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Abstract
Reconstructing 3D face from sparse points is an ill-posed problem. While there already 
exits available solutions addressing this problem, to our knowledge, we propose a bet-
ter-performed approach which can robustly reconstruct fine 3D face shape. Our method 
includes two modules: face model establishment based on probabilistic principal compo-
nent analysis (PPCA) trained in an unsupervised manner to learn transformation between 
landmarks and point cloud in their low-dimensional representation, and 3D face recon-
struction based on learned relation between them to reconstruct fine face shape. Overall, 
our method considers the probability of face shape and learns more useful information of 
3D face shape. We compare our method with 3 typical and state-of-the-art methods on 
2 datasets and the effectiveness of our method is demonstrated generally. Further experi-
ments on datasets with noise of different intensities show the stability of our method.

Keywords  3D face reconstruction · Landmarks · Probabilistic principal component 
analysis · Learning-based method

1  Introduction

3D face reconstruction has become an important research topic in the fields of com-
puter graphics, computer vision and pattern recognition with its wide using in national 
security, password unlocking, financial payment and cosmetic medicine. 3D face shape 
contains abundant information about the identity of individuals and face reconstruc-
tion methods have been applied in identification [15], face animation [26] and computer 
games. Subsequently, many methods have been proposed to reconstruct facial expres-
sions, poses, and hair  [8, 18]. Though 2D images and videos data are convenient to 
access, the reconstruction of 3D face shape from them are susceptible to changes of 
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light and angels. With the expansions of multi-eye vision and 3D model construction 
methods, the acquisition of 3D data becomes easier. Combining the advantage of con-
taining more depth information, research on 3D face reconstruction from 3D feature 
points becomes increasingly important.

Since sparse points contain less information regarding the 3D face shape, face recon-
struction from sparse points is a highly challenging, ill-posed problem. 3D morphable 
model (3DMM)  [2] is a widely used geometry-based method to solve this problem, 
which obtains the correspondence between landmarks in 2D images and 3D face shape 
and minimizes optimized function to estimate 3DMM parameters. Nonlinear 3D mor-
phable model [28, 29] expresses 3D face shape in a nonlinear manner, which has greater 
representation power than traditional linear 3DMM. These methods cause the disap-
pearance of some facial features and high similarity between reconstructed faces and 
neutral face model.

Learning-based method is more suitable for 3D face reconstruction from sparse 
points and it has two major advantages than geometry-based methods. First, the learned 
prior knowledge can assist in completing missing information of 3D face shape. Second, 
the reconstructed faces are more detailed as a result of learning face features. Recently, 
many works applied deep learning networks [4, 19, 35] to facilitate accurate reconstruc-
tion. However, these methods require large 3D datasets so as to learn abundant prior 
knowledge about 3D face shape, and utilize the loss of landmarks to optimize recon-
structed face which result in the insufficient use of landmarks information.

To address these issues, we combine two feature-extraction statistical methods in model 
establishment: Principal component analysis (PCA) and factor analysis (FA). As a widely 
used statistical method, PCA finds correlations between variables and represents original 
space using principal axes. During dimension reduction procedure, PCA method eliminates 
the noise directly and leads to the loss of some detailed information, while FA method con-
siders small deviation of data. Through this combination, the relationship between sparse 
points and 3D face shape can be learned in greater details using fewer sample faces. 

(1)	 We propose a statistics-based method for face reconstruction by combining PCA and 
FA methods, where the principal axes intuitively correspond to the subspace of face 
shapes. In face shape analysis, we express the 3D face shape in a probabilistic manner. 
The probabilistic presentation preserves more detailed information of a face when 
establishing our face model. Using few sample faces, our method can still reconstruct 
a 3D face with fine details.

(2)	 We apply probabilistic principal component analysis theory and obtain the distribution 
of latent variables by the maximum likelihood function and expectation maximization 
(EM) method. The PPCA method is efficient for dimension reduction based on the faces 
with large dimensions and the EM algorithm generates a subspace full of stability. As 
a probabilistic formulation of PCA applied for face features extraction, the reduced 
representation of a face contains more local details.

(3)	 Our method is effective and adaptable on different 3D face databases based on our 
experiments on the Chinese craniofacial database and 3D FaceWarehouse. Compared 
to the traditional reconstruction methods, our method reduces the average reconstruc-
tion error by 70.35%, 19.23% and 48.78%. Further experiments on datasets with noise 
demonstrate the stability of 3D face reconstruction; in particular, for faces from Face-
Warehouse with added 10% Gaussian noise, our method reduces the face reconstruction 
loss by 18.88% compared with the traditional non-probabilistic method.
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2 � Related work

In this section, related works on the reconstruction of 3D face from sparse points and the 
applications of PPCA method are reviewed.

2.1 � Face reconstruction based on landmarks

Previous works chose landmarks as their input data and proposed several methods for the 
reconstruction of the 3D face shape. Among these methods, the relationship between land-
marks and 3D face shape can be derived from the geometric deforming, supervised learn-
ing and unsupervised learning methods.

Geometric Deforming method Geometric deforming methods reconstruct 3D face shape 
through the deformation of existing 3D face models, Basel Face Model [21] for instance. 
Recently, Xiao [34] reconstructed 3D faces from estimated 3D landmarks by shape defor-
mation. They deformed the 3D faces through a deformation function based on the radial 
basis function (RBF). Since 3D landmarks were estimated from 2D landmarks, the inaccu-
racy may cause unrealistic details in the mouth and nose area. Aji [1] added facial soft tis-
sue thickness (FSTT) on Craniofacial data to obtain the corresponding 3D landmarks and 
generated 3D face shape using the Laplacian deformation. This method estimated 3D land-
marks from skull landmarks, therefore, the changes of age and gender influenced the struc-
ture of the face and gave rise to inaccuracies for the reconstructed faces. Hu [13] recon-
structed the 3D face shape from a set of feature points in an analysis-by-synthesis loop. 
Reconstructed faces using the geometry-based method are usually similar to the neutral 
face model. Geometry-based methods reconstruct 3D face shape through the deformation 
of the established face model, and some details regarding the faces cannot be recovered.

Supervised Learning method Supervised learning methods obtain the relationship 
between input data and 3D faces based on training feedback. Liu  [18] learned 3D shape 
regressors in an interactive process. Fitting such a regressor is an optimization process that 
does not require additional face alignment methods. To enhance the performance of face 
reconstruction, many state-of-the-art methods utilized neural networks for face reconstruc-
tion. Tran [30] applied a state-of-the-art CNN to estimate 3DMM parameters and demon-
strated its excellent performance on face recognition from in-the-wild images compared to 
the traditional 3DMM and 3DDFA methods [2, 38]. Liu [19] reconstructed 3D face shapes 
from in-the-wild unlabeled images with a pose guidance network(PGN) and used 3D land-
marks to obtain parameters to adjust face poses. These works can adjust the reconstructed 
face in real time according to the feedback of the reconstruction error. However, online 
face reconstruction is not suitable for all environments and these methods are susceptible to 
the quality of the training datasets.

Unsupervised Learning method Unsupervised learning obtains a relationship between 
the input and 3D face shape by extracting their features. For an input single image with 
noise, Zhong [37] proposed a coupled facial denoising and reconstruction network (FDR) 
method that utilized a three-tier shape consistency including the feature, depth image and 
surface levels. Compared to the state-of-the-art reconstruction methods, the method of [37] 
was effective in denoising and face reconstruction. The reconstruction from 2D images 
tended to obtain a large, estimated error in depth estimation, and thus affected the recon-
struction performance. Different from 2D images, the 3D representation of a face not only 
contains accurate depth information but also performs more stereoscopic. Therefore, we 

2939Multimedia Tools and Applications (2022) 81:2937–2957



1 3

learn the mapping between the sparse points and the dense point cloud and reconstruct 3D 
face shape from 3D sparse points.

Many researchers prefer to choose 2D images as the input data. Compared to 3D infor-
mation, 2D images have a drawback of lacking depth information, therefore, 3D landmarks 
are selected as the input data in our method. 3D information about face shape can reflect 
depth information and details even they contain only few 3D vertices.

2.2 � PPCA method

PCA [32] is an unsupervised dimension reduction method used in statistics and its obser-
vated values are described by several related variables. Several works further developed 
PCA methods such as sparse principal component analysis (SPCA) [39], robust principal 
component analysis (ROBPCA)  [14], kernel principal component analysis (KPCA)  [23], 
probabilistic principal component analysis  [27] and generalized probabilistic principal 
component analysis (GPPCA) [11]. Tipping and Bishop [27] obtained the probabilistic for-
mulation of PCA and established the probabilistic principal component model that regarded 
latent variables as missing data with latent variables corresponding to principal axes. Then, 
PPCA method was applied to many fields, for example, image processing  [20, 31], disease 
diagnosis [24] and behaviour analysis [9]. Mredhula and Dorairangaswamy [20] employed 
the pixel surge model (PSM) and PPCA method to eliminate the salt-and-pepper noise in 
image processing and utilized filters to improve the quality of image denoising. Vaddi and 
Manoharan [31] applied the PPCA method to reduce the dimensions of the hyperspectral 
image (HSI) into a latent subspace prior to classification, obtaining an excellent result com-
pared to the traditional PCA method. The PPCA method has been applied in disease diag-
nosis, and Shah [24] proposed an automatic heart disease detection method by extracting 
principal features from datasets using parallel PPCA. Geraci and Farcomeni [9] analyzed 
the physical activity levels of the children in the UK using this method. PPCA method 
was used to analyze the relations among multi-variables and obtained the understanding of 
physical activity and inactivity through non-ignorable missing data. These studies proved 
the effectiveness of the principal features extraction and reduced the influence of noise 
through the use of PPCA. The applications of the PPCA method in various fields verified 
its effectiveness on dimension reduction; therefore, our proposed method applies PPCA to 
reconstruct 3D face shape and establishes our 3D face model.

3 � Formulation and our pipeline

In this section, we briefly describe the problem of reconstructing 3D face shape based on 
sparse points, and introduce the pipeline of our reconstruction method.

3.1 � Problem formulation

Mathematically, the problem of the 3D face reconstruction [13] can be described as:

(1)S = �(l)
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where the mapping � ∶ � → � maps sparse representation l ∈ � to the corresponding 3D 
face shape S . Given a face sparse representation l, our objective is obtaining its corre-
sponding 3D face shape.

Generally, � is a linear mapping, [34] proposed a method to obtain the mapping � by 
using radial basis function (RBF). The representation of the 3D face shape is described 
by S = S̄ +W

�
ZS , where S̄ is the average 3D face shape, ZS is the low-dimensional 

representation of the 3D face shape in subspace and W
�
 is the coefficient matrix for sub-

space construction.
Sg denotes the groundtruth of a 3D face, and we define the objective function of 

reconstructing 3D face as (2).

where dist(Sr,Sg) denotes the distance between the groundtruth Sg and the reconstructed 
face Sr . The objective function must be optimized to obtain the mapping � and make the 
reconstructed faces as close to their corresponding groundtruths as possible.

Sparse points of a 3D face contain partial information about distinctive face features. 
The process of generating detailed information regarding 3D face face from sparse 
points is of great challenge. Meanwhile, face dense point space generating from few 
sample faces leads to the incompleteness of the reconstructed face dense point space; 
therefore, we consider the probability of face shape and construct a probabilistic space, 
with the face model established in this work described below Fig. 1.

(2)argmin
�

{dist(Sr,Sg)}

Fig. 1   The pipeline of our method which includes two parts: face model establishment and 3D face recon-
struction
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3.2 � Pipeline

The pipeline of our method includes two modules: face model establishment and 3D face 
reconstruction, in which we establish our 3D face model through few sampled faces and 
reconstruct the corresponding 3D face shape using input sparse points.

In the face model establishment, we exploit PPCA method to extract the principal axes 
from the landmarks dataset � and the corresponding 3D face shape dataset � respectively. Sub-
sequently, we express the landmarks and the 3D face shape in a low-dimensional manner and 
construct corresponding subspaces. We further obtain the transformation mapping between 
two subspaces by least square method. With the mappings of dimension reduction and spatial 
transformation, our 3D face model can be established.

In the 3D face reconstruction, we accept landmarks as an input. With the established face 
model, we obtain the low-dimensional representation of the input landmarks. Then, using 
transformation mapping, we can obtain its corresponding representation in the face point 
cloud subspace. Finally, the dense point representation of the face can be generated by PPCA 
reconstruction method.

4 � Methodology

Based on sparse points, our learning-based method can generate the corresponding 3D face 
shape approximately. To simulate 3D face shape in practical, we consider the noise of the 
sampled faces, construct the probabilistic form of the landmarks and 3D face shape, and apply 
PPCA to generate their low-dimensional representations.

4.1 � Construction of probabilistic space

Generally, 3D face shapes are various in the area of eyes, nose and mouth. To express 3D face 
shapes in the real world as aboundant as possible, we take the probability of 3D face shapes 
into consideration and provide reconstructed faces a more detailed description; therefore, the 
3D face shape can be described as:

where �
�
 denotes the residual of the scanned 3D face, ZS denotes latent variables in 3D face 

shape subspace, and the matrix W
�
 relates 3D face shape and its low-dimensional represen-

tation. In fact, the majority of noises are Gaussian processes, and we regard latent variables 
ZS as the simplest Gaussian distribution ZS ∼ N(0, I) and the noise term �

�
∼ N(0, �2

�
I) . 

Thus the conditional probability distribution of S is S|ZS ∼ N(W
�
ZS + S̄, 𝜎2

�
I) . The prob-

ability density function of 3D face shape S is given as follows.

where ||S|| represents the number of vertices of 3D face point cloud, C
�
= W

�
WT

�
+ �2

�
I 

denotes the 3D face shape covariance, and therefore, the probability distribution of S is 
N(S̄,W

�
WT

�
+ 𝜎2

�
I).

(3)S = W
�
ZS + S̄ + 𝜖

�

(4)
p(S,W

�
, 𝜎2

�
) =

1

(2𝜋)||S||∕2|C
�
|
1

2

∗

exp{−
1

2
(S − S̄)TC−1

�
(S − S̄)}
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4.2 � Dimensional reduction of PPCA method

With the known 3D face shape probability didstribution, the estimation of the coeffi-
cient matrix W

�
 and variance �2

�
 can be generated through its corresponding log-likeli-

hood estimation and (5) provides its logarithm formulation.

where N denotes the number of sample faces, Cov
�
=

1

N

∑N

n=1
(Sn − S̄)(Sn − S̄)T denotes 

the sample covariance matrix of the 3D face shape. The derivation of the log-likelihood 
formulation with respect to W

�
 is as follows.

From (7), the stationary points satisfy (8).

The estimated formulation of the coefficient matrix is given as equation (9) and the maxi-
mum likelihood estimator of variance �2

�
 is given as (10).

where q represents the retained principal components and Uq consists of q eigenvectors of 
covariance Cov

�
 . Λ

q
 represents a diagonal matrix generated by �1, ..., �q that are the eigen-

values corresponding to q eigenvectors, and R denotes an arbitrary q × q orthogonal rota-
tion matrix. The maximum likelihood estimated formulation of the coefficient matrix and 
variance are given by (9), (10). Specifically, we can utilize the EM algorithm to estimate 
them, then the corresponding latent variables can be obtained.

3D landmarks are selected from the point cloud of a face, therefore the probability of 
landmarks should be considered.

(5)
ln{p(S|W

�
, 𝜎2

�
)}

= −
||S||
2

ln (2𝜋) −
1

2
ln |C

�
| − 1

2
(S − S̄)TC−1

�
(S − S̄)

(6)

Lp = ln{p(�|W
�
, 𝜎2

�
)}

=

N∑

n=1

ln{p(Sn|W�
, 𝜎2

�
)}

= −
N||S||

2
ln 2𝜋 −

N

2
ln |C

�
| − 1

2

N∑

n=1

(Sn − S̄)TC−1
�
(Sn − S̄)

= −
N

2
{||S|| ln (2𝜋) + ln |C

�
| + tr(C−1

�
Cov

�
)}

(7)
�Lp

�W
�

= N(C−1
�
Cov

�
C−1
�
W

�
− C−1

�
W

�
)

(8)Cov
�
C−1
�
W

�
= W

�

(9)W
�,ML = Uq(�q − �2

�
I)

1

2R

(10)�2
�,ML

=
1

||S|| − q

||S||∑

j=q+1

�j
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In (11), l̄ and Zl represent the average landmarks of a face and the latent variables in land-
marks subspace, �

�
 denotes the residual of landmarks l, while the coefficient matrix W

�
 

also represents the relation of the landmarks and its low-dimensional representation. By 
utilizing the above-described PPCA method, we can also generate the corresponding low-
dimensional representation of the landmarks.

4.3 � EM based parameter estimation

Generally, EM algorithm is used to estimate the parameters in the maximum likelihood 
function, which can be implemented by dividing into two steps. In the E step, based on the 
observed data, we determine the expectation of likelihood function of the latent variable 
distribution. For example, taking the observed data and latent data in landmarks space, we 
obtain the estimation of maximum likelihood Lp =

∑N

n=1
ln{p(Sn, Z�)} based on the cur-

rent estimation. In the M step, we maximize the expectation of likelihood function and 
update the estimated parameters for achieving the maximum of the likelihood function. 
Related estimation of the parameters can be updated as (12),(13).

The E and M steps iterate continiously to achieve convergence [33], until the estimated 
parameters converge to a fixed value. Then, the mappings H

�
∶ Z

�
→ � and H

�
∶ Z

�
→ � 

can be determined. H
�
 and H

�
 map the landmarks in subspace Z

�
 and the 3D face shape in 

subspace Z
�
 into their original space, respectively. The principal components are extracted 

to obtain a low-dimensional representation and the subspaces of landmarks Z
�
 and face 

point cloud Z
�
 are obtained. Then, we should evaluate the correlation between the sub-

spaces Z
�
 and Z

�
 . We utilize linear spatial mapping to transfer the shape vectors in the 

landmarks subspace into the face point cloud subspace, and the 3D face model is estab-
lished. When the variance �2

�
 is close to 0, the probability model converges to the tradi-

tional PCA model.

4.4 � Unsupervised training on face datasets

Existing unsupervised methods usually exploit the correlation between the landmarks and 
the 3D face shape directly to facilitate 3D face reconstruction, which is full of challenge. 
Therefore, we find an indirect way to learning the correlation between these two spaces so 
as to decrease the complexity of face reconstruction problem.

To reconstruct the 3D face as accurately as possible, the sparse representation of the 
face that we choose must be able to represent the features of a 3D face. Landmarks can 
provide rich semantic information and descriptions of faces such as the corners of the 
eyes and mouth, the nose and the contour of the face. Based on the DLIB SDK [16] and 
MPEG-4 [25] standards, we select 113 landmarks from the face point cloud to make our 
method more efficient. A sample face and its sparse representation are shown in Fig. 2. 
In our method, we first train the landmarks dataset and face point cloud dataset under the 

(11)l = W
�
Zl + l̄ + 𝜖

�

(12)W̃
�
=Cov

�
W

�
(𝜎2

�
I +M−1

�
WT

�
Cov

�
W

�
)−1

(13)𝜎2
�
=

1

||S||
tr(Cov

�
− Cov

�
W

�
M−1

�
W̃T

�
)
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condition of no feedback and aim to map the 3D landmarks to the face point cloud space. 
Therefore, we extract the principal features from the datasets and obtain the optimized 
mapping between the sparse points space and the dense point cloud space.

Feature-preserved learning Our framework takes the sparse points of a face as input and 
can be easily trained to maximize the retained details from the landmarks space and the 
face point cloud space. From Fig. 2 we can observe that the selected feature points contain 
information about the forehead, eyes, nose, mouth and contour of 3D face shape. Since our 
selected landmarks can contain more face features, the relationship between the spaces of 
the landmarks and the face point cloud can become more accurate. More details are illus-
trated in Section 5.

Prior to the reconstruction of 3D face shape based on input sparse points, a 3D face 
model should be established by the learning-based method. For the face model establish-
ment module, we first establish the correlation between the landmarks and the face point 
cloud. Therefore, we preserve the features from the original space and analyze their rela-
tionship. Different from the traditional PCA method, the PPCA method considers the prob-
ability of spaces and preserves more details when extracting principal components. We uti-
lize the PPCA method to preserve the features from the landmarks space and the face point 
cloud space. The EM algorithm introduced above can help estimate the coefficient matrices 
W

�
,W

�
 and variances �2

�
, �2

�
 . As convergence criteria set in [10], we use the criteria that 

the change in the transformation matrix elements must be less than 10−4 when we employ 
the EM algorithm. The process of the first module can be summarized as Algorithm 1, and 
C = WWT + �2I , M = WTW + �2I , d denotes the point number of sample face shape.

Fig. 2   The representation of a 
face from FaceWarehouse. (a) the 
sparse representation of a face. 
(b) the groundtruth of a face

2945Multimedia Tools and Applications (2022) 81:2937–2957



1 3

3D face model establishment In Algorithm 1, we have learned information from the 
datasets and determined the estimations of the coefficient matrices and variances. The 
subspaces of the landmarks and 3D face shape can be generated, respectively. Since 
they are both q-dimensional, we utilize linear mapping to determine the correlation 
between the subspaces of the 3D face point cloud and the landmarks. The mapping 
between the low-dimensional representations of the landmarks and the 3D face shape 
can be described by (14).

These estimated parameters W
�
,W

�
, �2

�
, �2

�
 and spatial transformation mapping T

��
 can 

construct the mapping � ∶ � → � and determine the 3D face model.

4.5 � 3D face reconstruction with landmarks

The process of establishing a 3D face model is an offline learning process, then, we 
can automatically determine the reconstructed face with the input landmarks. Exist-
ing supervised methods obtain the shape estimation with the feedback of the training 
loss, however, their methods require a large number of sample faces and datasets with 
high quality, which results in high-complexity of training step. The input sparse points l 
contain redundant information. Therefore, the reconstructed face obtained directly from 
the sparse points does not necessarily obtain the best reconstruction performance. To 
eliminate the influence of redundant information, we first extract its features based on 
the established 3D face model. We can map the input sparse landmark l into its low-
dimensional representation Zl in the subspace of landmarks as (15).

However, before we obtain the reconstructed dense point representation of a face, the 
landmarks in its subspace must be transformed into the face point cloud subspace Z

�
 . 

Based on the transformation mapping T
��

 , we obtain its representation in the 3D face 
shape subspace. Finally, we utilize the reconstruction method of PPCA to determine our 

(14)T
��
(Zl) = (ZT

�
Z
�
)−1ZT

�
Z
�
Zl

(15)Zl = (WT
�
W

�
+ 𝜎2

�
I)−1W

�
(l − l̄)
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reconstructed face point cloud. Since our method is based on spatial mapping, more details 
can be preserved when transforming the landmarks into the face point cloud. The process 
of reconstructing a 3D face shape is summarized in Algorithm 2.

5 � Experiments and data analysis

In this section, we first determine our experimental setup for face model training and vali-
dation, including the evaluation metric and databases that we apply in our work. To com-
bine PCA and FA, we have implemented PPCA and obtain our 3D face model based on it. 
We compare the effectiveness of our method with 3DMM method [2], PCA-based method 
and PRNet-based method [7]. The 3DMM method is a classic method for reconstruction 
by deforming the 3D face shape. We also implement our method over different datasets to 
prove its adaptability and several experiments over datasets with noise provide evidence for 
its stability in 3D face shape reconstruction.

Datasets We test our proposed method on Chinese craniofacial database [5, 6] and Face-
Warehouse database [3]. Chinese craniofacial database contains the head slice image data 
of Shaanxi Xianyang hospital obtained by using a CT scanning system and consists of the 
craniofacial data of 208 volunteers from the Han nationality in northern China. There are 
93 women and 115 men among these volunteers, with their ages ranging from 19 to 75. 
Each 3D face shape in its dense point representation contains 2709 vertices. These 208 3D 
face shapes in the dataset have been already registered to enable more effective evaluation. 
FaceWarehouse contains 150 3D faces from different ethnic backgrounds using Kinect’s 
rgbd camera. The ages of the individuals range from 7 to 80 and each individual has 47 dif-
ferent facial expressions. Specifically, the dense point representation of each 3D face shape 
in FaceWarehouse consists of 6508 vertices. We use 25 sample faces in Chinese craniofa-
cial dataset and 150 sample faces in FaceWarehouse. For each sample face, we select 113 
landmarks and construct the corresponding landmarks datasets.

Evaluation metric To evaluate the reconstruction performance, we choose the difference 
between the groundtruth Sg and the output reconstructed face Sr as reconstruction loss. 
Specifically, we employ the average Euclidean distance of the corresponding face points to 
measure the different reconstruction performance characteristics and take it as the value of 
the objective function. The reconstruction loss can be represented as follows.
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where Sg,i denotes the ith vertex in groundtruth face, and Sr,i denotes the ith vertex in recon-
structed face. Since the reconstruction loss is defined as (16), a lower reconstruction loss 
indicates our method performs better and the obtained mapping � is more appropriate.

The following experiments were carried out on a laptop with IntelⓇ  CoreTM 
i5-10210U CPU @ 1.6-GHz processors, 16 GB RAM, 64-bit Windows 10 operating 
system, and MATLAB R2019b software.

5.1 � Landmarks selection

Landmarks contain the shape features of a 3D face that may be closely related to the dense 
point representation of a face. Therefore, the selection of the landmarks will influence the 
performance of our method. To locate the feature points appropriately, we have referenced 
the DLIB SDK and MPEG-4 standard for landmarks detection. DLIB SDK for landmarks 
detection contains 68 feature points and the MPEG-4 standard contains 84 feature points. 
We select 113 landmarks to analyze the reconstruction loss with respect to the groundtruth. 
The 113 selected landmarks are arranged in groups such as eyes, cheeks, nose and mouth. 
For these groups, there are 15 feature points in the left eye area, 15 feature points in the 
right eye area, 19 feature points in the nose area, and 27 feature points in the mouth area. 
Moreover, 29 feature points are selected to describe the contour of face shape and 8 feature 
points contain information about the eyebrows and forehead.

To analyze the influence of the landmarks selection on the reconstructed face, we com-
pare our selection with previous works on landmark selection, such as MTCNN(Multi-
task convolutional neural network) [36], DLIB SDK and PFLD(Practical Facial Landmark 
Detector) [12]. Figure 3 illustrates the better performance of 113 selected landmarks and 

(16)Le =
1

||S||
∗

||S||∑

i=1

|Sg,i − Sr,i|

Fig. 3   The comparison of different selected landmarks

Table 1   The comparison of 
different methods on different 
datasets

Method MTCNN DLIB PFLD Ours

Mean Error 0.1225 0.0117 0.0108 0.0100
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Table 1 shows the reconstruction error of different landmark selection methods. Specifi-
cally, as we can observe, the reconstructed performance based on the MTCNN landmark 
selection shows a yellow face that demonstrates a greater reconstruction loss, and recon-
struction based on DLIB SDK and PFLD shows greater reconstruction loss for the forehead 
and chin. By contrast, when we select 113 feature points as the sparse points representation 
of a face in the landmarks space, a better overall reconstruction performance is obtained.

5.2 � Implementation details

In this section, we first consider the effectiveness of our method by comparing it with non-
probabilistic methods. The proposed method takes 3D sparse landmarks as the input data, 
and 3D face point cloud as the output. Further experiments on the training datasets with 
noise prove the adaptability of the proposed method.

We use the Basel Face Model (BFM) [21] for comparison with our method and this 
model is the most commonly currently used 3DMM. The face model was trained over 
BFM and in this experiment, we test 3DMM by inputting 68 landmarks to reconstruct the 
3D face shape. For the PRNet-based method, the model was already trained on 300W-LP 
[38], and therefore, we only test this method on FaceWarehouse. The PCA-based method 
and the proposed method take 30 samples of FaceWarehouse randomly and use the cor-
responding 68 landmarks as the training set, and the remaining samples comprise the test 
dataset. We set the number of latent variables q = 28 and initialize coefficient matrix W as 
a random d × q matrix, and variance �2 = 1.

We utilize leave-one-out cross-validation to verify the effectiveness and adaptability of 
our method compared with the traditional non-probabilistic method (the PCA method and 
PCA&LFA model[17] for example). To emphasize the effectiveness of the extraction of 
principal information, our experiments select 25 sample faces from the Chinese craniofa-
cial database and divide them into 25 groups. Each sample face in the database belongs 
to one group. Every time we select 24 groups to train and the rest of the sample faces are 
the test samples which reconstruct 3D faces using our 113 landmarks. We also perform 
similar experiments on FaceWarehouse, where we select 30 sample faces from FaceWare-
house randomly as our experimental dataset. Prior to establishing our face model, we set 
the number of latent variable q = 23 for Chinese craniofacial database and q = 28 for Face-
Warehouse, preserving as much information as possible in the low-dimensional space. In 
the step of the extraction of principal components, we initialize coefficient matrix W as a 
random d × q matrix, and variance �2 = 1.

To verify the stability of our method, we add Gaussian noise and Poisson noise on the 
Chinese craniofacial database and FaceWarehouse to simulate the datasets with noise. 
Since the original datasets are smooth without noise, we add noise of different intensities 
to the training set under the condition that do not add noise to landmarks. For Gaussian 
noise, we add 1,3 and 5% noise with the variance values of 0.01 and 0.1, respectively. For 
Poisson noise, we add 1,3, and 5% noise with � = 30 and � = 20 , respectively. Prior to the 
iterative process, we initialize the coefficient matrix W as a random d × q matrix, and vari-
ance �2 = 1 . We train our face model based on these datasets with noise, and reconstruct 
their corresponding 3D face shapes from the landmarks.
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5.3 � Experimental results

In the comparison with non-probabilistic methods, 120 3D face shapes are reconstructed 
from the landmarks. The output of the 3DMM method consists of 53,215 vertices and the 
output of the PRNet-based method consists of 43,867 vertices. Since the reconstructed 
faces obtained by different methods consist of different number of vertices, we remove 
parts of the reconstructed faces prior to measuring the distance between the reconstructed 
face and the groundtruth. The rigid iterative closest point (ICP) algorithm is applied to 
register reconstructed 3D face and groundtruth, to better compare the reconstruction per-
formance. We use the average projection distance of the groundtruth point to the recon-
structed mesh as the reconstruction loss. Table 2 shows the comparison of our method with 
3DMM method, PCA-based method and PRNet-based method.

The quantitative results of the average reconstruction loss, the variance and the Root 
Mean Squared Error (RMSE) are presented in Table 2, and we visualize the reconstruction 
loss of some reconstructed faces in Fig. 4. The outputs of 3DMM show little differences 
between each other, possibly due to the expressionless input landmarks. The PRNet-based 
method shows a slightly worse performance than our method. From the reconstructed faces 
obtained by our method, more details can be observed compared to the faces reconstructed 
by other methods. For instance, the areas of nose, mouth and eyes are clearer. Though there 
are less sample faces, the application of PPCA finds out general features and extracts more 
detailed information from small sample size datasets. This is due to FA can preserve infor-
mation greatly influence observed data, meanwhile, PCA can preserve detailed informa-
tion, and the combination of FA and PCA can preserve important information in small 
size datasets. According to the quantitative metrics and the reconstructed results shown in 
Table 2 and Fig. 4, our proposed method is effective.

We further evaluate the reconstruction performance of the proposed method on differ-
ent datasets as shown in Table 2. Figures 5, 6 show the reconstruction loss of the faces in 
the Chinese craniofacial database and FaceWarehouse, respectively. The blue and orange 
lines in Figs. 5, 6 represent the face reconstruction performance using our method and the 
traditional non-probabilistic method (PCA method), respectively. As shown in Fig. 5, our 
method has similar performance to that of the traditional non-probabilistic method. Among 

Table 2   The comparison of 
different methods on different 
datasets

Method Reconstruction Error

Mean Variance RMSE

FaceWarehouse
3DMM [22] 1.70 × 10−2 1.49 × 10−5 1.75 × 10−2

PCA 6.24 × 10−3 2.54 × 10−6 6.44 × 10−3

PRNet [7] 9.84 × 10−3 3.81 × 10−6 1.00 × 10−2

ours 5.04 × 10−3 1.35 × 10−6 5.18 × 10−3

Chinese craniofacial database
PCA 1.02 × 10−2 7.73 × 10−6 1.06 × 10−2

ours 1.00 × 10−2 7.27 × 10−6 1.04 × 10−2

FaceWarehouse
PCA 2.39 × 10−2 2.30 × 10−5 2.44 × 10−2

ours 2.09 × 10−2 1.53 × 10−5 2.13 × 10−2
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Fig. 4   Different methods for face reconstruction on FaceWarehouse. The first row shows original 2D image 
of the reconstructed faces. The second row to the fifth row show the reconstruction error of 3DMM, PCA, 
PRNet and our method, respectively

Fig. 5   Face reconstruction loss 
on the Chinese craniofacial 
database
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25 faces in the Chinese craniofacial database, the average reconstruction loss of our method 
is 1.00 × 10−2 , and while for the method based on PCA, it is 1.02 × 10−2 . Since the PPCA 
method is derived from the PCA method, when the estimated parameter �2 approaches 0, 
the PPCA method transforms into the PCA method. For the reconstruction of faces in Face-
Warehouse, the estimated parameters �2

�
 and �2

�
 are 1.016 × 10−5 and 9.86 × 10−6 , respec-

tively. Figure 6 demonstrates that the reconstruction loss of our method is lower than that 
of the method based on PCA in most cases, so that our method shows better performance 
on FaceWarehouse, reducing the average reconstruction loss by 12.47%, which indicates 
the feasibility of our method.

We evaluate the performance of our method on the datasets with different intensities 
of noise. As shown in Figs. 7 and 8, when the noise is added to training faces, the heat 
map of reconstructed loss contains more yellow areas. Upon adding 5% Gaussian noise 

Fig. 6   Face reconstruction loss 
on FaceWarehouse

Fig. 7   Reconstructed faces from the databases with added Gaussian noise of different intensities. G(�2, p) 
denotes datasets added p Gaussian noise with variance of �2 and mean of 0
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with variance of 0.1 to training faces, the specific reconstruction loss obtained using our 
method is 2.81 × 10−2 , while it is 3.30 × 10−2 for the PCA-based method, corresponding to 
the reduction of the reconstruction by 14.85%. Upon adding 5% Poisson noise with � = 20 
on training face, the specific reconstruction loss obtained using our method is 2.12 × 10−2 , 
while it is 2.37 × 10−2 for PCA-based method, corresponding to the reduction of the recon-
struction loss by 10.46%, showing more blue area in the heat maps when compared to tra-
ditional non-probabilistic method. In other words, the accuracy for the reconstruction of 
3D faces of our method is higher than that of the traditional non-probabilistic method. Dif-
ferent from the traditional non-probabilistic method, our method constructs the face proba-
bilistic space based on the probability distribution and preserves more principal informa-
tion when establishing the 3D face model. Even when it is based on few sample faces, our 
method provides better reconstruction results, particularly for the details of nose, mouth 
and eyes.

Fig. 8   Reconstructed faces from the databases with added Poisson noise of different intensities. P(�, p) 
denotes datasets added p Poisson noise with �

Fig. 9   The reconstruction loss 
over databases added noise of 
different intensities
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We also plot error boxplots as shown in Fig. 9. Among the 25 sample faces in the Chi-
nese craniofacial database, with the increasing added noise intensity, the reconstruction 
loss also increases, and our method tends to give rise to lower reconstruction loss. When 
adding different types of noise to the training datasets, our method shows a better perfor-
mance than the PCA-based reconstruction method. These reconstruction differences arise 
because our method considers the probabilistic distribution of the face when extracting 
the principal components from the sparse points and face point cloud spaces. Besides, we 
can also observe that our method prefer to have a more stable performance on faces with 
noise as the variance of reconstruction error is smaller than orther method. Therefore, our 
method has low sensitivity for the noise, and the reconstructed faces are more accurate and 
detailed.

We increase the proportion of the added noise on the training database for further exper-
iments. We add 10% Gaussian noise to the Chinese craniofacial database and FaceWare-
house and compare the resulting faces. In Figs. 10, 11, we observe that the reconstructed 
face using our method has a smaller difference between fitted face and the groundtruth 

Fig. 10   The reconstruction loss 
using two methods over Chinese 
craniofacial database added 10% 
Gaussian noise

Fig. 11   The reconstruction loss 
using two methods over Face-
Warehouse added 10% Gaussian 
noise

Table 3   The reconstruction loss 
of over Chinese craniofacial 
database with noise of different 
intensities

Intensity of Noise PPCA PCA

Var0.01(30%) 1.30 × 10−2 1.30 × 10−2

Var0.01(50%) 1.42 × 10−2 1.50 × 10−2

Var0.1(10%) 3.54 × 10−2 4.50 × 10−2

Var0.1(30%) 6.18 × 10−2 8.19 × 10−2

Var0.1(50%) 7.84 × 10−2 1.09 × 10−1
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when compared with other method, and the average reconstruction loss is reduced by 
27.02% and 18.88% respectively. Compared with other method, our proposed method con-
structs the probabilistic space and can reduce the influence of noise when training face 
datasets. Due to this, as the noise intensity increases, our reconstruction loss is smaller than 
other method. Table 3 demonstrates the specific reconstruction loss on Chinese craniofacial 
database with noise of different intensities. Furthermore, the complexity of our method in 
face model establishment module is related to the number of sampled faces and the number 
of their vertices, and it is linear in 3D face reconstruction module. Since the implementa-
tion of our method is based on EM algorithm, which accomplishes its convergence through 
estimating parameters iteratively, there exists difficulty in quantitative complexity analysis 
for our method. We would like to research on its quantitative complexity analysis in our 
future work.

6 � Conclusion

In this paper, we propose a method to reconstruct the dense point representation of 3D 
face based on its sparse representation with few sample faces. Compared with previous 
work, our method constructs the probabilistic spaces of landmarks and 3D face shape. The 
combination of PCA and FA is effective on extracting principal components which are cor-
responding to latent variables. The application of PPCA method helps the low-dimensional 
subspaces of sparse points and face point cloud preserve more details, then we establish 
our 3D face model. In the experiments, we demonstrate that the combination of PCA and 
FA is effective and endow our method with adaptability in the reconstruction of the 3D 
face shape. Further experiments on datasets with noise indicate that our method is more 
stable than the traditional non-probabilistic method. However, in face model establish 
module, the use of an iterative approach give rise to the high complexity of our method. It 
is left for further research to reduce the time cost to establish face model.
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