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Abstract
Bearing fault diagnosis is a serious problem on which researchers have focused to ensure 
the reliability and availability of rotating machinery. Knowledge-based methods are capa-
ble of providing promising solution to bearing diagnosis problem with high accuracy per-
formance thanks to effectively processing collected sensor and actuator data. Deep learn-
ing (DL) has the advantage of ignoring feature extraction and providing accurate diagnosis 
among the machine learning algorithms. In order to address this issue, in this paper, a 
novel DL based model is presented for fault detection and classification of motor bearing. 
In this work, first, time domain signals are converted to images by a proposed signal-to-
image conversion approach. Then, the converted gray-scale images are fed into a novel 
deep residual learning (DRL) network structured to learn end-to-end mapping between 
images and health condition of the motor bearing. The performance of the proposed DRL 
network is evaluated on a commonly used real vibration dataset provided by Case Western 
Reserve University (CWRU). Experimental results obtained for 10 different health condi-
tion demonstrate encouraging and outperforming performance with an average accuracy 
of 99.98% compared to the state-of-art knowledge-based bearing fault diagnosis methods.

Keywords Convolutional neural networks · CWRU bearing dataset · Deep residual 
network · Fault diagnosis · Motor bearing

1 Introduction

Early detection of faults occurred in rolling bearings utilized in industrial systems is 
crucial to improve the reliability and availability of the systems [38]. Because an unde-
tected fault may affect and damage other components of the system through chain 
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reaction. As a result, it can jeopardize something invaluable, such as human health, and 
can lead to the collapse of the whole system and enormous economic losses [14].

Model-based, signal-based and knowledge-based fault diagnosis, and the combina-
tion of these methods named as hybrid fault diagnosis are the available approaches for 
general fault diagnosis [11]. In model-based fault diagnosis methods, the models of 
each industrial processes or components are determined either theoretically or utilizing 
system identification approaches in order to observe the consistency between predicted 
system output using system model and the real-time system output [11]. Signal-based 
fault diagnosis methods, which can be employed both in time and frequency domain, 
base on signal patterns of the regular systems instead of exact system models [28]. 
Unlike model-based and signal-based fault diagnosis methods, knowledge-based fault 
diagnosis approaches do not require neither an exact model nor signal patterns of the 
regular systems. However, a considerable data obtained from previous processes of the 
industrial system is necessary to construct a relation between raw data and its outcome 
[21]. Thanks to rapid development of the Internet, wireless sensors and actuators, and 
the smart industry, data collection has become easier and has lead researchers to use the 
power of big data for fault diagnosis [4].

The literature reports several research works focusing on dealing with the big data in 
knowledge-based fault diagnosis. K-nearest neighbor (kNN) [1], support vector machine 
(SVM) [22, 31], random forest (RF) [33], and artificial neural network (ANN) [7] are 
the available machine learning classifiers utilized for bearing fault diagnosis. Although 
the mentioned machine learning classifiers have been presented to be effective for bear-
ing fault diagnosis, such conventional machine learning techniques are restricted in their 
ability to process the raw input data [24]. These approaches build classifiers based on 
handcrafted features computed from the raw inputs using feature extraction algorithms. 
Note that this feature extraction process requires domain expertise to design a feature 
extractor and therefore greatly affects the classification result [16].

Deep learning (DL) is a branch of representation learning which receives raw data as 
input and automatically explores the representations required for classification without 
human engineers [24]. DL has become more popular recently because of the increase in 
the amount of data, in Graphics Processing Unit (GPU) and the processing power and 
depth of the model. Therefore, several DL methods such as Convolutional Neural Net-
work (CNN) [35], Stacked Auto-Encoder [34], Deep Belief Network (DBN) [30], Deep 
Boltzmann Machine [18], Recurrent Neural Network [6] have been approaching the area 
of bearing fault diagnosis as in computer vision, natural language processing and rec-
ommender systems etc.

CNN is the most popular algorithm of DL in bearing fault diagnosis. Since 1D data 
in time domain can be presented in space domain as 2D data, some researchers con-
vert 1D signal to 2D data to utilize the great discriminating ability of CNN model. In 
this article, a deep residual learning (DRL) based network model dealing with raw 2D 
data directly is proposed for bearing fault diagnosis. The proposed model has the advan-
tage of end-to-end mapping between raw 2D images converted from vibration signals 
and health conditions of the bearings. To the best of authors’ knowledge, this consti-
tutes a novel study to solve the bearing fault diagnosis problem through DRL scheme. 
The experimental results indicate that the proposed DRL based network model has 
significant potential for bearing fault diagnosis since it outperforms several traditional 
machine learning methods and DL methods.

The motivation of this study is given as three folds: 
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1. Researchers have been paying attention to bearing fault diagnosis to overcome or reduce 
safety hazards, unscheduled breakdown and performance reduction of rotating machin-
ery. This issue has not been fully solved.

2. Recently, DL based approaches have been started to be used in fault diagnosis area and 
reasonable results have been achieved. Furthermore, DL based approaches learn end-
to-end mapping between input and output by ignoring feature extraction step.

3. Changing domain of an input data may result in better classification accuracy. Therefore, 
time-domain signals acquired from bearing motor are converted into gray scale images 
and fed into the developed DL network.

The main contributions of this paper can be summarized as follows. 

1. Following the principle from deep residual networks [17] and new trends in bearing 
fault diagnosis, a novel deep residual learning based network model, referred as DRL, 
consisting of three sub-networks to classify the mechanical faults in a diagnosis system 
is proposed. In the feature representation sub-network, a convolutional layer followed 
by activation function and batch normalization (BN) layer is used to learn representa-
tive features from 2D images. Then, in the second sub-network, DRL fulfills the task of 
fault diagnosis. Finally, the health conditions are classified in classification sub-network. 
The proposed method achieves more accurate classification results without manually 
extracted input features. Nevertheless, the usage of residual network architecture further 
advances the classification performance without an evident increment on computational 
complexity.

2. Two different scenarios based on the number of residual block and the usage of BN layer 
are thoroughly studied to determine the best DRL network model. In the first scheme, 
various network models are structured in order to analyze the effect of the number of 
residual block to the classification result. Then, the effect of the BN layer is studied by 
training a proposed network model only without the BN layer and comparing the results 
in detail.

3. The proposed network model is compared with the several state-of-the-art machine 
learning based methods with hand-crafted features and DL based methods. The com-
parison results on a well-known benchmark dataset corroborates the superiority of the 
proposed model by outperforming the state-of-the-art methods.

The rest of this paper is organized as follows. Related works are presented in Sect. 2. 
The details of the proposed deep residual network architecture are given in Sect. 3. Sec-
tion 4 presents a case study of bearing fault diagnosis to demonstrate the effectiveness 
of the proposed method. Conclusions are drawn in Sect. 5.

2  Related works

The related works reported in this section categorized into two section: 1) Knowledge-
based fault diagnosis presenting recently proposed knowledge-based fault diagnosis 
studies for bearing fault diagnosis and 2) Residual learning and skip connection, and 
batch normalization presenting main sub-topics related to the proposed DRL network 
methodology.
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2.1  Knowledge‑based fault diagnosis

Although fault diagnosis approaches can be categorized into model-based, signal-based 
and knowledge-based fault diagnosis, and the combination of these methods [11], only 
knowledge-based fault diagnosis studies are presented in this sub-section because of the 
fact that they have the advantage of constructing the relationship between raw measured 
data and its outcome [21]. When complex industrial systems are considered, it is diffi-
cult to have exact system models or signal patterns of the regular systems [28].

Wen et  al. [35] studied on a CNN-based method for fault diagnosis. The proposed 
CNN method inspired by LeNet-5 applied a commonly used motor bearing dataset 
which has 1D raw signals. The researchers converted these 1D raw signals into 2D gray-
level images and obtained a dataset containing images. The obtained results indicate 
that the proposed CNN-based method has high potential for bearing fault diagnosis. Xia 
et al. [36] developed a CNN-based model utilizing 1D raw vibration signals of bearings 
for fault diagnosis. The authors demonstrated the effect of the using multiple sensors 
instead of utilizing a single one. Lei et al. [25] presented a two-stage learning method 
based on unsupervised feature learning for bearing fault diagnosis. The proposed 
approach uses 1D raw vibration signals to extract discriminative features by sparse fil-
tering in the first stage. Then, softmax regression is employed to classify health condi-
tions of the bearings. Guo et al. [13] proposed deep convolutional transfer learning net-
work inspired by transfer learning for bearing fault diagnosis. The proposed approach 
is a two-stage approach, one of which use 1D CNN to learn the discriminative features 
from 1D raw signals and to classify the health conditions of the bearings. Wen et al. [34] 
studied on a deep transfer learning approach using 1D raw vibration signals of bearings 
for bearing fault diagnosis. A three-layer sparse auto-encoder is employed to extract 
the discriminative features from the raw data. The proposed approach tested on a com-
monly used motor bearing dataset and achieved better classification accuracy than tradi-
tional machine learning approaches. Liu et al. [26] proposed a solution for bearing fault 
diagnosis. The solution bases on deep adversarial domain adaptation model in which 
feature learning and a deep stack autoencoder are integrated to extract more effective 
fault features. That classification accuracy obtained by using the proposed model supe-
rior than other existing machine learning and deep learning methods is demonstrated 
in the study. Janssens et  al. [20] developed a CNN model to learn features of 1D raw 
vibration signals of bearings and monitor the health condition of them. Guo et al. [15] 
studied on hierarchical deep CNN model for the fault diagnosis of rolling bearings. The 
researchers proposed an adaptive learning rate for the model and validated its superior-
ity to traditional CNN. Ding and He [8] presented a deep convolutional network based 
bearing fault diagnosis method in which raw vibration signals were converted to 2D 
images. Eren [9] proposed a bearing fault detection system based on 1D CNN. The rela-
tion between raw vibration signals and health condition of bearings were learned by 
the network. Chen et al. [5] presented a DL based approach to improve the classifica-
tion performance of bearing faults. Cyclic spectral analysis was utilized to acquire dis-
criminative patterns for the type of bearing faults. Then, a CNN model was developed 
to classify faults thanks to high level feature learning ability. Xu et  al. [37] proposed 
a hybrid DL model containing both a CNN model and deep forest model for bearing 
fault diagnosis. The CNN model was employed to extract features from time-frequency 
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images obtained from vibration signals and extracted fault features fed into a deep forest 
classifier. Khorram et al. [23] studied an end-to-end DL method focusing on raw time-
domain data for bearing fault diagnosis. The model was a combination of CNN and 
Long-Short-Term-Memory (LSTM) models and the model directly used raw vibration 
signals without any preprocessing or transformation method.

In this study, a novel DRL based network model is proposed for bearing fault diagnosis. 
Instead of using hand-crafted features suffering from limited representation capability for 
accurate classification, the proposed model learns the features with end-to-end mapping. In 
order to make the experimental results more robust, the effect of the number of residual block 
and the BN layer to the classification result are analyzed.

2.2  Residual learning and skip connection, and batch normalization

In the following, two methods related to the proposed study, i.e. residual learning and skip 
connection, and batch normalization are briefly reviewed. 

1. Residual learning and skip connection: Increasing the model complexity by stacking 
more layers in order to solve more complex task causes lower training accuracy. Besides, 
when the network goes deeper, it is hard to train it effectively. Another problem faced 
by deep CNN model is vanishing/exploding gradient during backpropagation which 
stops the network from converging. A residual learning scheme for CNN structure was 
originally proposed by He et al. [17] to address the aforementioned problems. Instead 
of desired original mapping, the residual mapping which is the difference between the 
layer output and ground truth is learned. Therefore, the optimization of deep CNN 
becomes easier and the accuracy is improved with such a DRL scheme. The residual 
mapping can be realized by skip connections skipping one or more layers. Therefore, 
skip connections act as an identity mapping and element-wise addition is performed 
between the outputs of the stacked layers and shortcut connections [2, 29, 32]. Using 
such connections makes the network easier to be optimized and gains classification 
performance in deeper networks unlike plain networks. The proposed model adopts 
the residual learning scheme with identity skip connection. The problem formulation 
of residual learning by explaining its relationship with identity skip connection is also 
explained to address the knowledge-based fault diagnosis problem which has not yet 
been solved using residual learning.

2. Batch normalization: Optimizing an objective function with respect to its parameters is 
required for deep CNN models and mini-batch stochastic gradient descent (SGD) has 
been widely used as an optimization algorithm in order to minimize the objective func-
tion. Although mini-batch SGD is simple and effective, model parameters and learning 
rates need to be carefully set to initial values. Because each layer’s inputs change during 
the training of deep CNN and the layers need to comply with the changing. The usage 
of BN layer between convolutional layers and nonlinearities is suggested to address the 
above-mentioned problem referred as internal covariate shift [19]. It should be noted that 
any work has not been done on utilizing BN for knowledge-based fault diagnosis. How-
ever, this study experimentally proves that the usage of batch normalization improves 
classification accuracy as noted in studies [3, 19].
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3  Proposed deep residual network architecture

3.1  Deep residual learning

The basic architecture of DL framework consists of combining basic layers in a cascade man-
ner. The learning scheme corresponds to approximating a mapping with an underlying func-
tion H(x) directly, where x denotes the inputs of the first of stacked layers. In residual learning 
architecture, a skip connection or identity mapping is utilized to skip one or more layers by 
connecting the input and output of stacked layers, and the outputs of identity mapping are 
added to the outputs of the stacked layers along channel dimension. Therefore, the mapping 
function is turned into residual mapping F(x) ∶= H(x) − x and the original mapping function 
becomes F(x) + x.

The residual learning scheme is adopted to every stacked layers in this work. The building 
block shown in Fig. 1a thus is defined as in Eq. 1.

where Fl denotes the residual function. xl represents the input feature to the l-th residual 
unit and xl+1 is the output feature from the unit. Wl gives a set of weights associated with 
the related residual unit. The mapping function for Block_A , which is shown in Fig. 1a, 
recasts into Fl = �(W

2
�(�(W

1
xl))) in which � and � denote the BN layer and ReLU acti-

vation function, respectively. The element-wise addition performs Fl + xl operation along 
channel dimension and ReLU (i.e., �(y) ) follows the addition.

(1)xl+1 = Fl(xl,Wl) + xl

Fig. 1  Block structures utilized 
in the proposed architecture [17]

(a) (b)
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The shortcut connections used in Block_A add neither extra parameter nor computa-
tional complexity. The convolutional shortcut connection applied in Block_B causes only 
a small increase in computational cost. Therefore, the network can be easily trained end-
to-end by an optimization algorithm as in cascade networks. Besides, the residual net-
works with extremely increased depth have not demonstrated the classification accuracy 
degradation.

3.2  Network architecture

Figure 2 presents the architecture of DRL network which consists of three sub-networks: 
feature representation, DRL and classification networks. The feature representation net 
takes the input grayscale image in order to represent it as feature maps. Next, the DRL ful-
fills the task of fault diagnosis. Finally, the feature maps in the last layer of DRL net are fed 
into the classification net to determine the bearing condition.

The input of the feature representation net is a 64 × 64 grayscale image which is con-
volved with 64 different filters, each of size 7 × 7 , using a stride of 2 and padding of 3 in 
x and y dimension. The BN layer between convolutional layer and activation function is 
adopted as in Block_A and Block_B displayed in Fig.  1. The feature representation net 
ends with a maximum pooling layer which performs pooling within 3 × 3 region using a 
stride of 2 and padding of 1. The resulting feature maps are then fed into DRL net which 
consists of between 1 and 4 blocks. The convolutional layers adopted in blocks have size 

Fig. 2  The architecture of the proposed DRL network
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of 3 × 3 filters. The adopted strategy in order to design the filter number in a block is that 
the number of filters is doubled when the obtained feature map size is halved using a stride 
of 2. A skip connection is inserted to adopt the residual learning scheme by adding fea-
ture maps as illustrated in Fig. 1b. Block_A is directly used when the feature maps are of 
the same dimension whereas a projection scheme is applied to input feature map using 
1 × 1 convolutions in order to increase dimension. The classification net starts with an aver-
age pooling layer whose size is equal to output of the last convolution layer using a stride 
of same number. The resulting feature maps are passed through a 10-way fully-connected 
layer with softmax, 10 being the number of classes. The layer configurations for Model 1 to 
4 are given in Table 1.

4  Experimental results

4.1  Experimental data description

In order to analyze the effectiveness of the proposed DRL method, a commonly used 
famous dataset containing vibration signals of motor bearing is utilized. The dataset pro-
vided by Case Western Reserve University (CWRU) [27] is publicly available and pre-
ferred in the studies focusing on bearing fault diagnosis [13, 15, 25, 34–36]. In addition 
to the regular healthy condition (RHC), the dataset contains three different faulty condi-
tions: inner race fault (IRF), outer race fault (ORF), and roller fault (RF). Furthermore, 
each faulty condition has three different severity levels: 0.18 mm, 0.36 mm, and 0.54 mm. 
Therefore, there are totally ten different health conditions in the dataset. Vibration signals 
of these ten different conditions were gathered under four different load scenarios (0, 1, 2, 
and 3 hp) with 12 kHz sampling frequency. Table 2 summarizes the details of the bearing 
dataset.

4.2  Data preprocessing

1D raw vibration signals of bearing provided by the dataset [27] are first converted 2D 
images with the size of 64 × 64 . Before the conversion process, the dataset containing 1D 
raw vibration signals are divided into training set, validation set and test set to train the pro-
posed network architectures, to avoid overfitting problem and to estimate the performance 
of the proposed approach for new inputs, respectively. Each raw vibration signal is first 
divided into 20 pieces, then each piece is randomly placed in the training, validation and 
test sets to obtain 14 pieces in the training set, 3 pieces in the validation set and 3 pieces 
in the test set. Consequently, training, validation and test sets contain nonoverlapping 70% , 
15% , and 15% of the raw vibration signal, respectively, and none of the sets is overlapping.

In the conversion process, first raw vibration signals are randomly segmented with the 
length of M. Then, M segments are used to obtain an image with the size of M ×M . The 
first segment correspond the first row of the image, whereas the Mth , i.e. the last, seg-
ment corresponds to the last row of the image. The created image is required to be nor-
malized to obtain a gray level image. Therefore, pixel intensity values of the image are 
calculated using min-max normalization method in the range of (0, 255). Let I(i,  j) and 
IN(i, j), i = 1, ...,M , and j = 1, ...,M represent pixel intensity value of the original and nor-
malized images, respectively. Then, IN(i, j) is calculated using Eq. 2.
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where min(I) and max(I) denote the minimum and maximum values of I, and round(.) 
function rounds the final result to an integer value.

In this study, the length of each segment is set to 64 to obtain an image with the size 
of 64 × 64. Some examples of the obtained images for each health condition are shown in 
Fig. 3.

4.3  Implementation details

The gray-level input images of size 64 × 64 from training dataset is used to train differ-
ent models and no augmentation or preprocessing technique is applied to training images. 
Xavier initialization [12] is used to initialize the model weights and ReLU is employed 
as activation function as seen in Fig. 1. The models are trained with Stochastic Gradient 
Descent with Momentum (SGDM) optimizer by setting � = 0.9. The minibatch size is set 
to 32 and the learning rate is initialized as 10−4 . All models are trained with about 2 × 10

5 
updates and trained from stratch rather than fine-tuned from a pre-trained model in the 
experiments.

4.4  Network architecture and parameter analysis

The proposed network are tested on the CWRU dataset. Starting from the simple model, 
various settings are gradually changed to make performance analysis. Table 3 presents the 
quantitative results.

First, the effects of the block size on classification accuracy are analyzed. Therefore, 
the number of blocks is changed from 1 to 4, and then the network architecture is designed 
as summarized in Table  1 and described in Sect.  3.2. Ten trials have been carried out 
to reduce the effects of the randomness. The average test accuracy is 99.98% by using 3 
blocks, which is higher than 99.94% , 99.91% , 99.97% obtained using 1, 2 and 4 block, 

(2)IN(i, j) = round

{

(I(i, j) − min(I)) ×
255

max(I) − min(I)

}

Table 2  Details of the bearing dataset

Sample number

Condition Severity level 
(mm)

Class label Training 
samples

Validation 
samples

Test samples

RHC - RHC 560 240 160
IRF 0.18 IRF_18 560 240 160
IRF 0.36 IRF_36 560 240 160
IRF 0.54 IRF_54 560 240 160
ORF 0.18 ORF_18 560 240 160
ORF 0.36 ORF_36 560 240 160
ORF 0.54 ORF_54 560 240 160
RF 0.18 RF_18 560 240 160
RF 0.36 RF_36 560 240 160
RF 0.54 RF_54 560 240 160
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respectively. Therefore, from the average accuracy results depicted in Table 3, it is evident 
that Model-3, i.e. DRL with 3-block-deep wide, gives slightly better results than other net-
work models.

Next, two different structures are tested to demonstrate the effectiveness of BN layer 
in DRL. The average training and test accuracies of Model-4 with or without BN layers 
are given in Table 4. The average test accuracy of 99.97% is achieved with using BN layer 
after each convolution layer, which is pretty higher than 87.11% obtained without using BN 
layer. The conducted experiments demonstrate the importance of BN layer in classification 
accuracy.

As a result, Model-3 with BN layer is selected as proposed DRL model to compare with 
state-of-the-art approaches.

4.5  Comparison with state‑of‑the‑art methods

In order to show the effectiveness of the proposed method, other related works using the 
same motor bearing dataset are selected to compare the classification accuracy. The com-
parison results are displayed in Table 5 and DRL method denotes the proposed Model-3. 
As depicted in Table 5, the test accuracies of all comparative models are obtained under 
different number of load conditions. Result of the studies performed using all 4 load condi-
tions are briefly summarized below.

Fig. 3  Images converted from 1D vibration signals for ten different health conditions
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Zhang et al. [39] proposed a bearing diagnosis model integrated permutation entropy, 
ensemble empirical mode decomposition and optimized SVM in order to classify 11 health 
conditions. The 97.91% test accuracy is obtained with their model. In [10], DBN based 
hierarchical diagnosis network is applied on the fault diagnosis and 99.03% classification 
accuracy is achieved. A two-stage learning method based on sparse filtering and softmax 
regression is proposed by Lei et al. [25] and the accuracy of 99.66% is obtained. Wen et al. 
[35] proposed a model based on CNN inspired by LeNet-5 for bearing fault diagnosis 
and the model is able to classify the health conditions with 99.79% accuracy. Xia et  al. 
[36] developed a CNN-based model using multiple sensors and the accuracy of 99.41% is 
achieved. Xu et al. [37] proposed a hybrid DL model and classify 10 different health condi-
tions with 99.79% accuracy.

The average test accuracy presented in Table 3 is severed as the term for comparison. 
From the results of Table 5, it can be clearly seen that the proposed DRL model achieves 
better classification result than comparative models and the proposed model obtains the 
best result of 99.98% . The standard deviations of all DRL models are less than 1% and they 
have shown superior results.

Figure 4 presents the confusion matrix of Trial 10 for Model 3, which obtains the test 
accuracy of 99.94% as given in Table 3. The confusion matrix shows that all health condi-
tion except ORF_ 54 have 100% test accuracy, meaning that the condition classes are defi-
nitely distinguished from each other. As can be seen, misclassification error only occurs on 
the ORF_ 54 by misclassifying 0.6% of test images of the ORF_ 54 as the IRF_36. As the 
test accuracy on some other trials of Model 3 are 100% , there is no need to show the confu-
sion matrix.

Table 5  Comparison of the DRL and other state-of-art fault diagnosis methods (NHC: Number of health 
condition)

Methods Training Load (hp) Test Load (hp) NHC Test Accuracy

[39] 0,1,2,3 0,1,2,3 11 97.91%
[30] 0,2 1,3 10 87.45%
[10] 0,1,2,3 0,1,2,3 10 99.03%
[25] 0,1,2,3 0,1,2,3 10 99.66%
[35] 0,1,2,3 0,1,2,3 10 99.79%
[36] 0,1,2,3 0,1,2,3 10 99.41%
[34] 0,2 1,3 10 99.82%
[26] pairs of loads 0,1,2,3 pairs of loads 0,1,2,3 4 99.83%
[23] 2 2 6 99.77%
[5] 1,2,3 1,2,3 10 99.02%
[37] 0,1,2,3 0,1,2,3 10 99.79%
DRL 0,1,2,3 0,1,2,3 10 99.98%
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5  Conclusion

This paper introduces residual learning into the field of bearing fault diagnosis and pro-
poses a novel DRL network architecture for bearing fault diagnosis. Firstly, the discrimina-
tive features are learned directly from images converted from raw time domain signals by 
learning end-to-end mapping between input images and health conditions without the need 
of hand-crafted features. Then, DRL scheme is adapted to mapping function to advance the 
classification accuracy by connecting input and output of stacked layers. In addition, batch 
normalization layer is utilized in the training process with increased accuracy in order to 
address internal covariate shift problem. By considering these three steps, four different 

Fig. 4  Confusion matrix of the test accuracy on Trial 10 of Model 3
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DRL network models are designed to analyze the effect of the block size on fault diagno-
sis accuracy. In addition, to observe BN layer effect in DRL, two different structures are 
created. The performance of these various DRL network models is evaluated for bearing 
fault diagnosis using vibration datasets from CWRU. Ten trials are carried out to reduce 
the effect of randomness. The standard deviations of all DRL models are less than 1% and 
they shown promising results. However, the analysis results indicate that the proposed 
Model-3 network with BN layer produce higher diagnosis accuracy for the bearing faults. 
The Model-3 network achieves average classification accuracy of 99.98% for the CWRU 
bearing dataset. Diagnosis rate of each health condition is visualized using the confusion 
matrix. Besides, comparative results confirm the superior classification performance of the 
proposed DRL model for fault diagnosis than state-of-the-art machine learning and DL 
approaches. In future works, transfer learning based approaches will be considered for 
bearing fault diagnosis.
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