to be learned by the classifier, 
min and max represents the minimum and maximum value the ith feature respectively.

3.2.2 � Neural networks

The recent breakthroughs in artificial neural networks have improved the learning capa-
bilities of machines by manifolds. This powerful learning technique known as deep neural 
networks has achieved state-of-the-art performance on numerous classification problems 
in the field of image recognition [21, 38], speech [18, 22], and natural language processing 
[11, 28]. Deep neural networks consist of multiple layers of non-linear functions which are 
composed in series. These networks are different from the conventional shallow networks 
which allow better function approximation. The shallow networks correspond to the model 
with a single hidden layer, whereas several layers correspond to deeper networks. DNNs 
are preferred over shallow networks as more compact representation of the same functions 
can be achieved. Other critical advances in the neural network are better activation func-
tions, parameter initialization, and backpropagation training algorithms. We discuss these 
components in detail as follows:

Firstly, the activation functions play a vital role in the performance of neural networks. 
The rectified linear unit (ReLU) is the most popular non-linear activation function that con-
verges very quickly compared to smoother functions such as sigmoidal and hyperbolic tan-
gent [40, 53]. It is given as f(z) = max(z, 0) where z represents the input units. It preserves 
the linear nature for positive values while pruning the negative ones. Thus, the sparse acti-
vations helps to obtain superior performance as well as to avoid the vanishing gradient 
problem. However, dropping negative values is not always helpful and causes the dead 
neuron problem [81]. This problem deactivates a large portion of the network and thereby 
limiting the contribution of the model. To resolve this issue, better non-linear activation 
functions belong to the rectified unit family have been proposed. The Leaky ReLU [45] is 
one of the popular choices among them that allows the nonzero gradient for the negative 
values. It is given as follows:

where z indicates the input units, y indicates the output units, and a is a fixed param-
eter in intervals 0 and 1 that controls the negative units. This function allows all positive 
values and some parts of the negative units. As the derivative is not always zero, the 
probability of the silent neurons reduces significantly. Leaky ReLU has outperformed 
ReLU in numerous studies [10] and was also found to be best suited to small datasets 
as compared to ReLU during the empirical analysis of four ReLU based functions [80]. 

(1)x̂i =
xi −min

(
xi
)

max
(
xi
)
−min

(
xi
)

(2)y =

{
z if (z ≥ 0)

az otherwise
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Secondly, the neural networks are susceptible to random initialization of networks 
which can cause vanishing gradient and exploding gradient problems. As a result, the 
optimizers such as standard gradient descent usually perform poorly with deeper net-
works than the statistics-based weight initializers. Thus, parameter initialization also 
plays an essential role in the performance of different architectures. Glorot initializa-
tion [17] is the most common approach in which the network is initialized by selecting 
weights from the normal distribution between (−s, s) where

where fan-in and fan-out indicate the numbers of inputs and outputs to a neuron.
Lastly, the neural networks have been primarily trained with gradient descent (GD) 

optimization techniques. The gradient descent minimizes the objective function, typi-
cally cross-entropy, by updating the parameters of neural networks in the direction 
opposite to gradient. However, these methods suffer from convergence issues, especially 
when the loss functions are non-complex. They converge very slowly and require an 
adequate learning rate depending upon the problem which makes them highly suscepti-
ble to trap in a local minimum. Therefore, stochastic gradient descent (SGD) algorithms 
are employed to find solutions with low training error and provide good generalization 
[20]. Adam [37] is one of the most successful first order SGD optimization techniques 
that accelerates the training with adaptive step size and momentum. This method main-
tains the learning rate for every parameter by averaging the first and second moments 
of the gradients and also introduces the bias correction. This improves the convergence 
rate and makes Adam an excellent training algorithm that can realize the advantages of 
AdaGrad (adapts learning rate for optimization) and RMSProp (bias-correction allows 
sparse gradients) methods. It is given as follows:

where t indicates the time step, mt indicate the first moment, vt indicate the second 
moment, and β1 and β2 are the decay factor. The bias correction is given as follows:

where � t
1
 and � t

2
 are the tth power of β1 and β2 respectively. Each parameter is then 

updated as follows:

where αt is the learning rate, and ϵ is s a small constant to avoid division by zero.
The proposed multilayer neural networks consist of an input layer, two hidden layers, 

and one output layer. The activation functions at the hidden layers are Leaky ReLU with 
the parametric setting of a = 0.3, whereas softmax is used at the output layer. The num-
ber of neurons is set to 100 and 200 at the hidden layers. The network is trained using 
mini-batch of 128 training samples and by minimizing the cross-entropy between the 

(6)s =

√
6

fan − in + fan − out

mt = �1mt−1 +
(
1 − �1

)
gt

(3)vt = �2vt−1 +
(
1 − �2

)
g2
t

(4)m̂t =
mt

1 − 𝛽 t
1

, and v̂t =
vt

1 − 𝛽 t
2

(5)𝜃t = 𝜃t−1 −
𝛼t√
v̂t + 𝜖

m̂t
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binary class label vector y = [yA, yN] and the output probability vector ŷ =
[
ŷA, ŷN

]
 . The 

binary cross-entropy is given as follows:

Adam is used to training the network with the following parameters: learning rate (αt) is 
set to 0.001, and β1 and β2 are set to 0.9 and 0.999 respectively.

3.2.3 � Class imbalance

The issue of class imbalance is prevalent in intrusion detection problems due to the lack of 
sufficient data pertaining to attacks. It refers to improper distribution of data in which one 
class contains a significantly large number of instances compared to others. While training 
the model with such data, the classifiers tend to be more skewed towards majority class 
instances than minority class ones. Although the performance of the model becomes high 
due to the biased classification, minority class instances suffer greatly. The results usu-
ally contain a high false alarm rate. Therefore, this problem needs to be addressed before 
training the model so that the underrepresented class could have the same importance in 
learning as does the majority class. Class imbalance can be tackled using several ways at 
the data and classifier level. At the data level, sampling the data is the popular technique 
that aims to balance the class distribution of the training data [71]. The balancing can be 
achieved by either selecting fewer instances of the majority class to equalize the minority 
class instances which is known as under sampling or adding new instances to the minority 
class to balance the majority class instances which is known as oversampling.

At the classifier level, this issue is handled with the cost-sensitive approach. In this 
approach, the penalty for the misclassification of minority classes is applied to force the 
learning algorithms to focus more on these classes [8]. It is attained by either assigning 
weights to the classes depending upon their number of instances or explicitly adjusting the 
prior probabilities of the classes. The first approach is more commonly used to balance dif-
ferent classes at the training time. It is implemented in the form of a loss function by using 
different error penalties for classes. On the other hand, testing time cost assignment is done 
either by assigning threshold values to the prior probabilities or adjusting F-score [8].

In this work, weights are assigned to the classes using heuristic measures [36], which 
is proven to be helpful in solving many classification problems effectively in recent times 
[41], [58], [47]. The weights are determined for each class as follows:

where |A| and |N| denote the total samples belonging to attacks and regular traffic respec-
tively, and wA and wN are the corresponding loss weights. The weight for each class modi-
fies the binary cross-entropy function for training as follows:

(7)E(y, ŷ) = −
(
yA log

(
yA
)
+ yN log

(
yN

))

wA =
|A| + |N|
2 |A|

(8)wN =
|A| + |N|
2 |N|

(9)E(y, ŷ) = −
(
wAyA log

(
yA
)
+ wNyN log

(
yN

))
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This class-weighted function is used to train neural networks for identifying attacks 
from normal traffic.

4 � Experimental results

The proposed methodology is implemented in python using tensorflow and sklearn using 
Intel® Core™ i5-Processor and 8GB RAM. Two widely used datasets, namely NSL-KDD 
and UNSW-NB15, have been considered to validate the proposed approach. The perfor-
mance of the model is evaluated based on four metrics, including classification accuracy, 
precision, recall, F-score, area under the curve. These metrics are described as follows:

Classification accuracy  It is defined as the percentage of correctly classified instances to 
the total instances. It is given as follows:

where TP indicates the True Positive, the number of attacks that are correctly identified 
as an attack, TN indicates the True Negative, the number of normal packets that are cor-
rectly identified as normal, FP indicates the False Positive, normal packets that are incor-
rectly identified as attacks and FN indicates the False Negative, attacks that are incorrectly 
identified as normal traffic.

Precision  It is defined as the percentage of correctly identified attacks to the total number 
of records classified as attacks. It is given as follows:

Recall  It measures the percentage of correctly identified attacks versus the total number of 
attacks and is given as follows:

F1‑score  It is the harmonic mean of precision and recall metrics and is computed as 
follows:

Area under the ROC curve (AUC)  This measure is defined in terms of the receiver oper-
ating characteristic (ROC) curve to measure classifier performance. The ROC curve is 
obtained by plotting precision and recall at different decision threshold values. The AUC 
measure is estimated by computing the area under this curve.

ACC =
TP + FN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

FS =
2 ∗ (Precision ∗ recall)

Precision + recall
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4.1 � Fine‑tuning NN architecture

To validate the proposed model for identifying attacks, we performed several experiments 
using the training sets of NSL-KDD and UNSW-NB15 datasets. The holdout approach is 
used for this purpose where train sets of both datasets are split into 70% for training and 
30% for validation. Figure 2 compares the impact of activation and parameter initializa-
tion using the proposed two-layered NN. Specifically, the performance of activation func-
tion Leaky ReLU with glorot initialization has been compared with the combination of 
ReLU activation function and uniform initialization. From the outcomes, the overfitting 
with ReLU and uniform initialization can be observed on both datasets in contrast to the 
proposed approach. In the NSL-KDD dataset, even though ReLU attains better conver-
gence than Leaky ReLU, the validation error exceeds the Leaky ReLU after 40 epochs. 
Similarly, the ReLU obtains better convergence, but validation error does not improve after 
50 epochs and is comparable to Leaky ReLU in the UNSW-NB15 dataset. With Leaky 
ReLU, the training and validation errors are almost similar, thereby showing minor overfit-
ting only. These outcomes showed the negative values have a crucial role in solving both 
problems. Leaky ReLU reduces the frequency of silent neurons by introducing leak correc-
tion in negative units, thereby allowing more neurons to have values during training. Addi-
tionally, parameter initialization with glorot scheme also complements the performance of 
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the network as compared to the uniform one. Thus, the proposed activation function and 
initialization is the better choice for IDS classification.

Further, we analysed the effect of network depths on obtaining generalized models for 
both datasets. The outcomes are shown in Fig. 3 where the comparison has been made with 
one, two, and three hidden layers with the Leaky ReLU activation and glorot initializa-
tion. From the outcomes, it is evident that the shallow network does not attain good per-
formance. Further, when comparing two and three-layered architectures, the former one 
emerges as the better choice. In the NSL-KDD dataset, the performance is almost similar 
to both architectures. On the other hand, the three-layered architecture overfits in contrast 
to the two-layered one. Thus, two-layered architecture is the best choice to develop the IDS 
models.

4.2 � Impact of data normalization

The impact of data normalization on both datasets has been measured to obtain better qual-
ity of data. However, several normalization methods are available for this purpose; the 
best one depends upon the data itself. Thus, these works consider the best normalization 
method based on empirical analysis. Four widely used methods, namely z-score, min-max, 
pareto scaling, and tanh have been considered for experiments. Table 1 provides the out-
comes for each method on both datasets. From the outcomes, it is evident that the data 
normalization improves the classification of IDS with deep neural networks. Additionally, 
min-max normalization helps to attain better performance than the other three methods. 
The un-normalized data result in very poor performance. The best and worst accuracy dif-
ference is 22.67% and 11.61% on NSL-KDD and UNSW-NB15 datasets respectively, when 
comparing the un-normalized with min-max outcomes. Further, the improvement is more 
than 3% on NSL-KDD data while accuracy is improved by 2% on UNSW-NB15 data with 
the min-max method. Thus, it can be concluded that data preprocessing with normalization 
plays a crucial role in building better prediction models for detecting attacks. Subsequently, 
we considered the min-max normalized data for further experiments based on the empiri-
cal evidence (Table 3).

4.3 � Impact of class imbalance

The class imbalance problem is the critical aspect of the IDS model demanding a relevant 
approach. For this purpose, we have measured the effects of class imbalance on classifica-
tion performance with several techniques. Table 4 provides the outcomes obtained with the 
popular methods to deal with class imbalance. It includes imbalanced data as well as data 
and classifier level approaches. At the data level, three widely used approaches, namely, 

Table 3.   Effect of data 
normalization on the 
classification performance of 
IDS systems

Normalization Method NSL-KDD UNSW-NB15

Unnormalized 61.41% 75.02%
z-score 80.03% 84.54%
Min-Max 84.08% 86.63%
Pareto 80.91% 82.98%
tanh 78.48% 83.32%
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over-sampling, under-sampling, and bagging, have been considered. Specifically, cluster 
centroid has been chosen as an under-sampling method in which centers of the clusters 
are determined from the majority class samples using k-means algorithm to reduce the 
instances. SMOTE has been selected as the over-sampling method where samples from the 
minority class are generated using k nearest neighbors randomly. In the bagging approach, 
multiple training sets are used where each set has the same number of instances from both 
classes. In this study, the training sets have been made by partitioning the majority class 
into five non-overlapping subsets. The equal number of minority class instances have been 
selected randomly to make balanced sets. The classification decision has been determined 
with soft and hard decision strategies. In the soft decision, the average of prediction prob-
abilities from 5 sets has been used to determine the final class. On the other hand, the 
majority voting scheme has been employed in the hard decision strategy.

The obtained outcomes show the class imbalance cause lower performance on both 
datasets. In terms of the best class imbalance approach, the classifier level method per-
forms better than the data level approaches. The lower performance is attained with both 
bagging strategies (less than 80% accuracy on both datasets). Further, oversampling with 
SMOTE achieves better performance than the cluster centroids method. The proposed clas-
sifier level scheme outperforms SMOTE on the NSL-KDD dataset by more than 1.12%. 
The higher accuracy is also observed on the UNSW-NB15 dataset, but accuracy is 0.06% 
less which is a minor difference. Thus, empirical evidence indicates the superiority of clas-
sifier-level class imbalance in dealing with the IDS problem.

Table 4.   Comparison of imbalance data with class-balanced approaches on IDS datasets

Imbalance Method NSL-KDD UNSW-NB15

Imbalanced data 84.08% 86.63%
Data Level Under-sampling with Cluster Centroids 81.80% 90.35%

Over-sampling with SMOTE 84.42% 90.82%
Bagging with Majority Voting 73.09% 75.88%
Bagging with Soft Decision 77.79% 76.73%

Classifier Level Class Weights 85.56% 90.76%

Table 5.   Performance of 
proposed approach for the 
prediction of attacks on different 
metrics

Metric Datasets

NSL-KDD UNSW-NB15

ACC​URA​CY 85.56% 90.76%
PRECISION 97.09% 89.32%
RECALL 76.94% 94.52%
F1SCORE 85.85% 91.85%
AUC​ 94.29% 97.46%
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4.4 � Performance with proposed approach

The performance of the proposed approach in terms of accuracy, precision, recall, F-score, 
and AUC for detecting attacks has been provided in Table 5. Figure 4 shows the confusion 
matrices for the NSL-KDD and UNSW-NB15 datasets. From the outcomes, it can be seen 
that the proposed approach alleviates the class imbalance problem effectively. The minor-
ity attack samples on NSL-KDD have been classified more precisely, and a similar trend 
has been observed on UNSW-NB15, where normal samples belong to the minority class. 
The proposed approach detects most of the attacks (>94%) on UNSW-NB15 dataset. In 
contrast, performance on NSL-KDD dataset is lower, a primary challenge that this data-
set poses for machine and deep learning approaches. The F-score is above 85% and 91% 
for both datasets. Nonetheless, the AUC measure above 94% and 97% for NSL-KDD and 
UNSW-NB15 respectively show the superiority of the proposed approach in characterizing 

Fig. 4.   Confusion matrices for the NSL-KDD and UNSW-NB15 datasets

Fig. 5.   ROC with the proposed approach for the NSL-KDD and UNSW-NB15 datasets
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normal and attacks samples. Figure  5 shows the corresponding ROC curves for both 
datasets.

Table 6.   Comparison of the proposed approach with the existing works on NSL-KDD dataset

GP = genetic programming, GNB = Gaussian Naive Bayes, RCDFT = Reduced Class-dependent Feature 
Transformation, MCA-LSTM = Multivariate Correlation Analysis - Long Short Term Memory, ML-ESM 
= Multilayered-Echo State Machine, OC-SVM = One Class Support Vector Machine, FL-NIDS = Focal 
Loss Network Intrusion Detection System, NIDeMFO = Network Intrusion Detection based on Matched 
Filter Optimization, SSAE-FSVM = Separate training with Stacked AutoEncoder and kernel approxima-
tion with random Fourier based SVM, STL-IDS = Self taught learning IDS, DBN-WSVM = Deep Belief 
Network with feature weighted SVM, JSAE-FSVM = Joint training with Stacked AutoEncoder and kernel 
approximation with random Fourier based SVM, CS-NN = Cost-Senstitive–Neural Networks

Author Year Methodology Data 
Normali-
zation

Class Imbalance Accuracy (%)

Tavallaee [69] 2009 NBTree No No 82.02
Kromer [39] 2011 Fuzzy classifier + GP No No 82.74
Mohammadi [50] 2012 RCDFT No No` 80.14
Ibrahim [23] 2013 SOM ANN Yes No 75.49
Ingre [25] 2015 ANN Yes No 81.20
Yin [83] 2017 RNN-IDS Yes No 83.28
Yousefi-Azar [84] 2017 Auto Encoders + GNB No No 83.34
Ashfaq [6] 2017 Neural Network Yes No 84.12
Paulauskas [57] 2017 Ensemble of J48 + PART​ Yes No 84.84
Li [42] 2017 GoogLe Net Yes No 77.04
Li [42] 2017 ResNet50 Yes No 79.14
Tchakoucht [70] 2018 RNN + ML-ESM Yes No 83.00
Almi’ani [3] 2018 Clustered SOM Yes No 83.46
Al-qatf [4] 2018 STL-IDS Yes No 84.96
Vinayakumar [75] 2019 DNN Yes No 80.10
Zhang [85] 2019 Deep Auto Encoder Yes No 79.74
Dong [13] 2019 MCA-LSTM Yes No 80.52
Verma [74] 2019 CNN-1D Yes Yes 84.29
Rawat [63] 2020 PCA+DNN No No 79.30
Khraisat [34] 2020 Hybrid of C5 DT + OC-SVM No No 83.24
Jaing [27] 2020 Deep Hierarchical Network Yes Yes 83.58
Alsaadi [5] 2020 NIDeMFO No No 84.14
Ieracitano [24] 2020 AE Yes No 84.21
Su [66] 2020 Bi-directional LSTM Yes No 84.25
Wu [79] 2020 SSAE-FSVM Yes No 84.60
Wu [79] 2020 JSAE-FSVM Yes No 85.80
Wu [78] 2020 DBN-WSVM Yes No 85.73
Mulyanto [52] 2021 FL-NIDS + DNN No Yes 83.95
Mulyanto [52] 2021 FL-NIDS + CNN No Yes 84.89
Proposed approach CS-NN Yes Yes 85.56
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4.5 � Comparison with existing works

The performance of the proposed approach has been compared with the existing works to 
validate its superiority in developing a good IDS system. The comparisons have been made 
on the test sets of NSL-KDD and UNSW-NB15 datasets using accuracy, and the outcomes 
are provided in Tables 6 and 7 respectively. The proposed approach has obtained satisfactory 
results on both datasets, and evidently, class imbalance plays a crucial role in better perfor-
mance. Most previous works have not considered this issue, thereby unable to achieve better 
performance on both datasets. In NSL-KDD dataset, most of the earlier results (22 out of 29) 
reported accuracy between 80% and 85% as shown in Table 6. One of the data normaliza-
tion methods has been used in many reported works (20 out of 29). But, only four methods 
deal with the class imbalance problem, and these methods reported accuracy in the range of 
84% and 85% which is higher than other approaches. Two works have achieved 85.73% and 
85.80% accuracy, which is 0.17% and 0.24% higher than the proposed work. However, both 
approaches are much complex than the simple and straightforward proposed approach. In [78], 
the combination of deep belief network, feature weighting, particle swarm optimization, and 
SVM was proposed. In [79], autoencoders, kernel approximation, and linear SVM were com-
bined for better performance. Additionally, the class imbalance was not considered in both 
works

In the UNSW-NB15 dataset, most of the works reported accuracies below 90%. Also, 
most works used data normalization (11 out of 15) for performance gains, which is similar to 

Table 7.   Comparison of the proposed approach with the existing works on UNSW-NB15dataset

IG = Information Gain, FFDNN = Feed Forward Deep Neural Network, DT = Decision Tree, RLC-CNN = 
CNN with simple cross-entropy loss function, RLF-CNN = CNN with focal loss function, ELM = Extreme 
Learning Machine, MVT = Multi-Voting Technology, CS-NN = Cost-Senstitive–Neural Networks

Author Year Methodology Data 
Normali-
zation

Class Imbalance Accuracy (%)

Moukhafi [51] 2018 SOM + GA No No 82.91
Dong [13] 2019 MCA-LSTM Yes No 88.11
Khan [33] 2019 Two stage deep learning + AE Yes Yes 89.71
Gao [14] 2019 ELM and MVT Yes No 89.71
Mebawondu [48] 2020 IG and MLP No No 76.96
Jaing [27] 2020 Hybrid sampling + Deep 

Hierarchical Network
Yes Yes 77.16

Sethi [64] 2020 Deep reinforcement learning Yes No 83.80
Kasongo [29] 2020 FFDNN Yes No 85.48
Kasongo [30] 2020 XGBoost algorithm + DT Yes No 90.85
Umar [73] 2020 Relief + DT Yes No 86.41
Aleesa [2] 2021 RNN-LSTM Yes No 85.42
Mulyanto [52] 2021 FL-NIDS + DNN No Yes 86.04
Mulyanto [52] 2021 FL-NIDS + CNN No Yes 86.73
Man [46] 2021 RLC-CCNN Yes Yes 87.90
Man [46] 2021 RLF-CNN Yes Yes 88.70
Proposed approach CS-NN Yes Yes 90.76
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NSK-KDD dataset. On the other hand, several works incorporated the data imbalance issue 
in their method (6 out of 15) while working on this dataset, unlike NSL-KDD as shown in 
Table 7. In terms of performance, the proposed approach outperforms all approaches except 
one. Higher accuracy of 90.85% is reported by Kasongo [30] using Decision Tree classifier. 
However, the reported F1-score of 88.45% is lower than the proposed approach (91.85%). 
These outcomes validate the proposed approach for solving the IDS classification problem 
more effectively in contrast to previous works.

5 � Conclusion

This paper presents a simple and straightforward neural-based approach for differentiating 
the regular and attacks traffic. To establish the superiority of the proposed approach, rig-
orous experiments are performed using two challenging datasets NSL-KDD and UNSW-
NB15. Initially, the empirical analysis of normalization validates the higher performance 
with min-max normalization. It is in contrast to the z-score method which has been widely 
used with deep learning-based approaches but does not achieve reasonable accuracy in this 
domain. Secondly, the impact of class imbalance has been analysed and compared with 
other contemporary approaches such as oversampling, undersampling, and ensemble learn-
ing. The cost-sensitive function emerged as the better option for modeling the IDS prob-
lems as compared to data level and the combination of multiple balance models. Lastly, the 
outcomes are compared against the current works to validate the competitive performance 
on both datasets. In conclusion, the proposed method with class-weighted neural net-
works is helpful for effectively classifying traffic. In the future, this work can be extended 
by introducing the dimensionality reduction with the feature subset approach or through 
new feature representation with autoencoders. The recognition of attacks is another viable 
option to explore the impact of the proposed work.
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