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Abstract
The aim of low-light image enhancement algorithms is to improve the luminance of 
images. However, existing low-light image enhancement algorithms inevitably cause an 
enhanced image to be over- or underenhanced and cause color distortion, both of which 
prevent the enhanced images from obtaining satisfactory visual effects. In this paper,  
we proposed a simple but effective low-light image enhancement algorithm based on a 
membership function and gamma correction (MFGC). First, we convert the image from 
the RGB (red, green, blue) color space to the HSV (hue, saturation, value) color space 
and design a method to achieve the self-adaptation computation of traditional membership 
function parameters. Then, we use the results of the membership function as the γ value 
and adjust coefficient c of the gamma function based on the characteristics of different 
images with different gray levels. Finally, we design a linear function to avoid underen-
hancement. The experimental results show that our method not only has lower computa-
tional complexity but also greatly improves the brightness of low-light areas and addresses 
uneven brightness. The images enhanced using the proposed method have better objective  
and subjective image quality evaluation results than other state-of-the-art methods.

Keywords Image enhancement · Low-light image · HSV color space · Adaptive gamma 
correction · Membership function

1 Introduction

High dynamic range images are widely used in computer vision, target recognition, traf-
fic supervision, and other fields [38]. However, the actual captured images are usually 
affected by the low brightness around the target scene, which can produce images with 
some problems, such as dark color, low overall brightness and uneven brightness. These 
problems may cause images to be unsuitable for this type of application. Therefore, the 
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low-light image enhancement field has received an increasing amount of attention. We can 
generally divide existing low-light image enhancement algorithms into three types [34].

The first type of algorithm is the histogram equalization (HE)-based method [30], the main 
idea of which is to redistribute the dynamic range of image gray levels and make the dynamic 
range fall within the range [0,1]. Based on this idea, many extended HE algorithms have 
been proposed. For example, contrast-limited adaptive histogram equalization (CLAHE) [25] 
divides the input image into several equally sized subimages and then uses the HE method in 
each subimage; however, the enhanced images easily exhibit color distortion, and HE-based 
methods do not consider the noise hidden in the dark regions of the image.

The second type of algorithm is the retinex-based algorithm. This type of method 
considers that an image is composed of an illumination component and a reflectance 
component [14, 17, 18]. The illumination component represents the dynamic range of 
pixels of the image, and the reflectance component represents the details and outlines of 
the object surface [40]. Classical algorithms of this type include the single-scale retinex 
(SSR), multiscale retinex (MSR) and multiscale retinex with color restoration (MSRCR) 
[37]. Some improved algorithms introduce a bright-pass filter to replace the traditional 
Gaussian filter [10, 33]. This type of method uses different filters to decompose the 
input image into illumination and reflectance and then enhances these two components 
using different algorithms to achieve low-light enhancement; however, the enhanced 
results often exhibit halo effects and over- or underenhancement.

The last type of algorithm is based on nonlinear transformation. This type of algorithm 
uses nonlinear transform functions (NTFs) to directly operate on each pixel of the image. 
Commonly used nonlinear functions include gamma functions and improved gamma cor-
rections [15, 27]. The shortcoming of NTF-based method is that if the parameter γ is too 
small, it will amplify the noise of the target image. However, in contrast, if the parameter 
γ is near 1, satisfactorily enhanced results will not be obtained. Therefore, choosing a suit-
able γ value is the key to obtaining satisfactory results when using gamma correction [16]. 
To alleviate the noise of the enhanced image, the sigmoid function result is introduced as 
the γ value [31] because this method limits the minimum value of γ to 0.5. In addition, 
some other improved gamma correction algorithms use the probability density function 
(PDF) or cumulative distribution function (CDF) to adaptively adjust the γ value [4, 13].

In this paper, we utilize an improved fuzzy set membership function to adaptively 
estimate the γ value and redesign the coefficient c of the gamma function for global low-
light images. The final experimental results show that compared with other state-of-the-
art methods, the enhanced images obtained with our algorithm achieve better qualitative 
and quantitative evaluations. Examples of natural images and enhanced images with the 
proposed method are shown in Fig. 1.

Contribution  First, we successfully overcome the defect of the traditional fuzzy set mem-
bership function in that parameters must be manually set. Second, we creatively combine 
the gamma function and fuzzy set membership function and avoid over- or underenhance-
ment. Third, according to the different types of images, we redesign the objective exposure 
measure method (OEM) for the HSV color space.

The remainder of this paper is organized as follows: In Sect. 2, related work on the pro-
posed method is introduced. Details of the proposed algorithm are expressed in Sect. 3. 
Section  4 presents the experimental results with other state-of-the-art methods and 
describes the enhanced image quality evaluation results. All work is concluded in Sect. 5.
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2  Related work

In this section, we introduce the HSV color space, gamma correction and membership func-
tion, which construct the basis of our method.

2.1  HSV color space

The HSV color space is a cylindrical color space widely used in computer vision and image 
processing. It can be decomposed into the H (hue) component, S (saturation) component and 
V (value) component [19, 35]. The advantages of the HSV color space are that any component 
can be adjusted without affecting the others [9, 21]. More specifically, the input image is trans-
ferred from the RGB color space to the HSV color space, which can eliminate the strong color 
correlation of the image in the RGB space; thus, this work is based on the HSV color space. 
To present the original hue and saturation, only the V component is processed.

2.2  Gamma correction

Gamma correction has been widely used for low-light image enhancement and image contrast 
enhancement [5]. The proposed algorithm is based on the gamma function, which is simple 
and efficient. In the field of computer vision and digital image processing, the gamma function 
can be expressed as follows [1, 20]:

where g(x, y) denotes the enhanced pixels of the image, and n(x, y) is the pixel of the origi-
nal image. The shape of the gamma function can be affected by parameter γ and coefficient 
c, and the influences of different values of γ and c are shown in Fig.  2. Figure 2 shows 
that when 𝛾 > 1 , as γ increases and a large number of low grayscale levels are compressed 
to a smaller range, the image darkens. When � = 1 , the gamma function is a linear func-
tion, and the mapping result is equal to the input value. When 0 < 𝛾 < 1 , as the γ value 
decreases, a large number of low grayscale levels are transformed to a larger range, and the 
image brightens. From Fig. 2, we can also learn that the coefficient c determines the maxi-
mum value of the enhanced pixel. Thus, to brighten the image, we must let the size of γ be 
within the range of [0,1].

(1)g(x, y) = c ⋅
[
n(x, y)

]�

Fig. 1  Top row: natural low-light images, bottom row: enhanced images with the proposed MFGC method
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2.3  Membership function

A fuzzy set (A) with a finite number of supports x1,x2,…,xn in the inverse of discourse U is 
defined as [8, 26]

where ui
xi

 denotes the membership degree at xi in A , ui is a membership function, and xi is a 
member of A. With this concept of a fuzzy set, the image X of size M × N with L gray lev-
els can be considered the collection of fuzzy singletons [7, 11] and can be expressed as

where ui,j
xi,j

 denotes the membership degree of the pixel located at (i, j) , and xi,j is the pixel 
gray-level value. ui,j is a membership function and can be expressed as follows, where the 
smaller the value of ui,j , the lower the pixel value [36, 39].

where Xmax represents the maximum value of the gray level of an image, and Fe and Fd 
are conversion coefficients. The shape of the membership function can be affected by 
conversion coefficients Fe and Fd , and the influences of different values of Fe and Fd are 
shown in Fig. 3. As shown in Fig. 3, when gray-level values fall within the range (0,1), the 
value of the membership function falls within the range (0,1), and the membership func-
tion is a smooth curve, which satisfies the variation characteristics of the gamma func-
tion; thus, we use this membership function to estimate the γ parameter value in this paper. 
Figure 3a shows that as the Fd value increases, the value of ui,j increases. In other words, 
when Fd > 0 , the smaller the Fd is, the smaller ui,j , and we can obtain a larger value of the 
enhanced gray level via gamma correction. As shown in Fig. 3b, when Fe > 0 , the value of 

(2)A =

n⋃
i=1

(
ui

xi

)

(3)X =

M⋃
i=1

N⋃
j=1

(
ui,j

xi,j

)

(4)ui,j =

(
1 +

Xmax − xi,j

Fd

)−Fe

Fig. 2  Shape of the gamma function with different γ and c values. (a) With coefficient c = 1, (b) With 
parameter γ = 1

22090 Multimedia Tools and Applications (2022) 81:22087–22109



1 3

ui,j falls within the range (0,1); thus, if we want to increase the gray-level value via gamma 
correction, we must ensure Fe > 0 . Therefore, the values of Fe and Fd should be greater 
than 0 to ensure that ui,j falls within the range of [0,1].

3  Proposed algorithm

In this work, we focus on estimating parameter γ and adjusting coefficient c. According to 
the previous description, the key to enhancing the image brightness is how to estimate the 
parameter γ. To address this problem, we apply the improved fuzzy set membership function 
to obtain a suitable γ in the proposed method for the following reasons: Fig. 1 shows that the 
smaller the value of the gamma parameter, the larger the value of the enhanced pixel. In addi-
tion, according to the previous description, we know that the smaller the value of ui,j , the lower 
the brightness. Thus, we proposed the MFGC method by combining the membership function 
and gamma function.

3.1  Details of gamma correction

The traditional fuzzy set membership function is mainly used for image contrast enhance-
ment [24, 26]. In the proposed algorithm, we modify the traditional membership function. An 
improved membership function is adopted to compute γ value of the gamma function in our 
method. Based on the description in Sect. 2, we can further infer the membership function in 
V channel, which can be expressed as follows.

where ux,y denotes the membership degree of the pixel gray level, Vmax is the maximum 
value of the gray level of channel V, Vx,y is the pixel gray level, and Ve and Vd are conver-
sion coefficients. From the descriptions in Sect. 2.2, we can see that if we want to brighten 
the low-light image, we must ensure that the γ value lies in the range (0,1); therefore, we 
must ensure that the ux,y value lies in the range (0,1). In other words, we must ensure that 
the values of Fe and Fd are greater than 0.

(5)ux,y =

(
1 +

Vmax − Vx,y

Vd

)−Ve

(a) (b)

Fig. 3  Shape of the membership function with Fd and Fe. (a) With parameter Fe = 1 , (b) With parameter 
Fd = 0.5
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However, the traditional membership function must manually set the values of Ve 
and Vd according to the different properties of images [26]. To address this shortcom-
ing, we proposed an adaptive method based on the low-light image property to adjust 
the values of Ve and Vd . Different scenes have different intensities of light and different 
light sources, which generate different images with different properties, such as different 
maximum pixel values, minimum pixel values and average pixel values. Based on these 
attributes, we propose an adaptive method to calculate the parameters and coefficients 
as follows. First, by using the improved OEM to estimate the exposure value of the V 
channel component, the normal OEM can be defined as Eq. (6) [30], which describes an 
objective measurement method for the intensity exposure of the image.

where h(k) denotes the histogram of the gray level k, k is the gray level, L is the total num-
ber of gray levels, and the dynamic value range of the image exposure falls within the range 
(0, 1). Due to the properties of low-light images, the maximum value of the pixel gray level 
of different images differs considerably, but the exposure value of low-light images is very 
similar. Thus, to enlarge the gap between the exposure value of low-light images, we intro-
duce the maximum value of the V channel to redefine the OEM function and render it suit-
able for low-light images, and it can be expressed as Eq. (7).

Considering the different properties of different images when estimating the param-
eter γ, the maximum and average values are introduced to estimate the value of Vd and 
parameter Ve . Different low-light images have different mean values of global gray lev-
els; therefore, the mean value is another important property. The mean value of the V 
channel can be expressed as Eq. (8).

where p(i) represents the histogram of gray level i , and m and n denote the width of the 
image and the height of the image, respectively. Based on previous descriptions, we design 
a linear function to adaptively compute the value of parameter Vd according to the proper-
ties of different low-light images. The expression of Vd is shown as Eq. (9).

It is known that the gray-level value is not less than 0, which indicates that i > 0 , and 
we can infer that

Then, we obtain

(6)Exposure =
1

L

�∑L

k=1
h(k) ⋅ k

∑L

k=1
h(k)

�

(7)V � = Vmax ∗ Exposure

(8)Vmean =

∑1

i=0
p(i) ⋅ i

m ⋅ n

(9)Vd =
Vmean + Vmax + V �

2.35

(10)
1∑
i=0

p(i) ⋅ i > 0
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The pixel value falls in the range (0,1). In addition, we have

According to the above descriptions, we also know that the Exposure value falls within 
the range (0,1). We can obtain the following expression:

and we have

Then, we can prove that

According to Eq.  (1), if we want to brighten the image, we must ensure that γ falls 
within the range (0,1). In other words, we also must guarantee that the value of parameter 
Ve is greater than 0 to let ux,y lie in the range (0,1). Therefore, we design an equation to 
automatically compute Ve. The equation can be expressed as

where Vmax is the maximum value of the V channel, and Q denotes a constant value for 
adjusting the size of ux,y . In this paper, we set Q equal to 0.15. Based on the above descrip-
tions, we must guarantee that the value of Ve is greater than 0. It is known that the maxi-
mum pixel value of an image falls in the range (0,1), and we will obtain

Then, we also know that Q = 0.15 . Finally, we obtain

Substituting Eq. (9) and Eq. (16) into Eq. (5), we can further infer the adaptive member-
ship function of the V channel, which can be expressed as Eq. (19).

After this step, we obtain a new membership function ux,y and adopt it to compute the 
value of γ. In this expression, we can see that the value of term 2.35⋅(Vmax−Vx,y)

Vmean+Vmax+V
�
 is not less 

than zero because Vmax − Vx,y ≥ 0 ; thus, we can obtain the next term 1 + 2.35⋅(Vmax−Vx,y)
Vmean+Vmax+V

�
≥ 1 . 

From Eq.  (16), we know that Ve = Vmax + Q > 0 ; therefore, we can infer that ux,y of 
Eq. (19) falls within the range [0,1].

To illustrate the effect of different parameters, we display the shape of the member-
ship function with different parameters, as shown in Fig.  4. Figure  4a shows that the 

(11)Vmean =

∑1

i=0
p(i) ⋅ i

m ⋅ n
> 0

(12)1 > Vmax > 0

(13)1 > Vmax ∗ Exposure > 0

(14)1 > V ′
> 0

(15)Vd =
Vmean + Vmax + V �

2.35
> 0

(16)Ve = Vmax + Q

(17)1 > Vmax > 0

(18)Ve = Vmax + Q > 0

(19)ux,y =

(
1 +

2.35 ⋅
(
Vmax − Vx,y

)
Vmean + Vmax + V �

)−(Vmax+Q)
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smaller the value of Vmean is, the smaller the ux,y value we obtain. Similarly, Fig.  4b 
shows that with the decrease in the V ′ value, the ux,y value decreases. Based on the above 
descriptions, we know that the smaller the mean value, the lower the brightness of the 
image; the smaller the Exposure value, the smaller the V ′ value, which also indicates the 
lower the brightness of the image. The lower the brightness of the image, the smaller 
the γ value we need to adjust the brightness. Thus, we can use parameters Vmean and V ′ 
to estimate the γ value. We can also see that a smaller Vmean value and V ′ value may lead 
to an ux,y value that is too small and cause overenhancement. To avoid overenhancement, 
we use the parameter Vmax to optimize the ux,y value, and the effect of the Vmax param-
eter is shown in Fig. 4c. As shown in Fig. 4c, as the Vmax value decreases, the ux,y value 
increases. Therefore, we can use the image features to estimate the value for the gamma 
function parameter.

According to the concept of the membership function of an image, we can see that if 
an image has global low-light sources or no light sources, the value of membership will 
be near 0. However, a gamma parameter that is too small will increase the brightness 
too much and decrease the contrast of the enhanced image. To address this problem, 
we consider the value of coefficient c to adjust the enhanced pixel values. Figure  1b 
shows that the value of coefficient c determines the enhancement amplitude of the 
gamma function. We utilize the maximum value of the V channel to compute coefficient 
c because the darker the image, the smaller the maximum value of the gray-level inten-
sity, which can efficiently decrease the brightness enhancement amplitude. The function 
of coefficient c is expressed as follows.

Substituting Eq. (19) and Eq. (20) into Eq. (4), we can obtain the improved gamma 
function, which is shown as Eq. (21).

(20)c = Vmax

(21)
g(x, y) = Vmax⋅

[
n(x, y)

]
(
1+

2.35⋅(Vmax−Vx,y)
Vmean+Vmax+V

�

)−(Vmax+Q)

(a)                              (b)                              (c)

Fig. 4  Shape of the membership function with different parameters. (a) With parameters V
max

= 1 and 
V = 0.4 , (b) With parameters V

max
= 1 and V

mean
= 0.4 , (c) With parameters V

mean
= 0.4 and V

max
= 1
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3.2  Linear enhancement

Utilizing Eq. (21), we can obtain the enhanced V channel, which is referred to as V1. To 
avoid underenhancement, we designed the expansion coefficient e to linearly enlarge the 
gray-level dynamic range according to channel V1. While further adjusting the bright-
ness, we should ensure that the maximum does not exceed 1 to avoid overenhancement. 
The maximum value of the V1 channel must be measured, and we design a simple but 
effective expansion coefficient e based on the maximum value of the V1 channel to 
enhance the global brightness, which can be expressed as Eq. (22).

where V1max denotes the maximum pixel value of the V1 channel. Because the value of the 
V1 channel ranges between 0 and 1, if the original image’s maximum value is less than 1, 
we know that the value of e is greater than 1, which means that e = 1

V1max
> 1 . Combining 

Eq. (21) and Eq. (22), we obtain the final enhancement function to enlarge the gray-level 
range, which can be expressed as follows.

Based on the proposed adaptive gamma function for the V channel, we can obtain the 
final enhanced edition of the enhanced V channel called V2 via Eq. (23). The complete 
flowchart of the proposed algorithm is shown in Fig. 5.

We choose an image named “bicycles” to illustrate the enhancement process of the 
proposed method. The original V channel, V1 channel and new V2 channel are shown 
in Fig. 6, and the corresponding gray-level histograms are shown in Fig. 7.

The H channel, S channel and V2 channel are merged in HSV color space, and we 
obtain an enhanced image after color space conversion from HSV to RGB. The input 
image, output image and corresponding gray-level histograms are shown in Fig. 8.

4  Experimental results and discussion

This section describes the comparative experiment with other existing state-of-the-art meth-
ods and experimental results. The selected comparison algorithms include low-light image 
enhancement using the camera response model (LECARM) method [29], the fractional-
order fusion model (FFM) method [6], the robust retinex model (RRM) method [18], a joint 
intrinsic-extrinsic prior model (JIEP) method [2], the semi-decoupled decomposition (SDD) 
method [12] and the joint enhancement and denoising method (JED) method [28]. All 
experiments are performed in MATLAB R2020b on a personal computer running Windows 

(22)e =
1

V1max

(23)g�(x, y) =
1

V1max
⋅ g(x, y)

Fig. 5  Flowchart of the proposed algorithm
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10 with an Intel Core i7-10875H CPU @ 2.30  GHz and 16  GB of RAM. In this paper, 
all displayed images are obtained from our dataset; all displayed images are captured by a 
Sony digital camera; and the camera model is ILCE-6400. Due to the length limitations of 
this paper, the total number of images used is fourteen. The original images and enhanced 
images are shown as follows.

4.1  Subjective assessment

For image quality assessment (IQA), the mean opinion score (MOS) is a widely used 
method for describing the subjective quality assessment of images [3]. The equation for 
calculating the MOS value can be expressed as follows [41]:

where Si,j denotes the score of image j graded by subject i, and n is the number of sub-
jects. To calculate the MOS value, we completed a questionnaire and invited 15 people to 
anonymously rate the enhanced images. The scoring rules are expressed as follows: The 
score range is 1 to 5, and when the score is 5, the image visual effect is excellent. A score 
of 4 indicates that the image visual effect is good and the details of the image are clear. 
When the score is 3, the image details are disturbed but can be distinguished. A score of 
2 indicates that the image is difficult to distinguish. When the score is 1, the image cannot 
be recognized. We calculated the MOS values of all enhanced images, and the results are 
shown in Table 1.

(24)MOSj =

∑n

i=1
Si,j

n

Fig. 6  Original V channel and enhanced results. (a) V channel, (b) Enhanced channel V1, (c) Enhanced 
channel V2

Fig. 7  Gray-level histogram. (a) Histogram of the V channel, (b) Histogram of enhanced channel V1, (c) 
Histogram of enhanced channel V2
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Table 1 shows that the LECARM method and proposed MFGC method perform well 
due to the higher brightness and restore more information from dark areas. Generally, both 
results are better than those of the other five comparison methods, and the average value 
difference between LECARM and our method is only 0.033. In this case, the proposed 
method obtains the highest MOS value four times and the second-best MOS value three 
times. We can also determine that the MOS value of Painting is the highest of all values 
that are enhanced with the proposed method, which is 60.8 percent higher than the score 
of JIEP. Although the results of SSD obtain a reasonable visual effect and three highest 
values, the backgrounds of some images are blurry, which yields an MOS below that of 
the proposed method,  such as the Figs.  9, 10 and 11, and the average value is 4.7 per-
cent lower than that of the proposed method. We learn that the RRM method and JED 
method have similar visual perception effects for human eyes, and from the  Figs.  12 
and 13 we can see that  they have lower brightness than other methods. The average  
score of JED is 9.1 percent lower than that of our method, and the average score of RRM is  
4.6 percent lower than that of JED. In addition, we know that the MOS values of the FFM  
method and JIEP method are similar and smaller than those of the other algorithms, which 
indicates that the enhanced images of both cannot adequately restore the detailed informa-
tion of dark areas with a lower visual effect. The average value of FFM is only 0.127 higher 
than the score of JIEP, and the score of JIEP is 19.6 percent lower than that of the proposed  
method.

Fig. 8  Images and corresponding gray-level histograms. (a) Input image, (b) Gray-level histogram of input 
image, (c) Enhanced image, (d) Gray-level histogram of enhanced image

Fig. 9  Comparison of the enhanced results of School with different methods. (a) Input image, (b) Enhanced 
with LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced 
with SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

22097Multimedia Tools and Applications (2022) 81:22087–22109



1 3

4.2  Objective assessment

To confirm the quality of the image enhanced with the proposed method, we choose two no-
reference IQA metrics (Perception-based Image Quality Evaluator (PIQE) and Blind/Refer-
enceless Image Spatial Quality Evaluator (BRISQUE)) to measure the enhanced image qual-
ity. To further illustrate the efficiency of the proposed method, we perform a comparative 
analysis of the computational complexity of the methods and give the time consumption of 
image processing.

4.2.1  Image quality assessment

First, the mathematical expressions for the image quality measure metrics PIQE and BRISQUE 
are described below. The expression for BRISQUE can be expressed as Eq. (25) [23].

Fig. 10  Comparing enhanced results of Painting with different methods. (a) Input image, (b) Enhanced 
with LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced 
with SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

Fig. 11  Comparing enhanced results of Vehicle with different methods. (a) Input image, (b) Enhanced with 
LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced with 
SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method
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where � is a gamma function and is shown as Eq. (26), v is a parameter, and �l and �r are 
scale parameters that control the spread on each side of the general asymmetric generalized 
Gaussian distribution model.
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Fig. 13  Comparing enhanced results of Cars with different methods. (a) Input image, (b) Enhanced with 
LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced with 
SDD, (g) Enhanced with JED, (h) Enhanced with proposed method MFGC method

Fig. 12  Comparing enhanced results of Bulldozer with different methods. (a) Input image, (b) Enhanced 
with LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced 
with SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method
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The mathematical expression for PIQE is shown in Eq. (27) [32].

where NSA is the number of spatially active blocks in the image, Dsk is the distortion assignment 
procedure for each image block, and CT is a positive constant ( CT = 1 in this quality evaluator).

The results of different quality measure metrics are shown in Tables  2 and 3. The 
smaller the measurement metric results, the better the image quality. The best scores are 
highlighted in bold, and the second-best scores are underlined. To show the changes in 
the data more intuitively, we have made the average values of Tables 2 and 3 into a line 
statistical chart, as shown in Fig. 14a.

Table 2 and Fig. 14a show that the PIQE results for the different methods are quite differ-
ent; thus, the values have reasonable distinguishability. It is shown that the proposed MFGC 
method performs well, the enhanced images obtain the best score four times and obtain the 
second-best score four times, and the average score is nearly 31 percent lower than the aver-
age score of the RRM method. In comparison, the second-best values are obtained by the 
JIEP algorithm, which obtains the best score three times and a lower score than the proposed 
method one time. The average value of JIEP is 0.76 lower than that of the proposed method. 
The quality of the enhanced images obtained via LECARM and FFM is similar to and lower 
than that of the proposed method. The difference between LECARM and FFM is only 0.368, 
which represents the enhanced image quality with similar image quality. The largest PIQE is 
obtained by the RRM algorithm, and the PIQE of RRM is 15.604 higher and 44.7 percent 
higher than those of the proposed method, which indicates that the enhanced results have lower 
image quality than the other methods, and the enhanced images lose some detailed informa-
tion. The results of both the SDD method and the JED method are not satisfactory. The aver-
age value of the JED method is 23.2 percent higher than that of the proposed method, and the 
value of the SDD method is 7 percent higher than that of JED. Combined with the enhanced 
images, this finding is attributed to the blurriness of some areas of the enhanced images, such 
as the middle area of Figs. 15 and 16.

Table 3 clearly shows that the statistics of the diagram are irregularly scattered, and the aver-
age value falls within the range from 18.5 to 31.4. In this case, the proposed method obtains the 
three best scores and two second-best scores because the object information is restored well and 
the average value is the smallest. The average value of the proposed method is 40.9 percent lower 
than that of RRM. The second-best average value is obtained by the LECARM method, which 
obtains the two best scores, and the enhanced images have satisfactory brightness. The average 
score of LECARM is 0.419 higher than that of the proposed method. Table 3 and Fig. 14a also 
show that the statistics of FFM and JIEP are higher than those of the other methods, and the differ-
ence between FFM and JIEP is only 0.512, indicating lower image quality. From the Figs. 17, 19 
and 20 we can see that the enhanced image brightness of both methods is lower than that of other 
methods. The results of SDD and JED are similar to the PIQE results because some areas of the 
enhanced image become blurry, which causes a loss of detailed information. We can see that the 
average score of SDD is 33 percent higher than that of the proposed method. In this case, the score 
of JED is 3.014 higher than that of SDD. Due to the poor recovery of object information in dark 
areas, the results of the RRM method are lower than those of the other comparison algorithms, 
and the average score is 12.866 higher than that of the proposed method.

(26)𝜏(a) = ∫
∞

0

ta−1e−tdt, a > 0

(27)PIQE =

�∑NSA

k=1
Dsk

�
+ CT

NSA + CT
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4.2.2  Image quality assessment with different datasets

We choose a multi-exposure image fusion (MEF) dataset [22] and a fusion-based enhanc-
ing (AFE) dataset [10] to test the enhanced image quality with different methods to further 
improve the effectiveness of the proposed method. The results are shown in Table 4, and 
the line statistical chart is shown in Fig. 14b (these values represent the average value).

Table  4 and Fig.  14b show that the proposed method obtains the best score three 
times, and the PIQE value of the MEF dataset processed by our proposed method is the 
best, which is 0.232 lower than the second-best score of the JED method. Similarly, the 
BRISQUE value of the MEF dataset processed by our proposed method is also 0.166 
lower than the second-best score of the JED method. In contrast, the proposed method 
obtains the best value and the second-best value in the NIQE and BRISQUE measurement 
metrics of the AFE dataset; the PIQE value of the proposed method is 23 percent lower 
than the second-best result of the FFM method, and the BRISQUE score is only 2 percent 
higher than the best score of the RRM method. Figure 14 also show that for the image 
enhancement of different datasets, the performance of the proposed algorithm is the most 
stable, while the performances of other algorithms are not stable enough, and the image 
quality after enhancement changes greatly. In general, the enhanced image quality of the 
proposed method is outperformed by the other methods.

4.2.3  Computational complexity comparison

In addition to the no-reference image quality measure metrics, the computational complexity is 
important for algorithms. We use ten images with increasing sizes from 100 × 100 to 1000 × 1000 
to test the computational complexity of all comparison methods, and the length and width dif-
ference between adjacent images is 100 pixels. We run all the algorithms three times, record the 
results each time, and take the average of the three results. The final results are shown in Fig. 18.

Fig. 14  Line statistical chart of measurement metrics with different methods  (the ordinate represents 
the average values of Tables 2 and 3)

Table 4  Results of metrics with different datasets

Metric Dataset LECARM FFM RRM JIEP SDD JED Proposed

PIQE MEF 42.991 44.994 51.419 42.549 50.942 49.396 42.317
AFE 36.740 29.463 40.609 37.747 34.574 37.598 22.602

BRISQUE MEF 29.239 29.425 36.482 28.917 32.990 36.057 28.751
AFE 18.838 13.095 9.743 23.363 20.653 20.725 9.950
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Figure  18 shows that the computational complexity of the proposed method is the 
lowest; conversely, the RRM method has the highest computational complexity of nearly 
O(N2). The SDD method has the second-highest computational complexity, and its com-
putational complexity is below that of RRM. The computational complexities of FFM, 
JED, and JIEP are O(NlogN) and below O(N2). In addition, we know that the computa-
tional complexities of both LECARM and the proposed MFGC method are O(N). In this 
case, as shown in Fig. 18, as the amount of calculation data increases linearly, the time 
increase of the proposed MFGC algorithm is the smallest, followed by the LECARM 
method, and the largest increase occur with the RRM method. Therefore, we can infer 
that the image processing time of the proposed MFGC method is the shortest. In addi-
tion, according to Fig.  18, we can infer that the image processing speed of the RRM 
method is the slowest.

Fig. 15  Comparing enhanced results of Bicycles with different methods. (a) Input image, (b) Enhanced 
with LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced 
with SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

Fig. 16  Comparing enhanced results of College with different methods. (a) Input image, (b) Enhanced with 
LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced with 
SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method
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To verify the computational complexity of the comparison methods, we measured the image 
processing time of different methods. The time consumed for different algorithms to process 
images is shown in Table 5, where the shortest times are highlighted in bold, and the second-
shortest times are underlined. As shown in Table 5, due to the high computational complexity 
of the RRM method, this method takes the longest time on each image, and the average compu-
tational time of RMM is more than 378 times that of the proposed method. In this case, the pro-
posed MFGC method takes the shortest time on all test images. We also note that the average time 
consumption of the proposed method is less than one-fifth the calculation time of the LECARM 
method. The time consumptions of FFM, JIEP and JED are similar because of the similar com-
putational complexity, and the average computational time of the three methods is more than 67 
times that of the proposed method. The image processing time of the SDD algorithm is between 
that of the RRM and FFM methods, and it is more than 150 times that of our method. The statis-
tics of Table 5 also prove that the computational complexity of the proposed MFGC method is the 
lowest.

Fig. 17  Comparing enhanced results of Laboratory with different methods. (a) Input image, (b) Enhanced 
with LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced 
with SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

Fig. 18  Results of computa-
tional complexity with different 
methods

22106 Multimedia Tools and Applications (2022) 81:22087–22109



1 3

Fig. 19  Comparing enhanced results of Flower with different methods. (a) Input image, (b) Enhanced with 
LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced with 
SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

Fig. 20  Comparing enhanced results of Library with different methods. (a) Input image, (b) Enhanced with 
LECARM, (c) Enhanced with FFM, (d) Enhanced with RRM, (e) Enhanced with JIEP, (f) Enhanced with 
SDD, (g) Enhanced with JED, (h) Enhanced with proposed MFGC method

Table 5  Results of time consumption with different methods

Method School Painting Vehicle Bull 
dozer

Cars Bicycles College Laboratory Flower Library AVG

LECARM 0.606 0.289 0.294 0.183 0.187 0.269 0.185 0.185 0.363 0.191 0.275
FFM 5.638 5.184 4.722 3.989 3.510 6.389 4.208 4.098 6.907 4.638 4.928
RRM 16.091 21.414 17.785 15.282 12.431 25.954 14.863 15.475 38.249 19.267 19.681
JIEP 3.431 3.170 3.537 2.533 6.003 4.366 2.943 2.834 11.644 2.820 4.328
SDD 5.555 8.845 8.640 4.828 9.164 10.286 5.840 4.164 16.950 5.112 7.938
JED 4.092 4.046 3.439 2.869 2.419 4.452 2.976 2.682 4.987 3.275 3.524
Proposed 0.109 0.072 0.040 0.044 0.030 0.053 0.038 0.035 0.058 0.042 0.052
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5  Conclusions

We proposed a simple and efficient algorithm based on a membership function and gamma 
correction to achieve low-light image enhancement in this paper. The images enhanced with the 
proposed method do not exhibit over- or underenhancement, balance the global brightness, and 
have higher brightness and higher image quality than those of the comparison methods. In addi-
tion, our method has lower computational complexity than other methods, which means that 
our method has faster processing speed. The performance of the proposed method is sufficiently 
stable, and the method proposed in this paper was shown via comparative experimental and 
image quality assessment results to perform better than other state-of-the-art methods.
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