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Abstract
In smart grid infrastructure, multimedia communication plays an important role in vari-
ous applications, for instance, load monitoring, automatic smart meter reading, and energy
management. Energy management has gained widespread popularity with the increasing
energy demand. The goal of this paper is to explore multiagent-based Reinforcement Learn-
ing (RL) for multicarrier (i.e., electricity and gas) Residential Energy Management (REM)
systems with data security. It facilitates the possibility for a separate Demand Response
Program (DRP) for every energy component accelerates with computational aspects of RL.
This paper proposes Q-MSEM, a Q-learning-based Multiagent and Secure Energy Manage-
ment scheme for the optimal solution of REM problems using RL and Ethereum Blockchain
(EB) to reduce energy load and decrease energy costs. Then, Q-MSEM uses Ethereum Smart
Contract (ESC) to covenants data security issues using off-chain storage, i.e., InterPlanetary
File System (IPFS) to handle data storage costs issues. Experimental results disclose the
effectiveness of the proposed Q-MSEM scheme in terms of reduction in load, energy cost
(15.82%), and data storage cost.

Keywords Demand response management · Residential energy management ·
Reinforcement learning · Artificial intelligence · Q-learning

1 Introduction

In the REM system, smart grid productivity increases with the interaction between mul-
tiple energy carriers to increase reliability, reduce planning cost and operations cost [1].
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Energy management in multicarrier (i.e., electricity and gas) multimedia systems necessi-
tates interaction among several resources and consumers demands without compromising
the consumer comfort to handle energy consumption level [29]. Then, electricity prices are
impacted by natural gas prices, hence, DRP requires energy reduction for gas and electricity
both in multicarrier REM system [22]. Since residential consumers are a major contribu-
tor to energy demand and require an effective multicarrier energy system. Thus far, several
past research works exist that touched the energy management issue of REM and presented
a range of solutions. Though, most of these research works has mainly focused to reduce
energy costs [6], decreasing greenhouse gas emissions, reducing energy load with consumer
preferences, and smoothing load profile in single carrier energy system [7, 19, 27, 28].

Most of the studies use mathematical methods, specifically linear/non-linear mix integer
linear programming (MIP) [1]. Then, due to data dimensionality issues and computing prob-
lem heuristic approaches have become popular using machine models in recent years. For
instance, Pezeshki et al. [21] highlighted a comparison between Artificial Neural Network
(ANN), and fuzzy & neural network (NN) for REM, and then Reynolds et al. [26] presented
a combination of ANN and Genetic Algorithm (GA) methods for energy management of
residential houses. Next, Wu et al. [14] developed the fuzzy logic, and Gutierrez-Martinez
et al. [7] applied GA for energy management issues. Then, Sharifi et al. [28] presented an
integrated REM approach, which includes GA with MIP method.

Most of the existing approaches use deterministic rules or abstract methods, which has
certain disadvantages like it fails to guarantee optimality and could cause financial losses,
application of abstract models in the actual multimedia system could be unrealistic and
mostly relies on the smart grid administrator skill, and MIP/game-theoretic optimization
approaches suffer from scalability issue. Motivated from the aforesaid challenges and to
handle them, RL is a prominent solution, which plays a crucial role in optimal decision-
making for realistic issues. It is a subset of Artificial Intelligence (AI) and proved its
effectiveness by AlphaGO Zero and AlphaGO breakthroughs [15].

For REM, several RL-based approaches like Deep Q-Network (DQN), Q-learning, and
others have been adopted globally by researchers to handle energy management issues
for electric vehicles (EVs), electric home appliances, etc. [8, 14]. Then, day-ahead pric-
ing mechanism also used with RL-based approach to handle energy load in REM system
[10, 18, 22, 25]. Nevertheless, the utmost existing approaches use Q-learning and have
been modeled as Markov Decision Process (MDP). So far, there are several limitations, for
instance, (i) most studies only focused on electricity and did not consider gas consumption,
then the RL algorithms would perform differently while working with different energy car-
riers, and (ii) REM on daily basis has been studied, though, the hourly DRP shows better
prospective to balance REM associated with dynamic limitations.

Moreover, results gained from the REM agent required to be accessed securely by all
stakeholders like smart grid administrators, utility suppliers, and consumers for real-time
decision-making. Several RL-based methods exist for REM, yet it has not been exploited to
its full potential with data security during multimedia communication. Numerous other chal-
lenges such as consumer trust, single-point failure, security, and privacy also exist. To cope
up with the mentioned challenges, blockchain is a viable solution, which offers security,
transparency, and trust to the stakeholders [10].

Blockchain is a decentralized database and Distributed Ledger Technique (DLT) to store
data in chained blocks that protect a single-point failure issue, improve trust, privacy, and
security [11]. It has been embraced in smart grid systems for secure energy management in
an efficient manner [12], for example, Blom et al. [5] describe the likelihood of blockchain
in a smart grid system and Li et al. [13] offered an optimal energy pricing scheme using
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Stackelberg game for the nourishment of efficient energy trading. Far ahead, blockchain is
adopted in REM as well [2, 9, 12]. The prevailing blockchain-based REM approaches have
several limitations, like limited energy data storage ability, high energy data storage cost on
ethereum, and high network bandwidth due to multimedia data redundancy.

1.1 Motivation and research contributions

Motivated from the aforesaid issues and the fact that electricity prices are impacted by nat-
ural gas prices, so, DRP requires energy consumption reduction for gas and electricity both
in multicarrier REM system in order to improve smart grid reliability and Quality of Ser-
vice (QoS). In this paper, we propose Q-MSEM, a Q-learning-based multiagent and secure
energy management scheme for multimedia communication in a smart grid system. The tra-
ditional blockchain-based DRP system stores energy transactions on a blockchain, which
is costly and incompetent in a real-time scenario. However, the proposed Q-MSEM scheme
stores energy data on the off-chain storage system, i.e., IPFS, which provide low data stor-
age cost, system scalability, and high throughput during access of multimedia energy data
[12, 23].

The following are major research contributions of this paper.

– A REM scheme, i.e., Q-MSEM is proposed using RL methodology considering elec-
tricity and gas consumption with dissatisfaction cost to the consumer. The energy load
reduction is addressed by consumer dissatisfaction cost.

– An optimal energy load curtailment strategy is embraced via finite discrete MDP and
its tractability is achieved by means of the Q-learning process.

– An IPFS-based unique ESC is designed to access electricity and gas consumption mul-
timedia data securely in real-time and attain high system throughput by scalability and
low storage cost during access.

– The performance of the proposed scheme Q-MSEM is evaluated compared to existing
approaches to shows its effectiveness in terms of different evaluation parameters like
load reduction, energy cost, and data storage cost.

1.2 Organizations

The rest of the paper is organized as follows. Section 2 highlights the related work and
a comparative analysis of the proposed Q-MSEM scheme with existing approaches. Then,
Section 3 describes the system model of the proposed Q-MSEM scheme and Section 4
discusses the problem formulation of Q-MSEM scheme. Then, Section 5 shows the complete
workflow of Q-MSEM scheme, then, experimental results and performance evaluation are
highlighted in Section 6. Finally, the paper is concluded in Section 7 with future work. Then,
nomenclatures and abbreviations are listed in Table 1.

2 Related work

Several RL-based approaches have been adopted globally by researchers to handle energy
management issues for electric home appliances, EVs, and others. Most of the existing
approaches use DQN, Q-learning, etc. to handle energy management in REM systems [8,
14]. In [18, 25], day-ahead pricing mechanism is used for RL-based approach to handle
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Table 1 Nomenclatures and abbreviations

Particular Details

t Discrete timeslot in a Day

ECξ Electricity consumption

ECg Gas consumption

US Utility providers

ω Critical home appliances (HA)

ν Non-critical home appliances (HA)

γ Total number of HAs

ξcrit
C,ω,t Electricity consumption by critical HAs for consumer C at time t

ξNcrit
C,ν,t Electricity consumption by non-critical HAs for consumer C at time t

φC,t,ξ Dissatisfaction cost function for consumer C in terms of electricity consumption reduction

φC,t,g Dissatisfaction cost function for consumer C in terms of gas consumption reduction

γC Preference parameter for consumer to reduce energy load

mincoef Lower bound of energy reduction

maxcoef Upper bound of energy reduction

CostC,t,ξ Electricity cost for consumer C at timeslot t

ξP ricet Electricity price at time t

CostC,t,g Gas consumption cost for consumer C at timeslot t

gP ricet Gas price at timeslot t

i Episode in the proposed Q-MSEM scheme for Q-learning

A Action for discrete timeslot t

S(ξC, tNcrit ) States for electricity

S(gNcrit
C,t ) States for gas

R Reward

ρ Mapping states to actions

EDSC
secure Secured energy data storage

EDSCAL
secure Scalability of the proposed Q-MSEM scheme

AI Artificial Intelligence

ANN Artificial Neural Network

DLT Distributed Ledger Technique

DQN Deep Q-Network

DRP Demand Response Program

EB Ethereum Blockchain

ESC Ethereum Smart Contract

EVs Electric Vehicles

GA Genetic Algorithm

IPFS InterPlanetary File System

MDP Markov Decision Process

REM Residential Energy Management

RL Reinforcement Learning
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energy load in REM system. Moreover, the existing approaches use Q-learning with MDP,
yet, there are several limitations, for instance, most studies only focused on electricity
and did not consider gas consumption reduction. Furthermore, RL algorithms would per-
form differently while working with different energy carriers in REM systems. The energy
consumption reduction has been studied on daily basis, though, the hourly consumption
reduction shows a better perspective to balance DRP associated with dynamic limitations in
REM systems.

The authors’ Lu et al. [15] presented a REM system to balance the demand response gap
using RL and ANN & accelerate the stability and efficiency in the smart grid. Here, energy
cost reduction has been achieved by 7.3%. Then, Xu et al. [31] proposed a data-driven
mechanism for REM system using multiagent-based RL. Ahrarinouri et al. [1] presented a
multiagent-based RL approach for energy management in REM systems and reduced the
energy cost by 12%. Next, Rastegar et al. [24] proposed a mechanism to reduce energy
consumption in REM system.

Results gained from the REM agent required to be accessed securely by all stakehold-
ers to make a real-time decision. Several RL-based approaches exist for REM, yet it has
not been exploited to its full potential for a multicarrier system with data security. Other
challenges like end-consumer trust, single-point failure, security, and privacy also exist. To
handle these challenges, blockchain is a prominent solution [10]. It has been embraced in
smart grid systems for secure energy management in an efficient manner [12]. Blom et al.
[5] describe the likelihood of blockchain in a smart grid system and Li et al. [13] proposed
an optimal energy pricing scheme using the Stackelberg game for efficient energy trading.
It is adopted in REM as well [2, 9, 12] and blockchain-based REM approaches have sev-
eral limitations, like limited energy data storage capacity, high energy data storage cost on
Ethereum, and high network bandwidth. Hence, this paper proposes Q-MSEM scheme for
multimedia communication in a smart grid system using Q-learning and EB. The proposed
Q-MSEM scheme stores energy data on IPFS (an off-chain storage system), which provides
low data storage cost, system scalability, and high throughput during access of multimedia
energy data [12]. Then, a comparative analysis of the proposed Q-MSEM scheme with other
existing approaches are discussed in Table 2.

3 Systemmodel

Figure 1 represent the proposed Q-MSEM scheme, i.e., multiagent-based energy load reduc-
tion using Q-learning mechanism. Here, multiple energy carriers, i.e., electricity (ECξ ) and

Table 2 A comparative analysis of the proposed Q-MSEM scheme with existing approaches

Approaches Using Load Cost Data storage Scalability Data ESC

RL reduction reduction cost security

Ahrarinouri et al. [1] Yes Yes Yes No No No No

Xu et al. [31] Yes Yes Yes No Yes No No

Lu et al. [15] Yes Yes Yes No Yes No No

Li et al. [13] No No Yes Yes Yes Yes Yes

Jindal et al. [9] No No Yes No Yes Yes No

Proposed Scheme Yes Yes Yes Yes Yes Yes Yes
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Fig. 1 System model of the proposed Q-MSEM scheme

gas (ECg) consumption is reduced during peak hour and consumption is increased during a
non-peak hour, which reduces load burden on smart grid SG that improve QoS & reliability
of grid and utility supplier, i.e., US, ∀US ∈ {US1, US2, US3....USm} and every US should
be registered with SG. Here, we construct the dynamic energy load based on MDP for par-
ticular consumer C, where C ∈ {C1, C2, C3, · · · , Cn} in a stochastic energy consumption
environment with maximum number of n consumer.

In multicarrier REM system, electricity and natural gas consumption by home appli-
ances (e.g., fridge, water heater, lights, and others) represent the environment, which is
dynamic in nature and it has a specific REM agent associated with it. Initially, we formulate
the optimal energy consumption as finite MDP for a particular consumer C in a stochastic
environment. Here, energy consumption is categorized into two major groups, i.e., gas con-
sumption and electricity consumption. The electricity demand is either controlled by control
signals or consumes energy throughout the day without regulating it. The first one is con-
trollable consumption and can be curtailed based on the consumer dissatisfaction cost. The
later one unchangeable and identified as a critical load that requires electricity 24-hour a
day, for instance, alarm system and fridge. Then, we develop an efficient Q-learning-based
model-free consumption reduction approach that does not require the knowledge of system
uncertainties. Here, consumers C participate in the proposed Q-MSEM scheme to reduce
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their energy cost and balance energy supply and demand. The US decides hourly energy
prices, which is administered and monitored by SG. The REM agent for electricity and gas
maximize their profit by taking action and getting rewards.

The optimal energy consumption for consumer C at each particular timeslot t is pub-
lished on EB with hourly energy cost based on prices. It is incorporated with IPFS
distributed and off-chain storage systems for secure and efficient data storage at a low cost
with high scalability. The entire energy data is securely attainable by all stakeholders, i.e.,
{SG,US, and C} as required. Here, optimal energy consumption enables load reduction
and efficient management of energy at the consumers-end, improves QoS, and maximizes
SG profit.

4 Problem formulation

We consider a REM system, where houses are equipped with two energy carriers, i.e., elec-
tricity and gas, and consuming energy using various kinds of home appliances HA, with
the need to optimize energy consumption as shown in Fig. 1. The REM is connected to the
US and SG through a bi-directional communication network, which enables the exchange
of multimedia energy consumption information and energy prices. Then, REM agents man-
age electricity and gas consumption in response to energy prices. In REM system, HA are
categories as critical appliances and controllable/non-critical appliances based on their pri-
orities and characteristics [15, 17]. The mathematical formulations of critical appliances are
described as follows.

ξcrit
C,ω,t = E

crit
ω,t , (1)

where ω is the HA ∈ {1, 2, 3, · · · , α}, α is maximum number of critical appliances, timeslot
of a day is represented as t ∈ {1, 2, 3, · · · , 24}. Hence, critical load for specific consumer
C at timeslot t can be represented as.

ξcrit
C,t =

∑
ξcrit
C,ω,t . (2)

Moreover, another type of appliances consist flexible energy load from minimum load to
maximum energy load, for example, washing machine, lights, Air Conditioner (AC), etc.,
which is calculated as follows.

ξNcrit
C,ν,t = E

Ncrit
ν,t , (3)

where, ∀ν ∈ {1, 2, 3, · · · , β}, β is maximum number of non-critical appliances. Hence,
non-critical load for specific consumer C at timeslot t can be represented as.

ξNcrit
C,t =

∑
ξNcrit
C,ν,t , (4)

min(ξβ,t ) ≤ E
Ncrit
C,t ≤ max(ξβ,t ) (5)

So, total electricity consumption is calculated using (2) and (4) as follows.

ξC,t = ξNcrit
C,t + ξcrit

C,t (6)
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Here, only non-critical consumption could be reduced as critical appliances consume
electricity 24-hour. Though reduction in electricity consumption cause dissatisfaction to
consumer. So, the dissatisfaction cost function for consumer C in terms of electricity
consumption reduction is defined as follow [32].

φC,t,ξ = γC

2

{
ξNcrit
C,t − ξ

ΩNcrit

C,t

}2 + δ ·
{
ξNcrit
C,t − ξ

ΩNcrit

C,t

}
. (7)

γC, δ > 0

where, γC is preference parameter to consumer to reduce energy load that has greater
importance in dynamic load reduction. In case of high value of γC , dissatisfaction cost to
consumers will be high in terms of load reduction [32]. Here, ξ

ΩNcrit

C,t represents dynamic

energy load and range of load reduction is identified by mincoef ·ξNcrit
C,t and maxcoef ·ξNcrit

C,t

when energy pricing is in effect, where mincoef , maxcoef , and δ are system dependent
parameter.

Furthermore, the main aim is to reduce energy consumption for both the energy car-
rier ECξ and ECg , so dissatisfaction cost in case of gas consumption reduction could
be calculated as follows (considering gas consumption in case of room heating as critical
consumption).

φC,t,g = γC

2

{
gNcrit

C,t − g
ΩNcrit

C,t

}2 + δ ·
{
gNcrit

C,t − g
ΩNcrit

C,t

}
. (8)

γC, δ > 0

4.1 Objective function

The proposed Q-MSEM scheme focuses on energy consumption reduction and energy cost
CostC,t reduction to consumer C by employing dynamic energy consumption policy for
efficient energy management. Therefore, electricity cost can be mathematically formulated
as follows using (6).

CostC,t,ξ = ξP ricet ∗ ξC,t . (9)

∃γ = α + β

where, ξP ricet represent electricity price at time t and γ describe total number of HAs.
Similarly, gas consumption cost can be mathematically calculated as follows.

CostC,t,g = gPricet ∗ gC,t . (10)

∃γ = α + β

where, gPricet represent gas price at time t and γ describe total number of HAs consuming
gas at time t . Here, both electricity and gas prices are definable hourly by US that is varying
based on time and monitored by SG to handle any kind of discrepancies. Their contributions
in the consumer objectives are stated in the following relation using (7), (8), (9), and (10):

θξ = ξP ricet ∗ ξ
ΩNcrit

C,t + φC,t,ξ (11)

θg = gPricet ∗ g
ΩNcrit

C,t + φC,t,g (12)

Hence, the objective function is defined as follows using (11) and (12).

θ = θξ + θg (13)
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Further, the entire energy consumption multimedia data like, energy cost to consumer, elec-
tricity consumption (in kWh), electricity price, gas consumption (in kWh), gas price for par-
ticular consumer C at timeslot t require to be accessible by all stakeholders ∈ {SG,UP,C}.
The entire energy data (ED) is stored on IPFS and hash-key (hkey) is generated to pub-
lished on EB at timeslot t for real-time access, which is securely accessible EDsecure by
{SG,UP, C} using their hash-key (SGipf s−>hkey, UPipf s−>hkey, Cipf s−>hkey) (generated
at EB). The EDsecure stoage cost is high on EB, therefore a unique access mechanism,
i.e., IPFS is uses for low data storage cost EDSC

secure and make proposed scheme scalable
EDSCAL

secure.

EDsecure ← {C, ξC,t , CostC,t,ξ , gC,t , CostC,t,g}. (14)

Therefore, the objective of the proposed Q-MSEM scheme is defined as follows using (13).

O = min{θ, EDSC

secure} + max{EDsecure, EDSCAL

secure}, (15)

← min{ξP ricet ∗ ξ
ΩNcrit

C,t + φC,t,ξ

+ gPricet ∗ g
ΩNcrit

C,t + φC,t,g, EDSC

secure}
+ max{EDsecure, EDSCAL

secure}.
Subject to the f ollowing constraints,

C1 : ξC,t , gC,t �= 0, ∀C

C2 : t �= 0

C3 : EDsecure ⇔ EBIPFS

C4 : {ipf s− > hkey} = validhkey, ∀{SG,UP, C}
where, first term represents the minimisation of energy consumption and energy multime-
dia data storage cost at EB. Then, second term illustrate the maximization of security of
ED, i.e., EDsecure and maximize the REM system scalability in the proposed scheme.
The real-time availability of EDsecure over EB makes the approach fairly efficient and
handle single-point failure issue. Here, constraint C1 shows energy consumption ξC,t and
gC,t should have non-zero value for all consumer C and constraint C2 represents timeslot
start from 1. Then, constraint C3 shows that EDSC

secure and EDSCAL
secure, which is calculated

in case EDsecure is stored on EB associated with IPFS mechanism and consisting valid
{ipf s− > key} for all stakeholders in constraint C4.

5 Q-MSEM: The proposed scheme

This section highlight the workflow of the proposed Q-MSEM scheme using RL method-
ology. Figure 2 illustrate the workflow of Q-MSEM, where US comprises two REM agent
(one for gas and another for electricity) for energy consumption reduction and decision-
making for DRP. Energy consumption at residential houses creates stochastic environment,
which is dynamic in nature. Q-MSEM start its execution from beginning of a day and ini-
tialises various parameters like Q-value to 0, timeslot t to 1, and episodes i to 1. Then, other
simulation parameters are set in the beginning.
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Fig. 2 Worflow of the proposed Q-MSEM scheme
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Initially, ξcrit
C,t , ξNcrit

C,t , gcrit
C,t , and gNcrit

C,t is calculated based on the HAs used in a residen-
tial building. Then, dynamic energy load is articulated using MDP in distinct finite-step in
stochastic environment. Here, energy demand and reward depends on dynamic load ξ

ΩNcrit

C,t

and g
ΩNcrit

C,t at the specific timeslot t . It consists various elements, for example : action A,

discrete timeslot t , states S(ξC, tNcrit ) for electricity, S(gNcrit
C,t ) for gas, and Reward R.

Then, dynamic load {ξΩNcrit

C,t , g
ΩNcrit

C,t } are executed as A. The energy load demand before

applying dynamic load is ξNcrit
C,t and after is ξ

ΩNcrit

C,t , then, reward R at timeslot t is obtained
from the objective function using (13).

For adopting optimal action decision, the proposed scheme considered a discrete finite
horizon MDP that contains the Markov property, where state transitions are solely depen-
dent only on the current action and state, resulted independent of all previous states and
actions are taken by the agent. Here, the policy ρ mapping states to actions are defined as
follows.

ρ : Ak,t = ρ(Sk,t ) (16)

Further, the main aim is to discover an optimal policy ρ for each state Sk,t , so that selected
action Ak,t maximizes the reward R(Sk,t ,Ak,t ) [15]. The reward maximization based on
optimise policy ρ can be calculated using Bellman Equation as follows:

Q
∗
ρ(Sk,t ,Ak,t ) = R(Sk,t ,Ak,t ) + ζ · maxQ(Sk,t+1,Ak,t+1) (17)

where, ζ is convergence parameter. Algorithm 1 is used for Q-value convergence, where
after executing various episodes, Q-value converges to maximum Q-value. Here, trial and
error mechanism is used by REM agents to store and update Q-values. REM agent perform
action in every hour and Q-value in Q-table is updated using (17) as follows.

Q(Sk,t ,Ak,t ) ← Q(Sk,t ,Ak,t ) + χ ·
[
R(Sk,t ,Ak,t )

+ζ · maxQ(Sk,t+1,Ak,t+1) − Q(Sk,t ,Ak,t )
]

(18)

Where, χ is learning rate ∈ [0, 1] and ζ is the future reward discount factor, which is set as
0.95 for accumulation of high reward. Q-value is convergence to a maximum Q-value using
optimal policy that is formulated as follows:

ρ = argmax(Q(Sk,t ,Ak,t )). (19)

Furthermore, ε-greedy approach is applied within dynamic energy consumption boundaries
(maximum and minimum consumption) and agent select actions randomly. Then, reward is
calculated and repeated the process till the end of a particular day. Next, REM agent con-
verge to maximum Q-value using convergence parameter value ζ with terminating condition
|Q(i+1) − Qi | ≤ ς , where ς is a system dependent parameter.

Once Q-value converges, the details of optimal energy consumption, its cost, and energy
costs for specific consumer C at timeslot t are required to be accessible in real-time by
all stakeholders ∈ {C, SG,UP, }. So, ESC and Algorithm 2 is proposed to maximize the
security of EDsecure compare to the existing approaches like Li et al. [13] & Jindal et al. [9]
and published energy multimedia data on EB, which is incorporated with IPFS mechanism.
Here, payment of energy CostC,t depends on the consumer by various means like using
EB, online payments or others.

The energy data stoage cost EDSC
secure is high on EB, so it necessitates to develop a

unique access mechanism, i.e., IPFS protocol for low EDSC
secure and make proposed scheme
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more scalable EDSCAL
secure. In conventional EB, one word contains 256 bits ≈ 25 Bytes. Next,

a word is stored in EB using ethereum gas (EG) and SSTORE, where SSTORE = 20000
gas, i.e., EBsstore =20000 gas [30].

1word = 20000gas.

1KB = (210)/(25) × 20000gas.

Then, EG price EGprice (in Gwei) and Ethereum cryptocurrency (Ether) ET Hprice (in
USD) are dynamic in nature. EGprice is 10.928 Gwei as of 12th January, 2020.

EGprice = XGwei,

EGprice = X/109Ether . (20)

Where, X changes as per cryptocurrency market, So, one word storage cost in EB is
calculated as follows.

Storage1
cost = EGprice ∗ 1word,

(21)

Now, calculated StorageWcost for W-words using (20) as follows [30].

StorageWcost = (X ∗ W ∗ 1word)/109Ether . (22)

Based on the ET Hprice in USD, conversion of the storage cost in USD is calculated as
follows.

StorageWcost

USD = USD{StorageWcost × ET Hprice},
⇒ {(EGprice ∗ W ∗ 1word) × ET Hprice},

⇒ {(X ∗ W ∗ 1word)/109 × ET Hprice}. (23)

Therefore, the energy data storage cost EDSC
secure for W-words is calculated in USD using

(23).

EDSC

secure = StorageWcost

USD
. (24)

The proposed Q-MSEM scheme comprises IPFS-based EB, which involves only hashkey
storage cost in place of complete energy data storage. Next, IPFS is an open-source,
distributed storage system that is immutable and free. IPFS receives the energy data
{C ID, ξC,t , gC,t , CostC,t,ξ , CostC,t,g} from US and generate the hashkey of it. IPFS splits
the EDsecure file into chunks that are encrypted with a random encryption key and satisfies
the ESC conditions. Then, these encrypted chunks are stored into the EB. The hashkey size
is 256bit for SHA-256 or 160 bits for SHA-1 in EB, hence a single tuple involves 1word-
size in case of proposed scheme. The off-chain storage of EDsecure improves security and
scalability of the scheme by adding more number of energy data at low cost. All transactions
in Q-MSEM are authenticated by stakeholders due to EB characteristics like immutability,
distributed, etc. that ensures no forgery with energy data.
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6 Experimental results

In this section, we highlight results obtained from experiments and evaluate the performance
of the proposed Q-MSEM scheme.

6.1 Experimental setup and dataset

The proposed Q-MSEM scheme is implemented using python programming language on
Windows operating system configured as Intel(R) Core(TM) CPU @ 2.60GHz, 8GB RAM.
The Open Energy Information (openEI) datasets is taken [16], which contains electricity
and gas consumption data by various HAs and pre-processed using a sci-kit-learn library.
The critical load data (for instance refrigerator and other) is extracted from Pecanstreet [20].
Then, hourly electricity prices is taken from PJM Data Miner as of 12th January, 2020 [22]
and residential gas prices is taken from openEI [4] and hourly gas price dataset is created
from it.

Firstly, the collected energy (electricity and gas) data is pre-processed for cleaning.
Then, unwanted observations, for instance, irrelevant information and duplicate data values
are removed from data. Next, we filter out the unwanted outliers, which are observed in
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Table 3 Simulation parameter
settings Parameter Values

REM agent 2

γC 0.8

δ 0.1

ε 0.6

ς 0.001

ζ 0.95

χ 0.01

EGprice 10.928

both the electricity and gas consumption data. Then, we address the issue of zero and null
value occurrence by employing a linear interpolation mechanism. Next, zero and null val-
ues are replaced by the interpolated values and then, cleaned energy data is prepared. Here,
the major aim for cleaning is to remove errors, handle redundancy, increase energy data
reliability for optimal analysis, and to make efficient use of memory resources.

6.2 Results and comparative analysis of Q-MSEM

For simulation, a residential house is considered with critical HA (refrigerator), and non-
critical/controllable HA (AC, Basic facility, lights, and others). In case of gas consumption,
room heater is considered as critical HA and rest as non-critical HA. Initially, all simulation
parameters are set as illustrated in Table 3. Then, Algorithm 1 is used for energy consump-
tion reduction and Q-value converges based on dynamic consumption of electricity and gas.
The proposed scheme is effortlessly expendable with more number of HAs, which can be
included due to flexible and scalable architecture of Q-MSEM scheme.

Figure 3a and b shows the accumulated critical and non-critical electricity and gas
consumption of a specific consumer, which evident that non-critical HAs play major con-
tribution in energy consumption through out the day. So, only non-critical energy load can
be adjusted in DRP of REM system as critical load are those load which require energy
through out a day, which is discussed in detail in Section 4.

Fig. 3 Hourly energy consumption

36658 Multimedia Tools and Applications (2022) 81:36645–36665



Fig. 4 Gas consumption reduction using proposed Q-MSEM scheme

Figures 4 and 5 describe the energy consumption reduction for electricity and gas of a
consumer based on dynamic energy load associated with Q-learning. It depicts from the
figure that energy consumption is reduced during peak hour (as prices increases the energy
demand of consumer gets reduce). More, the non-peak hour having high consumption to
balance the dissatisfaction cost to consumer in terms of energy demand. Figure 6 shows
the total reduction in a day for electricity and gas. Before applying Q-MSEM scheme, elec-
tricity consumption is 106.8 (kWh), which reduces to 103.67 (kWh), and in case of gas
consumption reduces from 1200.27 (kWh) to 1179.95 (kWh).

Figure 7a shows the Q-value convergence and initially it has high convergence then it learns
with trial and error approach and result to maximum Q-values and compared with other
existing approaches such as Baseline 1 (Lu et al. [15]) and Baseline 2 (Xu et al. [31]).

Fig. 5 Electricity reduction using proposed Q-MSEM scheme
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Fig. 6 Total Energy reduction using proposed Q-MSEM scheme

Figure 7b illustrate the hourly electricity cost reduction of the proposed approach. Graph
shows the effectiveness of the proposed scheme while comparing with the other existing
approaches: Baseline 1 (Lu et al. [15]), Baseline 2 (Ahrarinouri et al. [1]), and Baseline
3 (Rastegar et al. [24]). The total cost reduction is reported as 15.82% in case of electric-
ity in the proposed Q-MSEM scheme, which is moderately high compare to Baseline 1
(7.3%), Baseline 2 (12%), and Baseline 3 (10%). The total gas consumption cost reduction
is acheived 1.72% in the proposed Q-MSEM scheme.

6.3 Ethereum smart contract

In the proposed Q-MSEM scheme, after performing the DRP activity using optimal energy
load, the details of electricity and gas consumption, hourly energy prices are required to be
shared in real-time with all stakeholders using Algorithm 2. The ESC is developed in Remix
IDE and deployed over Truffle suits to perform block verification on EB.

Figure 8 shows the Q-MSEM interface uses ESC for real-time electricity and gas data
access and decision making. It supports several real-time functionalities related to energy
data publishing on EB with high energy data security. It facilitates several security features,
which are time-stamps dependent such as tx.origin, re-entrancy, execution cost, and others.
It is one of the critical tasks to design ESC as it can not be altered after deployment. Hence,
we verified the security vulnerabilities of the proposed Q-MSEM scheme on open-source
tool Mythril [3]. Figure 9 shows the successful verification of security vulnerabilities of
ESC on Mythril.

Figure 10a shows comparative analysis between conventional EB-based system and the
proposed Q-MSEM scheme in terms of data storage cost. In a conventional EB-based sys-
tem, the energy data storage cost is calculated using (24), whereas in the proposed scheme
IPFS mechanism is incorporated, which is distributed in nature and is a low-cost storage
system compared to conventional EB such as Li et al. [13] & Jindal et al. [9]. Figure 10a
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Fig. 7 Comparative analysis of the proposed Q-MSEM scheme and existing approaches: (a) Convergence of
Q-value and (b) Cost comparison

evident that as Ether price upsurge (11thJ anuary, 2020 to 20thJ anuary, 2020), then
energy storage cost gets impacted slightly due to the off-chain storage facility compare to
the conventional-EB system, which has a huge impact on price change.

Figure 10b illustrate scalability comparison of the proposed Q-MSEM scheme based on
the transactions time and blocks mined during execution of ESC. In the proposed scheme,
only the hash-key of energy data is sent to the EB for storage as complete multimedia data
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Fig. 8 Smart contract interface

stores on IPFS off-chain database. Here, hash-key size is 256bit (SHA-256) /160 bits (SHA-
1). Hence, Q-MSEM scheme facilitates to accommodate more transactions on the EB and
service more consumers at the smart grid. With the increase of the end-consumers, more
blocks need to be mined with the increase request, which resulted to upsurge the transaction
time. In the proposed Q-MSEM scheme, 256 bits haskey is generated for energy data that
is comparatively less than the actual size of a transaction. So, Q-MSEM scheme facilitates
adding more transactions on the EB to service more end-consumers.

The proposed Q-MSEM scheme benefited multicarrier REM systems with data security
though it only works in an energy consumption environment with finite & discrete action
spaces and state. To extend the proposed Q-MSEM scheme to richer environments, function
approximators are needed to be applied instead of storing the full state-action table, which
is often infeasible. Therefore, an extension of this research work will be employing deep
RL to handle uncertain load patterns.

Fig. 9 Security verification on Mythril
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Fig. 10 Comparative analysis of conventional EB and the proposed Q-MSEM scheme: (a) Storage cost
comparison and (b) Scalability comparison

7 Conclusion

In this paper, we proposed Q-MSEM scheme, a multiagent-based secure REM approach
for multimedia grid communication using Q-learning with the aim to reduce energy con-
sumption with a notch of discomfort in DRP. Motivated by the fact that electricity prices
are impacted by natural gas prices, so, DRP requires energy consumption reduction for
gas and electricity both in multicarrier REM systems, which improve smart grid reliabil-
ity and reduce the burden of energy generation and supply on the grid with QoS. So, we
have adapted an RL-based approach using Q-learning, to incorporate dynamic energy con-
sumption to reduce load. The empirical results validated the effectiveness of the proposed
approach compared to state-of-the-art approaches.
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In the future, real-time energy prices, working time of HAs, and fault detection with the
effect of Current Transformer (CT) saturation will be an extension of this research work
using deep RL to handle uncertain load patterns.
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