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Abstract
The use of machine learning techniques to reduce recent video coding standards complex-
ity such as High Efficiency Video Coding (HEVC) has received prominent attention. In 
fact, the fascinating HEVC standard coding efficiency gap is performed at the expense of 
dramatically increasing coding complexity. HEVC adopts a similar block-based hybrid 
video coding framework its predecessor H.264 Advanced Video Coding (H.264/AVC), but 
it provides a highly flexible hierarchy of unit representation, which includes three units: 
coding unit (CU), prediction unit (PU) and transform unit (TU). The recursive splitting 
of CU is content adaptive, which is one of the biggest differences compared to H.264/
AVC. Adopting a large variety of coding unit (CU) sizes, the quadtree partition takes the 
lion’s share of the HEVC encoding complexity, making it ever more challenging to use 
rigid traditional inference models to predict the efficient coding decisions. In this context, 
this paper investigates the resulting implications on both coding efficiency and encoding 
complexity, when using Fuzzy Support Vector Machine (FSVM) and convolutional Neural 
Network (CNN) models for partitioning in the HEVC intra-prediction. The first approach is 
an online FSVM-based algorithm designed to predict efficiently the CU partition module. 
The second one is a deep CNN method founded on a large-scale database of substantial 
CU partition training. Experimental results reveal that the proposed deep CNN approach, 
with 66.04% complexity reduction, outperforms the proposed online FSVM approach that 
achieves 45.33%. However, the FSVM with only 0.067% loss in coding efficiency com-
pared to 1.69% engendered with the CNN, is considered as the approach that performs the 
best tradeoff between the compression efficiency and the complexity reduction when opti-
mizing the HEVC complexity at all Intra configuration.

Keywords  HEVC · Deep CNN · Online FSVM · Complexity reduction

 *	 Maraoui Amna 
	 maraouiamna@gmail.com

1	 Electronics and Microelectronics Laboratory, Faculty of Sciences of Monastir, Environment Street, 
Monastir 5019, Tunisia

2	 Electronic and Information Technology Laboratory, University of Sfax, Sfax, Tunisia
3	 Networked objects, control and communication systems Laboratory, University of Sousse, Sousse, 

Tunisia

Published online: 5 November 2021

Multimedia Tools and Applications (2022) 81:2777–2802

http://orcid.org/0000-0002-0448-4378
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11678-2&domain=pdf


1 3

1  Introduction

The huge amount of digital video data, which require high compression rates for electronic 
devices to manipulate it, transmit it in real time, and store it as needed has become even 
more latent in recent years. By focusing on this problem, industry and academia have con-
ducted extensive research in recent decades on more advanced and efficient video compres-
sion techniques. H.265 / HEVC [25], defined by the Video Technology Collaboration Team 
and launched in 2013, has recently become an advanced video compression and is gradu-
ally replacing its predecessor, the H.264/AVC standard [28], in commercial applications 
and multimedia devices. Compared to H.264/AVC, HEVC provides higher compression 
ratios of 40% to 50% but up to 500% increase in complexity [6]. Since it is a hot research 
topic, several approaches are conducted to reduce the HEVC encoder complexity as illus-
trated in Figure 1.

Most HEVC optimization researches are interested in inter mode optimization [4, 9, 10, 
23, 30, 35]. Usually, the fast-encoding algorithms suggested to optimize HEVC all intra 
configuration focus, especially on optimizing the intra-prediction mode selection [8, 11] 
and the CU partition process [2, 14, 16, 17, 19–21, 27, 31–34].

Indeed, one of the most important and complex module introduced in the HEVC 
standard is flexible quadratic tree based CU partitioning structures. Initially, each video 
frame is divided into a series of equally sized square blocks called Coding Tree Units 
(CTUs), which are used as roots of quadratic partitioning trees called Coding Trees. As 
displayed in Figure 2, the coding trees pursue a recursive partitioning scheme, in which 
each node, called the coding unit , can be subdivided recursively into four new nodes 
until it reaches the smallest possible size of CU. In general, HEVC allows 8x8, 16x16, 

Fig. 1   Block of interest within HEVC block diagram
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32x32 and 64x64 CUs. Once the partitioning structure of the CU has been completed, 
each CU can then be split, at the prediction stage, into one or more prediction units with 
several modes. In addition, at the transformation stage, each CU can be split into one or 
more recursive transformation units . The recursive Rate-Distortion (RD) cost compari-
sons strategy consists in testing all possibilities up to find the best. Both the sizes of PU 
and TU cannot exceed the size of CU. Due to recursive division, the encoder has to scan 
all combinations of all possible sizes of CU, PU, and TU to select the optimal solution, 
which is very time consuming. In addition, an intra 4x4 TU has to decide whether to 
skip transform or not [15]. This extremely complex strategy is the basis for determining 
the optimal CU, PU, and TU. If we consider that prediction and transforms are com-
puted several times in each CTU, it becomes evident that the mode decision selection 
based on RD cost is one of the main culprits for HEVC complexity.

Therefore, several studies found in the literature focused on addressing this prob-
lem by designing fast mode decision algorithms. Most of them are based on heuris-
tics resulting from statistical video characteristics analyzes. These approaches eliminate 
costly steps yielding to significant complexity reduction at the expense of coding effi-
ciency performance degradation [17, 21]. The CU structure within HEVC can support 
several sizes, which significantly reduces the differences between the extracted CUs 
and penalizes the compression efficiency performance of algorithms based on statistical 
correlations. Recent research on video coding has shown that Machine Learning-based 
models such as Support Vector Machine [19, 32–34] and Neural Network [2, 14, 16, 20, 
27, 31] are deeply used to speed up the mode decision process while maintaining high 
coding performance.

The tradeoff combining complexity reduction and compression efficiency is relevant to 
fairly compare performances of several approaches. In the literature, results achieved using 

Fig. 2   (a)CTU Structure partition, (b) PU sizes for CU intra prediction. (c) hierarchical depth of a CTU 
divided into various CU sizes. (d) TU structure
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learning-based methods outperform those of statistical-based approaches. This observation 
guided us to continue our research in the direction of FSVM and CNN approaches in order 
to reduce the HEVC complexity at all intra configuration.

In this paper, we focus on designing a fast coding unit decision algorithm reducing 
HEVC CU partition structure complexity. Thus, we exploited two major machine-learning 
techniques to contribute to all HEVC intra configurations complexity reduction, while 
maintaining the compression efficiency and video quality performance. We developed 
an innovative FSVM approach and three well-trained CNN structures to predict HEVC 
coding unit partition size for all intra configurations. We also discussed the performance 
results in this paper.

The remainder of the paper is organized as follows. Section 2 introduces a review of 
related works. Section 3 displays motivations based on statistical analysis. Sections 4 and 
5 describe the proposed FSVM and CNN approaches to reduce the HEVC all intra con-
figuration complexity. We discuss the experimental results in section 6. Finally, section 7 
concludes this paper.

2 � Related works

Existing works that focus on the fast CU sizes selection can be broadly classified into 
two categories: methods based on correlation analysis and classifications founded on 
machine learning approach. CU fast decision algorithms designed based on statisti-
cal information aim to closely extract block homogeneity indicators in order to predict 
faithfully CU size decisions. In [17, 21] gradient information of a CU block is used 
to derive its texture complexity. Kernel based gradient calculation is a time consum-
ing operation, which explains unexciting optimization results. Hence, in [21], Mallika-
rachchi et al. proposed a low complex texture analysis technique based on local range 
values and variance of a given block. This approach provides the required information 
on texture homogeneity to decide on CU splitting at an early stage and allows an aver-
age of 58.58% reduction in HEVC encoding time. However, this algorithm renders less 
content-adaptive by the fixed threshold and rigid decision trees, leading to inefficient 
CU size decisions for arbitrary sequences translated into a penalizing increase in the 
compression performance degradation. In fact, the block size partitioning flexibility 
within HEVC considerably reduces the difference between several coding units, which 
explains the deficiency of fast algorithms based on statically analyzed correlations to 
perform considerable complexity reduction results with the degradation of the compres-
sion efficiency performance.

Recently, with the popularization of the Artificial Intelligence area and the computa-
tional power to process large amounts of data, several approaches have emerged aiming to 
solve the problems derived from video coding through the support of Machine Learning 
and CNN techniques.

In fact, to provide optimal discriminatory solutions to the problem of CU size selec-
tion, approaches based on machine learning used supervised learning algorithms to learn 
the model parameters using data obtained from encoded video sequences. In this issue, Jun 
et  al. [32] suggested a fast block-partitioning algorithm using a Support Vector Machine 
(SVM) classifier. In each CU depth and depending on four extracted features, three offline 
trained SVM CU splitting models are loaded to predict the class label of the current CU. 
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Experimental results showed that the proposed algorithm reduced the computational com-
plexity by up to 53.9% when disabling the Rate Distortion Optimization (RDO) process and 
lead to 1.27% loss in coding efficiency. Yun et al. [34] proposed a machine learning-based 
fast coding unit depth decision method, which optimized the complexity allocation at the 
CU level with a given rate-distortion cost constraints. They modeled the quad-tree CU depth 
decision process as a three-level hierarchical binary decision problem. Then, they derived a 
sophisticated RD-complexity model to determine the optimal parameters for a three-output 
joint classifier, which was capable of minimizing the complexity in each CU depth at given 
RD degradation constraints. Experimental results indicated that the proposed fast intra cod-
ing algorithm attained about 51.45% encoding time reduction on average with only 1.98% 
Bit-rate (BD) increase. For the binary classification problems, SVM classification is often 
regarded as a common machine-learning algorithm that can also mediate the resulting addi-
tional complexity of the encoding loop. In this regard, [33] applied two linear SVM mod-
els that use the difference in depth and the cost ratio of Hadamard transform (HAD) and 
RD as features to perform early CU split and early CU termination decisions. Experimental 
results revealed that the proposed fast intra coding algorithm achieved about 54% encod-
ing time reduction on average with only 0.7% BD-rate increase. Focusing on complexity 
classification using machine-learning technology, the authors in [19] proposed an adaptive 
fast CU size decision algorithm for HEVC Intra prediction. First, to describe the CU com-
plexity, features are extracted. Then, SVM is performed to evaluate and construct the CU 
classification mode complexity. Finally, depending on the classification complexity, a suit-
able adaptive fast CU size decision algorithm is released. The experimental results showed 
that the proposed algorithm could achieve around 60% encoding time reduction on average 
with only 1.26% increase in the coding efficiency. All these algorithms achieve interesting 
encoding time improvements, performed at the expense of the rate- distortion performance 
degradation.

With an automatically feature extraction process, the convolutional neural network 
proved to be an effective method in extracting the codec behavior. Kuanar et al. [14] 
suggested a CNN based algorithm, which wisely extracts image features and per-
forms a classification job. These classifications’ results are later used in the encoder 
downstream systems to find the optimal CUs in each of the block trees and reduce the 
CU size prediction complexity. The experimental results indicated that the proposed 
algorithm reduces the encoder time by saving up to 66.89% with a minimal coding 
efficiency loss of 1.31%. Li et  al. [16, 31] proposed a deep CNN approach to learn 
to predict the optimal CU partition instead of conventional brute-force RDO search. 
Experimental results revealed that the approach reduces intramode encoding time by 
62.25% with a coding efficiency increase of 2.12%. Chenying et  al. [27] proposed a 
two-stage approach. The rough early-termination algorithm, which is based on the 
range of CU luma samples and directly related to CU partition mode, represents the 
first stage of the suggested approach. To accurately estimate the partition mode of 
ambiguous CUs conveyed by the first step, the authors designed and trained CNNs in 
the second step. In [20], CNN was recommended to assist in the early choice of CU 
size in HEVC intra-coding. The algorithm proposed by Liu et al. does not rely on the 
spatial information, making it easier to parallel the execution of the algorithm. Experi-
ments showed that an average intra-encoding time of 61.1% was saved, while the com-
pression efficiency increased by 2.67%. CNN-based algorithms improved the encoding 
time more than SVM solutions. However, the rate-distortion performance degradation 
is more penalizing.
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3 � Motivations

In HEVC intra coding, the main cause of the high complexity is that a frame is treated 
as different square blocks. The largest block size in HEVC is 64x64 while the smallest 
block size is 4x4. Unlike the 16x16 largest block in H.264/AVC, this promoted flexibility 
allows HEVC to have a better adaptation to different video content. This is the main point 
that reduces the compression efficiency performances of statistical correlations based algo-
rithms compared to machine-learning approaches. These observations motivate us to focus 
our optimization on the FSVM and CNN approaches to reduce the HEVC complexity to all 
intra configurations.

We carried out explorations to estimate the potential computational cost that the 
encoder spent on exploring the best CU decision. We stored all information about the CU 
partition in a Best CU Decision Trace (BCDT) file when encoding the video sequences 
with the HEVC test Model (HM) encoder version HM16.5 [12]. Then, in the second step, 
the encoder will read the best CU decision directly from the BCDT file without any tri-
als, instead of exploring the best CU partition by exhaustive search. We performed experi-
ments on four sequences with different characteristics including Cactus (1920x1080), 
BQMall (832x480), BowingBubbles (416x240), and KristenandSara (1280x720). For 
each sequence, the time reduction compared to the original, noted Δ T, was determined as 
exposed in Table 1.

Where Torg indicates the encoding time of the original platform, Tprop represents the encod-
ing time of the proposed algorithm and QPi refers to four applied QPs (22,27,32,37). It 
should be noticed that if classifiers predict CUs size correctly, the computational complex-
ity reduction can reach 60% on average without modifying the video quality and the com-
pression efficiency performances. This is the upper bound of computational complexity 
reduction can reach with the same compression efficiency and video quality performances. 
This analysis demonstrates that an interesting optimization potential is obtainable when 
providing useful insights for fast intra CU decision algorithm design.

4 � Proposed Algorithm based on Fuzzy Support Vector Machine (FSVM)

As previously mentioned, HEVC supports four Intra CU sizes ranging from 64x64 to 8x8. 
Each CU could be split recursively into four equally sized sub-CUs until it reaches the tini-
est CU size. The best CU partition is extracted by comparing the RD cost between the CU 

(1)ΔT =
1

4

4∑

i=1

Tprop(QPi) − Torg(QPi)

Tprop(QPi)
× 100)

Table 1   Reduction of encoding 
time when CU decisions are 
given

Resolutions Sequences Δ T (%)

1920x1080 Cactus 66.6
832x480 BQMall 59.2
416x240 BlowingBubbles 43.9
1280x720 KristenAndSara 73.8
Average 60.8

2782 Multimedia Tools and Applications (2022) 81:2777–2802



1 3

and its four sub-CUs in each depth level. For this instance, the computational complexity 
seriously restrains real time applications performances.

The intra coding process goal is to improve coding efficiency when exploiting spatial 
redundancy within the same frame. This explains the fact that homogeneous regions in a 
frame are more expected to be coded by large CU block size. However, small CU block 
size is obviously selected to code regions with detailed texture. Founded on this observa-
tion, if we worthily evaluate homogeneity complexity of a given video frame, the intra 
prediction process can be deeply optimized. Indeed, based on frame complexity evaluation, 
some of the original CU candidates could be skipped to select small CU, or the original 
CUs splitting could be terminated early with the selection of a large CU, which could sig-
nificantly reduce HEVC encoding speed performance.

4.1 � Background on Fuzzy Support Vector Machine

SVM is a powerful machine learning tool, since it can perform binary classification prob-
lems with significant computational advantages. Even if SVMs are widely used in the CU 
split decision, modeled as a binary classification problem, they are still sensitive to outliers 
considered as noise.

Undoubtedly, using SVM, gives more confidence in the classification of a test sample 
when it is far away from the hyperplane: if the test sample does not belong to a fixed risk 
area, as used in [22], the output will be accepted, otherwise there is a high risk of mis-
classification and the uncertain output will be rejected. To prevent such a problem, a CU 
decision method based on FSVM [18] is adopted in this paper. Compared to SVM, FSVM 
adopts additional regulation parameters noted Si to reduce outliers which are eliminated in 
training samples noted as C1 and C2 in Figure 3. The final FSVM provided set of learning 
samples is labeled as follows:

For i=1,...n, in addition to a decision label yi ∈ −1, 1 associated to each training sample 
Xi ∈ RN proposed in SVM, a fuzzy membership Si representing the attitude of the corre-
sponding point Xi toward one class is proposed with FSVM where 0 < 𝜎 ⩽ Si ⩽ 1 , while � 
is as small as possible. Using FSVM, the optimal hyperplane problem is then regarded as 
the solution to

(2)(y1,X1, S1), .., (yn−1,Xn−1, Sn−1), (yn,Xn, Sn)

Fig. 3   (a) risk area SVM (b)risk area FSVM
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Where c is the regulation parameter which controls balance between margin maximum and 
false classification prediction. Zi = Φ(x) denotes the corresponding feature space vector 
with a mapping from RN to a feature space Z, �i a measure of the error for the FSVM. Si 
�i is a measure of the error with different weighting and (W, b) represent the hyperplane 
where W is the weight vector and b is the intercept of the hyperplane. The decision func-
tion is described as:

To eliminate the output of test samples that belong to the risk area, the decision function is 
redesigned as [22]:

The weight assigned to the samples used to process FSVM classifier training, depends on 
their individual contributions. The weight Si of the ith sample, considered as outlier, can be 
used as for slack variable. Based on distance between the current Xi and central X̄i samples. 
Si is calculated as follows:

4.2 � Image features selection

The purpose of this algorithm is to model the quadtree structure of the CTU partitions as a 
cascade binary classification task. Three classifiers C _64x64, C _32x32 and C _16x16 are 
set to decide whether to split (S) or not to split (N-S) the considered CU as described in 
Figure 4.

The feature extraction is crucial since it may directly decide the bound of the proposed 
algorithm performance. Thus, to achieve a better accuracy performance, it is vital to deli-
cately select features that affect CU size decisions. With an experimentally selected opti-
mal feature set planned in Table 2, the accuracy performance can be further mended. The 
same features are used for 3 classifiers.

- Variance, x _var, is a significant feature, which can efficiently evaluate the video frame 
texture and complexity. Based on the current CU variance feature value, CU complexity is 
evaluated to learn the CU quad-tree partitioning.

(3)

Minimise
1

2
w ∗ w + c

∑n

i=1
Si�i

Subjected to

�
yi(w × Zi + b) ≥ 1 − �i, i = 1.......n

�i ≥ 0, i = 1.......n

(4)y(x) =

{
+1 (W × Z + b) > 0

−1 (W × Z + b) ≤ 0

(5)

�
0 − 0.005 ≤

wZ+b

‖w‖ ≤ +0.005

y(x) otherwise

(6)Si =
2

1 + exp (0.1‖Xi − X̄i‖)

(7)x_var =
1

N2

N−1∑

i,j=0

[
P(i, j) − P̄(i, j)

]2
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Where N represents the current CU size, and P(i,j) and P̄(i,j)represent the luminance and 
the mean luminance values of the current CU, respectively.

Fig. 4   Cascade classifiers

Table 2   Description of the selected features

ID Selected Feature Feature Explanation

1 X_var Variance of the image pixel
2 x_depth Mean depth of the adjacent CUs
3 x_partition Mean of neighbors PU mode (intra_NXN,intra_2NX2N)
4 x_CBF Mean of neighbors Coded Block flag
5 x_RDCost RDcost
6 x_bits Coding bits
7 x_Distortion Distortion
8 x_QP Quantization Parameter(QP)
9 x_CtxSkipFlag Intra transform skipping Flag of left and above blocks

2785Multimedia Tools and Applications (2022) 81:2777–2802
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Nearby CUs typically retain identical textures in natural images. Obviously, the cur-
rent CU’s optimum depth level can have a strong correlation with its neighboring CUs. 
The selected spatial-temporal correlations features are: We use the mean depth of the 
adjacent CUs as illustrated in Figure 5, which are upper, upper-right, upper-left, left and 
co-located CUs depth, as a feature x _depth to predict the current CU quad-tree partition-
ing decision.

-The partition size information x _partition feature, informs about the selected neighboring 
PU size from intra mode candidates . x _partition is the mean value of upper, upper-right, 
upper-left, left and co-located Cus x _partition(i).

The coding information flag x _CBF feature provides the mean of decision on TU partition 
selected for neighboring upper, upper-right, upper-left, left and co-located Cus x _CBF(i).

-Features that deeply affect RD coast performance are x _RDcost,x_Bits and, x _Distor-
tion. -Obviously, x _ QP feature corresponding to Quantization Partition (QP) it is chosen to 
adjust between the coding bits and distortion, when selecting the CTU partitions. -Finally, 
since the intra transform skip in HEVC can be applied to TUs of 4x4 size only [15]. x _
CtxSkipFlag is a flag used to detect if an intra transform skip is applied on the neighboring 
upper and left blocks.

(8)x_depth =
1

5

5∑

i=0

x_depth(i)

(9)x_partition =
1

5

5∑

i=0

x_partition(i)

(10)x_CBF =
1

5

5∑

i=0

x_CBF(i)

Fig. 5   Current 64x64 CU and its Neighbors used to calculate feature’s mean

2786 Multimedia Tools and Applications (2022) 81:2777–2802



1 3

To select the best performing features, we proceeded in three steps: in the first step, we 
were inspired by the recent related works [19, 32] on fast video coding. We summarized 
them and came up with the intersection of feature candidates for the CU depth prediction, 
which are the variances x _var and x _QP. To evaluate several features combinations impact 
on the coding efficiency, and the complexity reduction’s performance, we respectively used 
the Bjøntegaard delta bit-rate (BD-BR)[3] and Δ T in eq 1.

As illustrated in Table 3, the use of these two features allows a reduction of 37% in 
complexity against a degradation in compression efficiency that reaches 6%. Further-
more, the related works [19, 32] used different operators to generate features represent-
ing the direction complexity and the edge detection within a frame. Indeed, in [19] the 
authors adopted the operator of Sobel to develop several diagonal directional Sobel 
Operator components to estimate the direction complexity of the Intra video frame. This 
approach allows to extract a reliable representation of the frame complexity direction 
symbolized by the feature (DCom) used in [13]. Other authors found that the Sobel and 
Roberts operators are simple to calculate, but their detection performance is not so reli-
able [32]. They also discarded the use of the Canny operator due to its complexity and 
opted to use the dominant edge detection method (DEA) proposed by [26] as a feature to 
detect edges.

To overcome these additional calculations, we used variables already calculated by the 
standard, (x_depth), (x_partition) and (x_CBF and x _CtxSkipFlag), which respectively 
gave an idea about the CU, PU and TU selected sizes of the neighboring blocks. The inte-
gration of these features in a second step revealed the increase of the optimization rate, 
which reached 47.1% against an obvious degradation of the compression performance. We 
therefore opted for the integration of three additional features x _Distortion, x _RDCost, and 
x _bits, which influenced the compression performance. The results are shown Table 3. The 
combination of the nine features reduces the encoder complexity by up to 41% with a neg-
ligible degradation of the compression efficiency.

The performance indicators for our FSVM system are mainly: accuracy, precision and 
sensitivity. In our application scenario, if the predicted output or the ground-truth mark 
is the same as the targeted decision, it is denoted by +1, otherwise by -1. We considered 
four potential outcomes when passing a sample into a model in the testing process. If the 
prediction is +1 and the mark is also +1, the True Positive outcome is called (TP). If the 
prediction is +1 while the mark is -1, the False Positive result is (FP). Similarly, if the 
prediction is -1, two other outcomes are called False Negative (FN) and True Negative 
(TN), based on the different mark values. We can calculate the accuracy performance, as 
expressed in eq.11, to measure the general performance of a classification model based on 
the four results we defined above. The precision of making a targeted decision is defined 
in eq.12. The number of correct positive decisions (TP) divided by the number of all 

Table 3   Features extraction steps results

Step 1 Step 2 Step 3

Sequences ΔT(%) BD-BR(%) ΔT(%) BD-BR(%) ΔT(%) BD-BR(%)

PeopleOnStreet -29.39 4.8 -36.8 6.3 -29.21 -0.072
BasketBallDrill -41.85 3.2 -24.3 -0.04 -39.86 -0.012
BQSquare -35.38 0.5 -20.4 0.69 -44.44 0.016
FourPeople -37.33 6.0 -47.1 6.38 -41.08 0.028
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samples predicted to be positive (TP+FP). The model’s sensitivity computes the number 
of actual positive samples that can be successfully captured by a classification model as 
defined in eq.13.

The overall accuracy of the classification prediction is 85%, where precision and recall are 
respectively 84% and 88%.

4.3 � Overall Algorithm

The main idea of the proposed algorithm is to online extract the ground truths and the 
selected features for the model training from the first ten frames of the input sequences, 
while being encoded by the original HEVC test model. As described in Figure 6, FSVM 
resumed in eq.3 is then used to train and periodically Update the classifiers C _64x64, C _
32x32 and C _16x16 for successive frames. The CU split decisions of the following intra 
frames are extracted, once the classification task is finished. The original HEVC test model 
will be launched to extract the CU of risk zone samples. Otherwise, classifiers outputs will 
be directly used for the encoding process. This feedback step is crucial to reduce the com-
putational complexity of the HEVC encoder without affecting its coding performance. The 
choice of an online training process improves the prediction accuracy since training and 
testing sequences are successive.

(11)Accuracy=
TP + TN

TP + TN + FP + FN

(12)Precision=
TP

TP + FP

(13)Recall=
TP

TP + FN

Fig. 6   classifiers training and updating for the FSVM proposed method
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5 � Proposed Fast CU decisions based on CNN

While studying the previous works related to deep learning solutions, we concluded that 
there is room for improvements in CNN-Based solutions. Complexity reduction perfor-
mance from [16] is promising, but it is penalized by a significant compression efficiency 
degradation. Based on a more sophisticated database, a new CNN-based approach is pro-
posed to enhance all the intra HEVC encoder performance tradeoff between the compres-
sion efficiency and the complexity reduction. Indeed, a fine modification of CNN data 
training models proposed in [16], is likely to produce better long run results.

5.1 � Database establishment

In this step, the database for the Intra-mode HEVC CU Partition is established from images 
with different resolution (4928x3264, 2880x1920, 1536x1024, 1792x1024 and 768x512) 
at different QPs (22,27,32,37) and encoded using the HEVC reference software HM[12] 
with the configuration file encoder_intra_main.cfg. A total of 2500 images are randomly 
divided into training (2125 images), validation (125 images) and test (250 images) ensur-
ing sufficient and diverse training data for learning to predict CU Partition.

The extracted database is divided into three folders: training, validation and test, con-
taining all CUs sizes with their corresponding binary labels for different QPs. A total of 
122,565,468 labeled samples are obtained, as listed in Table 4 The number of split Cus 

Table 4   Example of a lengthy 
table which is set to full 
textwidth

Number of Samples

Depth level Splitting Non-Splitting

0 9323733 3086267
1 18323303 18508377
2 34605454 38718334
Total 62252490 60312978

Fig. 7   CNN architecture
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samples is close to that of non-split one over the whole database, which ensures the suf-
ficiency of our database.

5.2 � CNN architecture

As shown in Figure 7, three separate CNN models are learnt to provide classifiers at three 
levels sharing a uniform CNN structure with different kernel sizes. Each CNN model is 
composed of an input layer, three convolutional layers, a concatenation layer and three 
fully connected layers.

The corresponding luminance block component is loaded as an array of pixel values. 
Then, it is convoluted with 4×4 kernels (16 filters in total), with stride 4 at the first con-
volutional layer. Learned low-level features for the CU partition extracted from this layer 
represent information on edges detections and orientations in the considered input data. 
During the second and the third layers, data are sequentially convoluted twice with 2 x 2 
kernels, with stride 2, (24 filters for the second layer and 32 filters for the third layer) to 
generate features at a higher level. Global and local features are collected from the second 
and third convolutional layers. Next, the vectorized features of the concatenating layer are 
processed in three models, to pass through three fully connected layers: two hidden fully 
connected layers successively generate features vectors, and one output layer extracting 
O _1,O_ 2 and O _ 3 outputs containing respectively 1, 4 and 16 binary elements. After 
the first fully connected layer, extracted features during the training phase are randomly 
dropped out [24] up to 0.5. This probability is reduced to 0.2 for the second fully con-
nected layer.

The overall algorithm process is described in Figure 8. In a first step, extracted ground-
truth is used as inputs of the training step. Then, three CNN models are fed with an 
entire CU, with three different sizes for each model, and each CU is able to hierarchically 

Fig. 8   Global structure of CNN based coding unit prediction approach: Database extraction, Training 
model, CNN architecture and HEVC encoder diagram
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generate a branch of structured output, representing all predictions. After the training pro-
cess, a three CNN models are generated and integrated in the HEVC encoder to predict the 
CU partition.

Given the described CNN architecture, we use the well known Tensorflow framework 
[1] to learn the CNNs. The parameters for the learning process are summarized in Table 5.

To optimize our CNN weights, we used the back propagation algorithm, which is based 
on a stochastic gradient descent solver with 0.9 momentums to train the CNN models. The 
initial learning rate was 0.01 and decreased by 1% exponentially every 2000 iterations and 
there were in total 2000000 iterations.

Then, the CNN can be trained by optimizing the loss function, which is calculated as 
eq. 14, overall the training samples.

Table 5   Parameter setting for 
CNN training

Input size 64x64

Label output(size) 64x64
Training Samples 122,565,468
Learning Rate 10−2

Weight Decay 0.3163
Momentum 0.9
Batch size 64
Number of Iterations 2,000,000

Fig. 9   Training loss
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Where yl denotes the truth-ground classification labels, Ol designates the predicted output 
and K indicates the batch size to train CNNs. The obtained result after training is illustrated 
in Figure 9. We can see from this figure that the loss converges after 5 × 105 iterations.

6 � Experimental results

6.1 � Experimental setup

To evaluate the performance of the proposed algorithms, several experiments are con-
ducted on the HEVC test model version HM16.5 [12]. Since only the complexity reduc-
tion of the HEVC intra-coding process is considered, we made use of the configuration 
file encoder_intra_main.cfg. We carried out our experiments on 17 test video sequences, 
listed in Table 6, from the Joint Collaborative Team on Video Coding (JCT-VC) standard 
test set [29]. To evaluate the coding efficiency, the complexity reduction performances and 
the subjective video quality, we respectively used the BD-BR, Δ T detailed in eq. 1 and the 
Bjøntegaard delta peak signal to noise ratio (BD-PSNR).

All experiments are performed on Intel(R) Core(TM) I7-8700 CPU@3.20 GHz, 16 GB 
RAM computer with Windows 10 professional 64-bit operating system. For FSVM imple-
mentation, the optimized libSVM [5] library was used with the Gaussian Radial Basis 
Function (RBF) kernel. Several functions from tensorflow [1] library are used in our CNNs 
implementation and the speed Geforce GTX 1050 Ti GPU was activated to accelerate the 
training. CNN models are trained on 3 classifiers at 4 QPs values (= 22, 27, 32, 37).

(14)Ll =
1

k

k∑

m=1

y
(m)

l
logO

(m)

l
+ (1 − y

(m)

l
) log (1 − p

(m)

l
)

Table 6   Sequences and its 
related information grouped by 
class

Class Resolution Sequences Frame Rate Number Frames

A 2560x1600 PepolOnsSreet 30 150
Traffic 30 150

B 1920x1080 Kimono 24 240
ParkScene 24 240
Cactus 50 500
BQTerrace 60 600
BasketBallDrive 50 500

C 832x480 BasketBallDrill 50 500
BQMall 60 600
RaceHorsesC 30 300
PartyScene 50 500

D 416x240 BasketBallPass 50 500
BQSquare 60 600
BlowingBubbles 50 500

E 1280x720 FourPeople 60 600
Johnny 60 600
KristenAndSara 60 600
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6.2 � Comparison of proposed algorithms with the related works

Regarding the proposed algorithm based on FSVM, its performance is compared to SVM 
algorithms proposed by Jun et  al. [32], Yun et  al. [34], Zhang et  al. [33] and Liu et  al. 
[19] as summarized in Table 7. With regard to the complexity reduction, we noticed that 
the proposed FSVM method achieved 45.33% reduction on average, which is superior to 
31.1% reduction obtained by [32] and 42.41% attained by [19]. However, the performances 
of the approaches used in [34] and [33] exceeded our results with a reduction of 48.8% and 
45.85% respectively.

Table 8   Comparison of the proposed fast CU size decisions based on CNN in [14] and [16]

Proposed  Algorithm  Algorithm

Algorithm  [14]  [16]

Sequences BD-
BR

BD-PSNR ΔT BD-BR BD-PSNR ΔT BD-BR BD-PSNR ΔT

(%) (dB) (%) (%) (dB) (%) (%) (dB) (%)

PepolOnsSreet 1.99 -0.039 -63.86 1.17 -0.043 -66.86 2.16 -0.043 -62.73
Traffic 1.97 -0.042 -68.45 1.14 -0.044 -72.91 2.76 -0.029 -69.62
Average Class 

A
1.98 -0.04 -66.16 1.16 -0.04 -69.89 2.46 -0.04 -66.18

Kimono 1.43 -0.024 -86.41 1.17 -0.030 -74.52 2.15 -0.079 -68.64
ParkScene 1.65 -0.026 -67.46 1.41 -0.042 -72.61 2.13 -0.055 -69.79
Cactus 1.93 -0.023 -66.5 1.79 -0.028 -60.41 2.11 -0.065 -70.11
BQTerrace 1.32 -0.029 -62.89 1.68 -0.032 -65.02 1.47 -0.045 -71.23
BasketBallDrive 2.11 -0.040 -72.5 1.52 -0.031 -73.32 4.6 -0.027 -73.28
Average Class 

B
1.69 -0.03 -71.15 1.51 -0.03 -69.18 2.49 -0.05 -70.61

BasketBallDrill 1.73 -0.065 -60 1.52 -0.041 -76.22 2.97 -0.034 -61.1
BQMall 2.09 -0.023 -60.01 1.57 -0.027 -57.86 1.27 -0.048 -54.69
RaceHorses 1.27 0.005 -60 - - - 1.97 -0.108 -57.11
PartyScene 0.6 0.000 -50.59 0.32 -0.034 -54.02 0.5 -0.064 -50.67
Average Class 

C
1.42 -0.02 -57.65 0.85 -0.03 -56.87 1.02 -0.06 -53.67

BasketBallPass 2.17 0.008 -61.22 0.75 -0.043 -53.22 2.2 -0.037 -55.07
BQSquare 1.5 -0.047 -66.35 1.45 -0.024 -65.33 0.19 -0.062 -58.83
BlowingBubbles 0.19 -0.013 -52.8 0.34 -0.021 -52.05 0.68 -0.071 -47.11
Average Class 

D
1.29 -0.02 -60.12 0.85 -0.03 -56.87 1.02 -0.06 -53.67

FourPeople 2.35 -0.057 -68.57 1.61 -0.041 -65.69 3.66 -0.032 -67.49
Johnny 2.3 -0.040 -78.73 2.03 -0.032 72.01 3.6 -0.074 -75.7
KristenAndSara 2.16 -0.048 -76.32 1.54 -0.032 -77.57 3.21 -0.048 -74.01
Average Class 

E
2.27 -0.05 -74.54 1.73 -0.04 -71.76 3.49 -0.05 -72.40

Average 1.69 -0.030 -66.04 1.28 -0.04 -62.81 2.21 -0.05 -63.95
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On the other hand, in addition to the complexity reduction, the RD performance is also 
considered as a critical evaluation metric. For all the listed approaches, insignificant video 
quality degradation was noticed. However, we can notice that, the BD-PSNR of our FSVM 
method averages -0.017 dB, which is better than -0.04 dB, -0.05 dB and -0.03 obtained 
respectively in [32, 34] and [19] approaches. On the other hand, the BD-BR of our method 
is averagely 0.067%, which outperforms 0.84% , 1.75%, 0.57% and 0.54% obtained respec-
tively with [34], 0.57% of [19] and [33]. Consequently, our proposed algorithm outper-
forms the approaches [32–34] and [19] in terms of RD performance. Even if [34] and 
[33] approaches achieved a better reduction complexity performance, this improvement is 
widely penalized with an important compression efficiency degradation compared to our 
results. Since the coding efficiency is the main goal of video compression, we can consider 
that our FSVM scheme achieved the best tradeoff between the compression efficiency and 
the complexity reduction performances when optimizing the HEVC complexity at all Intra 
configuration. The experimental results demonstrate that tiny ground truth is crucial to the 
efficient encoding decision prediction when using FSVM based prediction models.

Our proposed CNN based approach is compared with the algorithms used by Kuanar 
et al. [14] and Li et al. [16] to evaluate its performance in terms of complexity reduction 
and coding efficiency when observing its impact on video quality. According to Table 8, 
our proposed algorithm reduces the average computational complexity up to 66.04% with 
an RD performance loss up to 1.69% in terms of BD-BR and -0.03 dB in terms of BD-
PSNR. The related works algorithms [14] and [16] achieved respectively 63.59% and 
62.81% in terms of computational complexity reduction and a compression efficiency 

Fig. 10   Pareto analysis for the CNN based approaches

Table 9   Results of FSVM model compared to CNN methods

FSVM CNN

Class BD-BR(%) BD-PSNR(db) ΔT(%) BD-BR(%) BD-PSNR(db) ΔT(%)

A -0.081 -0.011 -33.59 1.98 -0.041 -66.16
B 0.138 -0.018 -51.49 1.69 -0.028 -71.15
C -0.024 -0.013 -42.71 1.42 -0.021 -57.65
D 0.163 -0.022 -42.47 1.29 -0.017 -60.12
E 0.072 -0.020 -49.23 2.27 -0.048 -74.54
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degradation up to 1.28% and 2.21% respectively, while maintaining the same video quality 
performance.

To complement this study, the Pareto fronts [7] have been conducted in Figure 10 to 
confirm that , undeniably, the tradeoff between the complexity reduction and coding effi-
ciency performances of our proposed CNN method are better than approach [14] that pro-
vides the least bit-rate performance degradation.

Fig. 11   QP impact on complexity reduction performance for FSVM and CNN approaches

Fig. 12   The FSVM classifier’s 
training complexity
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The best tradeoff between complexity reduction and compression efficiency degrada-
tion is noted for the Kimono video sequence. This class B video saves 86% of the encoding 
time with an increase in BD-BR of 1.41% and a little decrease in BD-PSNR. An interest-
ing tradeoff is also obtained with class B cactus video. We can conclude that despite the 
high motion activity noted in class B videos needing to be coded with smaller details, the 
proposed CNN approach is very efficient to correctly predict small CU size with less time 
consumption.

Fig. 13   The CNN prediction 
process complexity

Fig. 14   CU prediction results for Frame 50 of BlowingBubbles video at QP37
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6.3 � Performances comparison between proposed CNN and FSVM algorithms

The performances comparison between proposed CNN and FSVM algorithms to reduce 
CU partitionnig complexity for HEVC encoder at all Intra configuration is illustrated in 
Table 9. We can clearly notice that CNN based approach performance overpasses FSVM 
based one for different class resolutions. However, because of the use of all intra configura-
tion, the main goal of our research is to optimize the CU prediction module, while main-
taining HEVC compression efficiency performance. Thus, FSVM with a tiny coding effi-
ciency degradation compared to CNN, can be considered as the approach that performs the 
best tradeoff between the compression efficiency and the complexity reduction for HEVC 
all intra configuration. Indeed, the FSVM coding efficiency improvement in class A and C 
exceeded the original HM test model performance when performing more than 33% com-
plexity reduction.

QP impact on complexity reduction performance for FSVM and CNN approaches is 
illustrated on Figure  11. We can observe that the reduction complexity of the proposed 
CNN based implementation and FSVM approaches increases along with the increased QP. 
It is mainly because the increased QP leads to larger CUs selection, which results in a run-
ning time reduction.

To test the additional classifier’s training complexity of the proposed FSVM method, 
and the prediction process complexity of the proposed CNN approach, the percentages 
of time consumption are reported in Figure 12. Four sequences, BQSquare (416 x 240), 
BQMall (832 x 480), BQTerrace (1920 x 1080), and PeopleOnStreet (2560x1600), are 
adopted and encoded under all Intra configuration at QP 37 with different resolutions 
and contents. The results reveal that FSVM classifier’s training time consumption is 
around 1%. For larger resolution sequences, more training samples are performed within 

Fig. 15   CU prediction results for the Frame 50 of Johnny video at QP27

Table 10   Comparison of different methods with respect to HEVC reference software

Works BD-BR(%) BD-PSNR(dB) ΔT(%)

Mode predictions [8] 0.1 - -14.4
[11] 1.92 -0.11 -40.90

CU decision Proposed CNN 1.69 -0.030 -66.04
Proposed FSVM 0.067 -0.017 -45.33
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a fixed number of training frames. Therefore, the additional complexity of the proposed 
FSVM classifier’s training has no degrading impact on the overall HEVC complexity 
improvement.

The time required to predict CU size decisions within 100 frames using the proposed 
CNN algorithm takes only 1.7% of the overall optimized HEVC encoding time as shown 
in Figure 13. In conclusion, the additional complexity of the proposed CNN prediction 
process does not affect the overall HEVC complexity improvement.

Figure 14 and Figure 15 expose the results of the predicted CUs on frame 50 at QP 37 
respectively for BlowingBubbles and johnny video sequences. Compared to the ground 
truths results, we can perceptually note that the proposed FSVM algorithm achieves 
more truthful CUs predictions than the CNN proposed algorithm, which explains the 
compression performance degradation engendered with the CNN approach.

The comparison between performances of methods acting on HEVC intra-mode pre-
diction process [8] and [11], and proposed methods acting on HEVC CU size decision 
module are illustrated on Table 10. From the overall performance assessment, we can 
infer that the proposed methods achieve better optimization results: 66% and 45% for 
CNN and FSVM approaches respectively, compared to 14% and 40% obtained with [8] 
and [11] respectively. This observation proves that we have made the best choice to 
select the CU size decision module , as a first optimization step of the HEVC encoder at 
all intra configuration.

7 � Conclusion and future work

In this paper, two machine learning-based methods are proposed to perform fast CU parti-
tion for HEVC at all intra configuration. Since the CU partition is modeled as a multi-
classification problem, a cascade of three binary classifiers is adopted in the FSVM based 
method and adequate features are selected to allow an interesting accuracy. With an auto-
matically feature extraction process, a second approach is proposed using three deep CNN 
models learned to predict the optimal CU partition based on an efficient map representa-
tion and sufficient training data.

The experimental complexity reduction results showed that the proposed deep CNN 
approach widely outperformed the proposed FSVM one with 66.4% against 45.33%. How-
ever, the FSVM with only 0.067% loss in coding efficiency compared to 1.69% degradation 
engendered with the CNN is the most suitable solution to reduce the HEVC CU partition-
ing module complexity at all intra configuration.

We would assert that our work is a step that may be taken further to enhance the HEVC 
performance. It would be interesting to combine the resulting optimal CU decision module 
with the additional optimized computational HEVC modules such as the intra-mode pre-
diction process. This research work is ongoing, and the results will be presented in future 
publications.
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