
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11488-6

1 3

1211: AIOT SUPPORT AND APPLICATIONS WITH MULTIMEDIA

Heterogeneous stacked ensemble classifier for software 
defect prediction

Somya Goyal1,2 · Pradeep Kumar Bhatia2

Abstract
Software defect prediction (SDP) plays an important role to ensure that software meets 
quality standards; by highlighting the modules which are prone to errors and hence allows 
to focus the test efforts on them. Class imbalance nature of the defect dataset hinders the 
defect predictors to correctly classify the buggy modules. Here, we introduce a novel het-
erogenous ensemble classifier built with stacking methodology to overcome this problem 
of imbalanced datasets and hence, significant improvement in the prediction power is being 
proposed. Stacked ensemble is achieved with the best known classifiers from SDP liter-
ature as base classifiers (artificial neural network, nearest neighbor, tree based classifier, 
Bayesian classifier and support vector machines). For experimental work, five public data-
sets from NASA corpus are used. A comparative analysis for the proposed heterogenous 
stacking based ensemble method is made with the base classifiers and with the state-of-the 
art ensemble based SDP models over the evaluation criteria of ROC, AUC and accuracy. It 
is found that the proposed heterogenous stacking based ensemble classifier outperforms the 
base classifiers by 12% in terms of AUC score and by 8% in terms of Accuracy. It improves 
the performance of state-of-the-art ensemble methods by 4% in terms of AUC score and 
by 9% in terms of Accuracy. It can be concluded from the comparative analysis that the 
proposed SDP classifier is best performer among the candidate SDP classifiers statistically.

Keywords  Software defect prediction (SDP) · Heterogenous ensemble · Stacking · 
Artificial neural network · ROC

 *	 Somya Goyal 
	 somyagoyal1988@gmail.com

	 Pradeep Kumar Bhatia 
	 pkbhatia.gju@gmail.com

1	 Manipal University Jaipur, Jaipur, Rajasthan 303007, India
2	 Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001, India

Multimedia Tools and Applications (2022) 81:37033–37055

Received: 23 September 2020 / Revised: 1 June 2021 / Accepted: 19 August 2021 

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Published online: 12 September 2021

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11488-6&domain=pdf


1 3

1  Introduction

Software Defect Prediction (SDP) helps to improve the quality of software product 
allowing the assessment of the fault-proneness of modules and to forecast which part 
of software will be requiring more testing and quality assurance (QA) resources [16]. 
It reduces the testing cost and overall development cost. Machine learning (ML) tech-
niques are finding wide applications in SDP [2, 4, 6, 7, 15, 17]. Solely machine learn-
ing methods bring sub-optimal results due to the class imbalance in the defect datasets. 
Class imbalance refers to the situation when one of the classes in the dataset outnum-
bers the rest of the classes. The class with higher number of instances is called majority 
class and the rest id called minority class. This imbalanced nature of defect data nega-
tively impacts the accuracy of ML based SDP classifiers [3, 8, 13]. From the literature 
survey, it is seen that ensemble learning has better prediction power for software defect 
prediction using the historic data from the past projects with the condition of “class-
imbalance” [24, 25, 28]. Galar et al. (2011) [5] and Rathore et al. (2017) [18] advocated 
that ensemble based classifiers have built-in capability to handle data-imbalance.

1.1 � Motivation

Learning from imbalanced datasets is an open problem. All the proposed ensembles 
from literature are standard algorithms of random forest, bagging or boosting method. 
None of the technique is customized as per the application or depending upon the nature 
of the dataset. This work is contributing to improve the prediction power of classifiers 
by using a customized heterogenous stacked ensemble classification algorithm.

1.2 � Contribution

This work contributes a customized stacked ensemble classifier for the task of SDP pro-
vided the data is suffering from class-imbalance. The proposed model is compared with 
state-of-art techniques to find the best classifier. The statistical evidence is presented to 
advocate that the proposed model is the best SDP classifier.

1.3 � Organization

The paper is organized as follows. Section 2 covers the current state-of-the-art to handle 
class imbalance using ensembles along the review of the literature. The research meth-
odology is explained in Sect.  3 along with the research questions and the experimen-
tal setup. In Sect. 4, the datasets and evaluation metrics used in experimental work are 
described. In Sect. 5, the experimental results are reported and analysed to answer the 
research questions. The conclusions are drawn in Sect. 6.

37034 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

Ta
bl

e 
1  

S
ta

te
-o

f-
th

e-
ar

t: 
SD

P 
w

ith
 M

L 
an

d 
SD

P 
w

ith
 c

la
ss

 im
ba

la
nc

e

S.
N

o
Ye

ar
St

ud
y

Te
ch

ni
qu

e
D

at
as

et
A

ttr
ib

ut
es

/ f
ea

tu
re

s
Pe

rfo
rm

an
ce

 m
et

ric
s

O
bs

er
va

tio
n 

dr
aw

n

1
20

13
(W

an
g 

an
d 

Ya
o 

20
13

) 
[2

5]
A

D
A

BO
O

ST
 E

ns
em

bl
es

PR
O

M
IS

E
M

cC
ab

e 
m

et
ric

s
A

U
C

, R
O

C
, G

-M
ea

n
D

at
a 

sp
ac

e 
is

 o
pt

im
iz

ed
 

w
ith

 sa
m

pl
in

g,
 F

ea
-

tu
re

s a
re

 se
le

ct
ed

 a
nd

 
st

an
da

rd
 A

D
A

BO
O

ST
 

te
ch

ni
qu

e 
ap

pl
ie

d.
 N

o 
in

no
va

tio
n 

is
 re

po
rte

d
2

20
15

(S
ie

rs
 a

nd
 Is

la
m

 2
01

5)
 

[2
2]

En
se

m
bl

e +
 D

ec
is

io
n-

tre
es

M
C

1,
 M

C
2,

 P
C

1,
 P

C
3,

 
PC

2,
 N

A
SA

M
cC

ab
e 

m
et

ric
s

Pr
ec

is
io

n,
 R

ec
al

l
Re

ve
al

ed
 th

e 
po

w
er

 o
f 

en
se

m
bl

es
 to

 d
ea

l w
ith

 
cl

as
s-

im
ba

la
nc

e 
in

 tr
ai

n-
in

g 
da

ta
3

20
15

(H
. L

ar
ad

ji,
 e

t a
l. 

20
15

) 
[1

2]
En

se
m

bl
e

N
A

SA
, P

C
1,

 P
C

4,
 M

C
1

M
cC

ab
e 

m
et

ric
s

A
U

C
, G

-m
ea

n
Fe

at
ur

e 
se

le
ct

io
n 

te
ch

-
ni

qu
es

 a
re

 re
po

rte
d 

w
ith

 
th

ei
r e

ffe
ct

 o
n 

SV
M

s 
an

d 
B

oo
st 

En
se

m
bl

es
. 

C
on

cl
us

io
ns

 a
re

 d
ra

w
n 

th
at

 E
ns

em
bl

es
 a

re
 

ro
bu

st 
th

an
 S

V
M

4
20

15
(W

an
g 

et
 a

l. 
20

15
) [

26
]

En
se

m
bl

e 
/ M

ul
tip

le
 

Le
rn

el
 ( 

M
K

EL
)

N
A

SA
 M

D
P

A
ll 

at
tri

bu
te

s c
on

si
de

re
d

F-
M

ea
su

re
Pr

op
os

ed
 e

ns
em

bl
es

 
re

po
rte

d 
be

tte
r r

es
ul

ts
 

th
an

 th
e 

lit
er

at
ur

e 
w

or
k

5
20

15
(X

ia
 e

t a
l. 

20
15

) [
27

]
En

se
m

bl
e

O
pe

n 
so

ur
ce

 S
of

tw
ar

e 
-E

cl
ip

se
, M

oz
ill

a
A

ll 
Fe

at
ur

es
 U

se
d

F1
, E

ffe
ct

iv
en

es
s R

at
io

Pr
op

os
ed

 e
ns

em
bl

es
 

pe
rfo

rm
ed

 b
et

te
r t

ha
n 

SM
O

TE
 fo

r i
m

ba
la

nc
ed

 
da

ta
6

20
18

(C
he

n 
et

 a
l.,

 2
01

8)
 [3

]
A

D
A

B
oo

st
PR

O
M

IS
E

A
ll 

Fe
at

ur
es

 U
se

d
G

-m
ea

n,
 A

U
C

​
Re

su
lts

 a
re

 im
pr

ov
ed

 w
ith

 
un

de
r s

am
pl

in
g 

an
d 

en
se

m
bl

es
7

20
17

(R
at

ho
re

 a
nd

 K
um

ar
 

20
17

) [
18

]
En

se
m

bl
e

PR
O

M
IS

E 
So

ftw
ar

e 
En

gi
ne

er
in

g 
re

po
si

to
ry

 
da

ta

A
ll 

Fe
at

ur
es

 U
se

d
A

E,
 R

E,
 P

R
ED

(l)
En

se
m

bl
e 

pe
rfo

rm
ed

 
be

tte
r t

ha
n 

si
ng

le
 M

L 
te

ch
ni

qu
e

37035Multimedia Tools and Applications (2022) 81:37033–37055



1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

S.
N

o
Ye

ar
St

ud
y

Te
ch

ni
qu

e
D

at
as

et
A

ttr
ib

ut
es

/ f
ea

tu
re

s
Pe

rfo
rm

an
ce

 m
et

ric
s

O
bs

er
va

tio
n 

dr
aw

n

8
20

17
(R

at
ho

re
 a

nd
 K

um
ar

 
20

17
) [

20
]

Li
ne

ar
 a

nd
 n

on
-li

ne
ar

 
he

te
ro

ge
ne

ou
s e

ns
em

-
bl

e

PR
O

M
IS

E 
So

ftw
ar

e 
En

gi
ne

er
in

g 
re

po
si

to
ry

 
da

ta

A
ll 

Fe
at

ur
es

 U
se

d
A

E,
 R

E,
 P

R
ED

(l)
En

se
m

bl
e 

pe
rfo

rm
ed

 
be

tte
r t

ha
n 

si
ng

le
 M

L 
te

ch
ni

qu
e

9
20

17
(Y

an
g 

et
 a

l. 
20

17
) [

28
]

St
ac

ke
d 

En
se

m
bl

es
O

SS
 (B

ug
zi

lla
)

O
O

 m
et

ric
s

F1
-s

co
re

Im
pr

ov
ed

 re
su

lts
 th

an
 

ba
se

lin
e 

m
od

el
s

10
20

18
(T

on
g 

et
 a

l. 
20

18
) [

24
]

St
ac

ke
d 

En
se

m
bl

es
N

A
SA

St
at

ic
 C

od
e 

m
et

ric
s a

nd
 

O
O

 m
et

ric
s

M
C

C
, A

U
C

, F
-m

ea
su

re
Pr

op
os

ed
 m

od
el

 is
 ro

bu
st 

to
 d

at
as

et
 a

va
ila

bi
lit

y
11

20
18

(H
ud

a 
et

 a
l. 

20
18

) [
10

]
En

se
m

bl
es

PR
O

M
IS

E
A

ll 
Fe

at
ur

es
 U

se
d

A
U

C
, A

cc
ur

ac
y,

 R
ec

al
l

Im
ba

la
nc

e 
is

 d
ea

lt 
eff

ec
-

tiv
el

y 
w

ith
 e

ns
em

bl
e 

an
d 

ov
er

sa
m

pl
in

g

37036 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

2 � Related works

This section highlights the contribution made by various researchers in the field of SDP 
using machine learning (ML) algorithms deploying ensemble approach to class-imbal-
ance problems in order to get accurate models for software defect prediction (SDP). 
Table 1 shows the current trends to tackle class imbalance issue in SDP. The table is 
headed with the year of publication of the referenced work, the technique used in the 
work, the dataset(s) and its feature space considered in the respective research along 
with the performance measurement criteria adopted. The last column added in the table 
is the observation drawn by the authors of this candidate work.

Corresponding to each study, we have made some observations which are added in 
Table 1 (as last column). After reviewing the literature in multiple dimensions, we identi-
fied that the existing studies results are sub-optimal. All ensembles are existing traditional 
ensembles.

Some other observations made from the literature review are—1) Majority of research 
in the field of SDP has been carried out by utilizing publicly available datasets namely 
NASA Metrics Data Program and PROMISE Data Repository which comprises almost 
67% of total research work carried out in past three decades, (2) the most popular evalua-
tion metrics among software practitioners for SDP evaluation are AUC, ROC and accuracy, 
(3) ANN, SVM are the two most popular classifiers for software defect prediction, (4) class 
imbalance majorly hinders the performance of classifiers. And (5) ensembles are robust 
enough and possess built-in capacity to deal with class imbalance of defect dataset.

In the next section of our paper, the research methodology which is adopted for this 
paper is explained and the research gaps are reported as well-formed research questions.

3 � Research methodology

In this section, we report the methodology adopted to carry out the research work. First 
up, we formulate the research questions in an empirical way to steer the research work in 
a systematic way. Then, we describe the configuration of the proposed stacked ensemble 
and the working algorithm. The experimental set-up adopted for this work along with the 
parameter settings for the experimental model are also discussed in detail.

3.1 � Research questions

To steer the research in a systematic way, we address the following research questions:

RQ1. Does the proposed heterogenous stacked ensemble empirically outperform the 
existing single classifiers?
This RQ deals with comparison of proposed model with the traditional models in order 
to ensure that proposed model has the potential to predict the buggy modules effec-
tively. For this purpose, five most popular classifiers from the literature are selected for 
comparative study. These five classifiers are artificial neural network, nearest neighbor, 
tree based classifier, Naïve Bayes and support vector machines. The reasons for select-
ing these classification algorithms are—(1) the popularity of these classifiers in SDP 

37037Multimedia Tools and Applications (2022) 81:37033–37055



1 3

[20], (2) effective prediction power in SDP domain [23] and (3) these are base classifi-
ers of our proposed ensemble. For comparative analysis in this specific aspect, the study 
Goyal and Bhatia (2020) [6] is selected.
RQ2. Does the proposed customized stacked ensemble empirically outperform the state-
of-the-art ensemble based SDP classifiers?
It is to investigate into the prediction power of proposed model in comparison to the 
state-of-the-art ensemble based SDP models. For the comparative analysis, homogenous 
ensemble and heterogeneous ensemble based classifiers are selected. The study Balogun 
et al. [1] is selected for comparison over homogenous ensemble based SDP classifiers 
and the study Khuat et al. [11] is selected for comparison with heterogenous ensemble 
based SDP classifiers.
RQ3. Are the answers to the above mentioned RQs statistically valid?
This is the most crucial RQ as it confirms that the answers to above stated RQs are 
valid. Proper statistical tests are selected and conducted for the statistical evidence. The 
Friedman test has been found suitable and hence conducted to find the statistical proof 
for the study.

3.2 � Proposed stacked ensemble classifier

We propose stacking based ensemble combining heterogenous base learning classifiers. We 
use five most popular SDP classifiers from the literature namely support vector machine 
(SVM), artificial neural networks (ANN), naïve bayes (NB), nearest neighbor and decision 
trees (DT) [4, 6, 7, 17] as base learners. Then, a neural network is selected as a meta-model 
for this work which takes the predictions made by base classifiers (called ‘Level-1’ data) as 
inputs and returns the final predicted outputs.

The choice of base-learners and meta-model is very trivial from the literature survey 
for the work contributed for the SDP domain during past three decades [23]. The selection 
of neural network as a meta-model is to non-linearly combine [9] the predictions from the 
base classifiers to bring the best combination of powers and produce the most accurate final 
predictions regarding whether the candidate module is ‘buggy’ or ‘clean’ out of this syner-
gism of powers.

The proposed stacked ensemble based SDP classifier is modelled as in Fig. 1. The pro-
posed model works on the algorithm which is stated as below-

3.3 � Experimental set‑up

In this paper, the MATLAB™ R2019a is used for carrying out the processing and com-
putational tasks. It is installed on Windows™ 10 Pro, Intel® Core™ i5-8265U CPU 
with RAM storage of 8 GB. All of the rigorous sets of experiments including data pre-
processing through fitting the classifiers and validation of classifiers are executed over 
the same hardware and software platform. The performance for the proposed classifier is 
measured over selected five datasets for every selected performance evaluation criterion 
which includes AUC, ROC, accuracy. The data is partitioned into training dataset and test-
ing dataset using k-fold cross validation with k = 10. The training subset is used to train the 
stacked ensemble classifier and then it is tested for testing dataset. All the experiments are 
performed on the above experiment set-up and design following classifiers at two levels of 
model (shown in Table 2).

37038 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

The choice of base-learners and meta-model is very trivial from the literature survey for 
the work contributed for the SDP domain during past three decades [23]. At level-2 of stack-
ing, neural network is utilized due to its robust capability of learning non-linear relationships 
among the inputs [9]. The selection of neural network as a meta-model is to non-linearly com-
bine the predictions from the base classifiers to bring the best combination of powers and pro-
duce the most accurate final predictions regarding whether the candidate module is ‘buggy’ 

Fig. 1   Proposed stacked ensemble SDP model

37039Multimedia Tools and Applications (2022) 81:37033–37055



1 3

or ‘clean’ out of this synergism of powers. The parameter settings for the proposed model is 
given in Table 3.

For comparative analysis, rigorous experiments are conducted following the same process 
including the parameter settings, tools and environment as deployed by the selected studies to 
ensure the fair comparison of performance [1, 6, 11]. All eight models (5 traditional ML SDP 
models + 3 Ensemble based classifiers) are synthesized, and experiments are repeated for all 
five datasets. Then, the performance is recorded over three selected evaluation criterion (ROC, 
AUC, Accuracy) and comparison is made statistically. The SDP models selected for compara-
tive analysis are listed as in Table 4.

Table 2   Description of 5 base-
learners and 1 meta-learner 
(level-wise)

S. No Classifier Learner type Level

1 Artificial neural networks (ANN) Base learner Level-1
2 Decision trees (DT) Base learner Level-1
3 Naïve bayes (NB) Base learner Level-1
4 Support vector machine (SVM) Base learner Level-1
5 k-nearest neighbor

(k-NN)
Base learner Level-1

6 Artificial neural networks (ANN) Meta learner Level-2

Table 3   Parameter settings for base-learners and meta-learner

Classifier Parameter: value;

Artificial neural networks (ANN)
At Level-1
(base-learner)

Input Layer Size: 4 neurons;
Hidden Layer Size: 6 neurons;
Output Layer Size: 2;
Num of Hidden Layers:1;
Training Function: trainscg (scaled conjugate gradient);
Performance Function: Cross-Entropy

Decision trees (DT)
(base-learner)

Algorithm: CART;
tenfold CV

Naïve bayes (NB)
(base-learner)

tenfold CV

Support vector machine (SVM)
(base-learner)

Kernel: Radial Basis Function;
Algorithm: SMO (Sequential Minimal Optimization);
tenfold CV

k-nearest neighbor
(k-NN)
(base-learner)

K = 5;
Distance Criteria: Euclidean measure;
tenfold CV

Artificial neural networks (ANN)
At Level-2
(meta-learner)

Input Layer Size: 5 neurons;
Hidden Layer Size: 5 neurons;
Output Layer Size: 2;
Num of Hidden Layers:1;
Training Function: trainscg (scaled conjugate gradient);
Performance Function: Cross-Entropy

37040 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

3.4 � Mathematical background

Naïve Bayes Classifier makes classification utilizing the probability theory from the sta-
tistics. Bayes rule is applied to predict whether the module is buggy or not. It predicts 
that the test sample data-point belongs to that particular class which is having the high-
est posterior probability for that sample data-point. Suppose for defect prediction problem, 
vector x denotes the attribute set and y is a set with two elements {buggy, clean}; denotes 
the classes to which each data-point uniquely belongs. Naïve bayes classifier predicts that 
a specific module with attribute vector x belongs to ‘buggy’ class only if Eq. (1) satisfies. 
Otherwise, it predicts that the module belongs to ‘clean’ class.

In Eq. (1), P(buggy|x) denotes the posterior probability of class buggy, after having seen 
x and P(clean|x) denotes the posterior probability of class clean, after having seen x. Equa-
tion  (1) shows that for two class classification problem, whichever class will be having 
highest posterior probability will be predicted by the classifier for given x. The posterior 
probability for any class can be computed using Bayes Rule as given in Eq.  (2). Equa-
tion (2) can be rewritten as Eq. (3) for class buggy and as Eq. (4) for class clean.

where p(x|buggy) denotes the prior probability for x; the probability of seeing x as input 
when it is known that it belongs to buggy class; satisfying inequation (5) and Eq. (6).

where p(x|clean) denotes the prior probability for x; the probability of seeing x as input 
when it is known that it belongs to clean class; satisfying inequation (5) and Eq. (6).

(1)P(buggy|x) ≥ P(clean|x)

(2)Posterior =
Prior × Likelihood

Evidence

(3)P(buggy|x) =
p(x|buggy) × P(buggy)

p(x)

(4)P(clean|x) =
p(x|clean) × P(clean)

p(x)

Table 4   Details of 8 SDP Classifiers Selected for Comparative Analysis

S. No Classifier Reference Study

1 Artificial neural networks (ANN) Goyal and Bhatia (2020) [6]
2 Decision trees (DT) Goyal and Bhatia (2020) [6]
3 Naïve bayes (NB) Goyal and Bhatia (2020) [6]
4 Support vector machine (SVM) Goyal and Bhatia (2020) [6]
5 k-nearest neighbor

(k-NN)
Goyal and Bhatia (2020) [6]

6 Bagging based ensemble model
(Bagging)

Balogun et al. (2020) [1]

7 Boosting based ensemble model
(Boosting)

Balogun et al. (2020) [1]

8 Heterogenous ensemble with 9 base learners
(Heterogenous ensemble)

Khuat et al. (2021) [11]

37041Multimedia Tools and Applications (2022) 81:37033–37055



1 3

And, p(x) denotes the Evidence which is the marginal probability that x is seen, regard-
less it belongs to buggy class or clean class. It can be computed as Eq. (7).

Equation  (2) which represents Bayes rule is the basis for Naïve Bayes classifier. By 
applying the values from Eq.  (3), (4) and (5) into Eq.  (1), the prediction for given data-
point that whether it belongs to ‘buggy’ class or not; can be made.

K-Nearest Neighbors is another classification algorithm from statistics. It uses similarity 
between data-points to predict the class. In our experimental set-up, we utilize Euclidean 
distance which can be computed between any two data-points namely xi and xj as Eq. (8). 
Suppose for defect prediction problem, vector x denotes the attribute set and y is a set 
with two elements {buggy, clean}; denotes the classes to which each data-point uniquely 
belongs.

Assume buggy is denoted with ‘ + 1’ and clean with ‘-1’, hence y = {+ 1,-1}. For the 
instance, xq, K-NN will make classification using the Eq. (9) after computing the ‘k’ near-
est neighbors of xq using Eq. (8). Suppose Nk denotes the set of ‘k’ neighbors of xq.

Decision Trees based classifiers are built using Classification and Regression Trees 
(CART) algorithm. Decision trees are hierarchical, non-parametric, supervised machine 
learning models. A tree is comprised of few internal nodes with decision functions and 
external leaves. In our experiments, we used the ‘entropy’ as a measure of impurity which 
in turn records the goodness of split. Let us compute entropy for a node in classification 
tree say node ‘a’; Na denotes the number of instances that reaches to node ‘a’; Nbuggy

a  and 
Nclean
a

 denotes the number of nodes in Na that belongs to class ‘buggy’ and class ‘clean’ 
respectively. Suppose an instance reaches node ‘a’ then its chances of being ‘buggy’ is 
given as Eq.  (10). Similarly, its chances of being ‘clean’ is computed using Eq.  (11). 
Entropy is computed as Eq. (12) for 2-class classification problem.

(5)P(buggy) ≥ 0, P(clean) ≥ 0

(6)P(buggy) + P(clean) = 1

(7)p(x) = p(x|buggy) × P(buggy) + p(x|clean) × P(clean)

(8)D
(
xi, xj

)
=

√√√√
k∑

i=1

(xik − xjk)
2

(9)ŷq = sign

(
∑

xi∈ Nk

yi

)

(10)pbuggy
a

=
N

buggy
a

Na

(11)pclean
a

=
Nclean
a

Na

(12)Entropy (node ’a’) = −
((
pbuggy
a

)
log

(
pbuggy
a

)
+ pclean

a
log

(
pclean
a

))

37042 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

Artificial neural networks are implemented with standard feed-forward, error backprop-
agation algorithm. For n-feature input data X =  < x1,x2,…,xn > , there are n input neurons. 
For sigmoid activation function, the output ŷi for ith neuron is computed using Eq. (13). In 
this way, features are fed in forward direction from input layer to hidden layer, then from 
hidden to output layer. The computed output at output neuron is compared with the actual 
output and the error is computed as Eq.  (14) as half of the sum of squares of difference 
between the actual output and predicted output and the error is back propagated to update 
weights as per Eq. (15) and learning takes place in this way to minimize the error.

where wi denotes weight for ith neuron and wo denotes the bias;

where m denotes number of output neuron.
Δw = η. error. input signal

where η denotes learning rate.
Support vector machine works on Vapnik theory of maximum marginal methods. We 

used the RBF kernel setting for SVM. For ‘n’ instances denoted as < Xi,yi > , it finds the 
optimal separating hyperplane between two classes denoted {buggy as + 1,clean as -1} by 
finding w1 and w2 which satisfies Eq. (16).

SVM solves the optimal hyperplane problem by Langrangian multipliers. First, new 
higher dimensional mapping is achieved with function ϕ as Eq. (17) shown.

where w is weight vector and c is scalar.
The SVM has to be optimize Eq. (18)

where ϼ denotes the cost function.
After solving this, the prediction made by SVM classifier can be given as Eq. (19) in 

terms of kernel.

(13)ŷi = sig(

n∑

i=1

wixi + wo)

(14)error =
1

2

∑

m

n∑

i

(yi − ŷi)
2

(15)𝜂.
1

2

∑

m

n∑

i

(yi − ŷi)
2
⋅ xi

(16)y(w2x + w1) ≥
+

−
1

(17)y = wT�(x) + c

(18)Minimize
1

2
wTw + –�

1

2
error2

i

Subject to y = wT�(x) + c + error

(19)–Y =
∑(

� − �T
)
.K
(
xcentre, x

)
+ b

37043Multimedia Tools and Applications (2022) 81:37033–37055



1 3

In Eq.  (20) K
(
xcentre, x

)
 denotes kernel based on Radial basis function. In our experi-

ments we have used RBF kernel for SVM where the centre and radius are defined by the 
user.

4 � Dataset and evaluation criteria used

In this section, the highlights on the dataset and metrics used for experimentation are 
brought. The performance evaluation metrics opted to measure the performance of pro-
posed stacked ensemble based SDP model and for comparative analysis among the selected 
models are described.

4.1 � Dataset and software metrics

The Dataset used for the experimental study is NASA defect dataset which are available 
publicly in PROMISE repository. The data metrics are collected from NASA projects. The 
experiment is designed using five datasets—CM1, KC1, KC2, PC1, and JM1. McCabe and 
Halstead features extractors are used to collect the data [19, 21]. Table 5 shows the used 
dataset name, total instances in the dataset, number of instances which are buggy and num-
ber of instances which are clean. The datasets are comprising of the most popular static 
code metrics. All five datasets possess 21 metrics and 1 response variable.

4.2 � Performance evaluation criteria

The performance of proposed stacked ensemble is evaluated using the widely accepted 
evaluation metrices namely Confusion matrix, ROC, AUC, Accuracy and recall [2, 7, 10, 
20, 26, 27]. These can be defined as-

•	 Confusion matrix is in the form of a matrix whose individual cell contains necessary 
information for performance evaluation of the classifier.

	   As shown in Fig. 2a., the class ‘buggy’ is considered as positive class and class 
‘clean’ is considered as negative class. The term ‘True Positive’ refers to the ‘count 
of modules’ which are buggy in actual and classified as buggy by the classifier. The 
term ‘True Negative’ refers to the ‘count of modules’ which are clean in actual data-
set and predicted as clean by the classifier. It leads to two other terms which are 

(20)K
(
xcentre, x

)
= e

−
|xcentre−x|2
2.(radius)2

Table 5   Dataset description [2] # Data-set name # Total instances # Buggy 
instances

# Clean instances

1 CM1 498 49 449
2 KC1 2109 326 1783
3 KC2 522 107 415
4 PC1 1109 77 1032
5 JM1 10,885 2106 8779

37044 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

‘False Positive’ and ‘False Negative’. The ‘False Positive’ refers to the ‘count of 
modules’ which belong to clean class in actual dataset and predicted as buggy by 
the classifier in consideration. The ‘False Negative’ means those modules which are 
buggy in actual dataset and predicted as clean by the classifier.

•	 The sensitivity (true positive rate or TPR) and specificity (1- false positive rate or 1- 
FPR) are computed as Eq. (21) and (22). True positive rate, TPR, can be thought as hit 
rate, accounts for what proportion of buggy modules we correctly predict and false pos-
itive rate, FPR, refers to the proportion of clean modules we wrongly accept as buggy.

•	 Receiver Operating Characteristics (ROC) curve is plot of TPR (as y-axis) and FPR 
(as x-axis) (see Fig. 2b. and Fig. 2c). It is interpreted that closer the classifier gets to 
the upper left corner, better is its performance. To compare the performance of clas-
sifiers, the one above the other is considered better.

(21)sensitivity(orrecall) =
truepositive

truepositive + falsenegative

(22)specificity =
truenegative

truenegative + falsepositive

ACTUAL
Classifier

CLASS

BUGGY True_PositiveBuggy>>Buggy False_NegativeBuggy>>Clean

CLEAN False_PositiveClean>>Buggy True_NegativeClean>>Clean

Confusion Matrix
BUGGY CLEAN

PREDICTED CLASS

a

b c

Fig. 2   a Confusion matrix. b ROC. c Multiple ROCs

37045Multimedia Tools and Applications (2022) 81:37033–37055



1 3

•	 Area Under the ROC Curve (AUC) gives the averaged performance for the classifier 
over different situations. AUC = 1 is considered ideal.

•	 Accuracy is computed as Eq. (23)

5 � Result analysis and discussion

In this section, we report the results recorded in the experimental study. We also find the 
answers to the Research Questions (RQs) following an analytical approach. Let us discuss 
all three RQs one by one in upcoming sub-sections.

5.1 � Finding the answer to RQ1‑

RQ1. Does the proposed heterogenous stacked ensemble empirically outperform the exist-
ing single classifiers?

To answer RQ1, first up, we recorded the performance of all six classification algo-
rithms (ANN, SVM, NB, KNN, Tree and stacked ensemble) which are selected in this 
study on all five datasets in terms of AUC and Accuracy reported in Tables 6 and 7 respec-
tively. The ROC curves are also reported for comparison as in Fig. 3.

(23)Accuracy =
truepositive + truenegative

truepositive + falsepositive + truenegative + falsenegative

Table 6   Performance comparison of stacked ensemble classifier with base classifiers (in AUC)

AUC​ ANN [6] SVM [6] NB [6] TREE [6] KNN [6] Stacked ensemble

CM1 0.7286 0.6341 0.6592 0.5289 0.5868 0.7618
JM1 0.7878 0.7220 0.7442 0.6828 0.5741 0.789
KC1 0.8315 0.8021 0.7816 0.7104 0.6887 0.853
KC2 0.7187 0.6348 0.6053 0.5863 0.6050 0.824
PC1 0.7102 0.6612 0.6262 0.6227 0.5268 0.7644
Average 0.75536 0.69084 0.6833 0.62622 0.59628 0.79844

Table 7   Performance comparison of stacked ensemble classifier with base classifiers (in ACC​URA​CY)

Accuracy ANN [6] SVM [6] NB [6] TREE [6] KNN [6] Stacked ensemble

CM1 0.8996 0.8996 0.8735 0.8494 0.8614 0.926
JM1 0.8482 0.8482 0.8307 0.8373 0.275 0.891
KC1 0.8371 0.7911 0.8409 0.8065 0.8084 0.8454
KC2 0.9296 0.9296 0.9017 0.9089 0.7682 0.9212
PC1 0.8107 0.8037 0.8061 0.7793 0.3930 0.847
Average 0.86504 0.85444 0.85058 0.83628 0.6212 0.88612

37046 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

From the reported results in Tables 6 and 7, it can be seen that proposed model shows 
better performance than base classifiers (highest values are shown in bold faces). The 
drawn inferences are-

	 i.	 It is better than ANN by 4%, SVM by 10%, NB by 11%, Tree by 17% and KNN by 
20% in terms of AUC.

	 ii.	 It is better than ANN by 2%, SVM by 3%, NB by 3%, Tree by 4% and KNN by 2% in 
terms of Accuracy.

	 iii.	 The proposed model shows best ROC curve among all six classifiers.

Further, the results recorded for AUC measure and Accuracy measure for the candidate 
classifiers are plotted as box plots for better visualization and analysis (shown in Fig. 4a 
and Fig. 4b respectively). From the figures, we can easily analyse the classifiers in a com-
parative manner. It is noted that the technique having high value of median with fewer 
outliners performs better than other classification algorithms. It is evident from the figures 
and plots that the proposed model outperforms all 5 base classifiers in AUC, Accuracy and 
ROC metrics.

The average performance of all 5 base classifiers and the proposed stacked ensemble 
based SDP classifier is plotted as Fig. 5. It can be inferred that Proposed Stacked Ensemble 
Model outperforms Base Classifiers on average by 12% in AUC and by 8% in Accuracy.

ANSWER to RQ1- From the results and analysis, YES! The proposed model outper-
forms the single base classifiers empirically.

5.2 � Finding the answer to RQ2‑

RQ2- Does the proposed customized stacked ensemble empirically outperform the state-
of-the-art ensemble based SDP classifiers?

Fig. 3   ROC Curve for all six classifiers over five datasets

37047Multimedia Tools and Applications (2022) 81:37033–37055



1 3

To answer this RQ, we further need to compare the performance of proposed stacked 
ensemble over the state-of-the-art of ensemble based SDP models. We selected two empir-
ical studies with 3 different ensemble based SDP models for comparative analysis- 1) Balo-
gun et  al. (2020) [1] deployed standard ensemble techniques-Bagging and Boosting. 2) 
Khuat et al. (2021) [11] deployed heterogenous ensembles using 9 base classifiers. Tables 8 
and 9 report the comparative analysis between the proposed model and the state-of-the-art 
models in terms of AUC and Accuracy respectively.

It is clear form the results recorded in the Tables 8 and 9 that Stacked Ensemble per-
forms better than the state-of-the-art ensemble classifiers (highest values are reflected with 
bold faces). Further, for comparison, the ROC curve is plotted for all 4 SDP models as 
shown in Fig. 6.

Fig. 4   a AUC Box Plots for all six classifiers over five datasets. b Accuracy Box Plots Curve for all six clas-
sifiers over five datasets

37048 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

0.
75

53
6 0.

86
50

4

0.
69

08
4

0.
85

44
4

0.
68

33

0.
85

05
8

0.
62

62
2

0.
83

62
8

0.
59

62
8

0.
62

12

0.
79

84
4 0.
88

61
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A U C A C C U R A C Y

PE
RF

OR
M

AN
CE

 

SDP MODELS OVER AUC AND ACCURACY

ANN [5] SVM [5] NB [5] TREE [5] KNN [5] Stacked Ensemble

Fig. 5   Proposed Stacked Ensemble Model outperforms Base Classifiers by 12% in AUC and by 8% in 
Accuracy

Table 8   Performance comparison of stacked ensemble classifier with state-of-the-art ensembles (in AUC)

AUC​ Bagging [1] Boosting [1] Heterogenous [11] Stacked ensemble

CM1 0.712 0.706 0.751 0.7618
JM1 0.723 0.747 0.745 0.789
KC1 0.702 0.735 0.812 0.853
KC2 0.782 0.80 0.821 0.824
PC1 0.745 0.709 0.753 0.7644
Average 0.7328 0.7394 0.7764 0.79844

Table 9   Performance comparison of stacked ensemble classifier with state-of-the-art ensembles (in ACC​
URA​CY)

Accuracy Bagging [1] Boosting [1] Heterogenous [11] Stacked ensemble

CM1 0.798 0.799 0.837 0.926
JM1 0.728 0.732 0.789 0.891
KC1 0.783 0.795 0.825 0.8454
KC2 0.802 0.813 0.892 0.9212
PC1 0.798 0.736 0.801 0.847
Average 0.7818 0.775 0.8288 0.88612

37049Multimedia Tools and Applications (2022) 81:37033–37055



1 3

The drawn inferences are-

	 i.	 The proposed stacked ensemble based classifier outperforms the Bagging, Boosting 
and Heterogenous model by 6%, 5%, and 2% in terms of AUC.

	 ii.	 The proposed stacked ensemble based classifier outperforms the Bagging, Boosting 
and Heterogenous model by 10%, 11%, and 5% in terms of Accuracy.

	 iii.	 The best ROC is shown by proposed stacked model among all 4 classifiers.

Further, the results recorded for AUC measure and Accuracy measure for the candidate 
classifiers are plotted as box plots for better visualization and analysis (shown in Fig. 7a 
and b respectively). From the figures, we can easily analyse the classifiers in a compara-
tive manner. It is noted that the technique having high value of median with fewer outliners 
performs better than other classification algorithms. It is evident from the figures and plots 
that the proposed model outperforms all state-of-the-art ensemble methods in AUC, Accu-
racy and ROC metrics.

The average performance of all 3 ensembles (from literature) and the proposed stacked 
ensemble based SDP classifier is plotted as Fig. 8. It can be inferred that Proposed Stacked 
Ensemble Model outperforms Base Classifiers on average by 4% in AUC and by 9% in 
Accuracy.

ANSWER to RQ2- From the results and analysis, YES! The proposed model outper-
forms the state-of-the-art ensemble classifiers empirically.

5.3 � Finding the answer to RQ3

RQ3. Are the answers to the above mentioned RQs statistically valid?
From the above experimental results, analysis and inferences; proposed stacked Ensem-

ble based classifier is the best SDP classifier among all 8 selected SDP models from the 
literature.

Fig. 6   ROC Curve for all four classifiers over five datasets

37050 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

Before drawing any final conclusions, we statistically validated the inferences drawn in 
above two subsections and sought the statistical evidence to the answers reported for RQ1 
and RQ2. The Friedman’s test is found suitable for non-parametric comparison among 
more than two samples [14, 23].

In respect to RQ1, we assume H0: “The performance reported by stacked ensemble and 
the performance reported by other 5 base classifiers are not different”. And the alternate 
hypothesis- H1: ‘The performance reported by stacked ensemble and the performance 
reported by other 5 base classifiers are different”.

We conducted the test with 95% of confidence. The results of the statistical tests are 
shown in Fig. 9. It can be seen clearly that the value of p-static is 0.0058 which is smaller 
than 0.05.

Fig. 7   a ROC Curve for all four classifiers over five datasets. b ROC Curve for all four classifiers over five 
datasets

37051Multimedia Tools and Applications (2022) 81:37033–37055



1 3

It means, the null hypothesis: H0 is to be rejected and alternate hypothesis:H1 is to 
be accepted. (It can be inferred that -Answer reported to RQ1 in Sect. 5.1- The proposed 
stacked ensemble outperforms the single base classifiers over all datasets- is statistically 
validated.

0.
73

28

0.
78

18

0.
73

94

0.
77

5

0.
77

64

0.
82

88

0.
79

84
4

0.
88

61
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A U C A C C U R A C Y

PE
RF

OR
M

AN
CE

 

SDP MODELS OVER AUC AND ACCURACY

Bagging  [26] Boos�ng [26] Heterogenous [27] Stacked Ensemble

Fig. 8   Proposed Stacked Ensemble Model outperforms Base Classifiers by 4% in AUC and by 9% in Accu-
racy

Fig. 9   Friedman Test with p-static 0.0058

Fig. 10   Friedman Test with p-static 0.0029

37052 Multimedia Tools and Applications (2022) 81:37033–37055



1 3

In respect to RQ2, we assume H0: “The performance reported by stacked ensemble and 
the performance reported by other 3 state-of-the-art ensemble classifiers are not different”. 
And the alternate hypothesis- H1: ‘The performance reported by stacked ensemble and the 
performance reported by other 3 state-of-the-art ensemble classifiers are different”.

We conducted the test with 95% of confidence. The results of the statistical tests are 
shown in Fig. 10. It can be seen clearly that the value of p-static is 0.0029 which is smaller 
than 0.05.

It means, the null hypothesis: H0 is to be rejected and alternate hypothesis:H1 is to 
be accepted. (It can be inferred that -Answer reported to RQ2 in Sect. 5.2- The proposed 
stacked ensemble outperforms state-of-the-art ensemble classifiers over all datasets- is sta-
tistically validated.

ANSWER to RQ3- From the results and analysis, YES! The answers to RQ1 and RQ2 
are statistically valid.

6 � Conclusion

In this paper, we proposed a novel heterogenous ensemble utilizing the stacking methodol-
ogy and deployed it for effective software defect prediction (SDP). The proposed model is 
robust enough to handle the defect dataset having class imbalance issues. Software defect 
prediction plays an important role in targeting the testing efforts to the faulty modules and 
hence to save time and cost. From literature, it is evident that plethora of ML based SDP 
models have been contributed by the researchers. The imbalance nature of defect datasets 
has always been a hurdle in achieving a good classification accuracy. The class imbal-
ance means the number of instances belonging to one class outnumbers the number of 
instances of other class. The outnumbering instances introduce biasing in the classification 
algorithms and hinder the performance. Due to this reason, the traditional ML based SDP 
models result sub-optimal results when trained with imbalanced datasets. We found the 
studies reported in the literature dealing with class imbalance using ensemble techniques 
as ensembles have built-in capacity to deal with the class imbalance nature of datasets. 
Still there is huge scope for the improvement in the accuracy of ensemble based defect 
predictors.

This work is dedicated to build an effective SDP classifier using heterogenous stacking 
ensemble method. It has been built upon the five best classifiers (reported from literature) 
as the base classifiers at level-1, then utilizing two level stacking and at level-2, ANN algo-
rithm has been used to combine the outputs from heterogenous classifiers of level-1. The 
performance of proposed model is empirically evaluated over three most popular criteria 
for evaluation—AUC, ROC and accuracy. A statistical comparison is also made among the 
performances of the proposed stacked ensemble classifier with that of the 5 base classifiers 
and 3 state-of-the-art ensemble techniques. From the reported results, it can be inferred 
that the proposed model built up of two-level stacking of heterogeneous ensemble (with 5 
base classifiers) at level-1 and ANN at level-2; is best with highest value for AUC meas-
ure (85.3 = %) with best ROC curve and highest value for accuracy measure (= 92.6%). In 
future, we propose to replicate the study other defect datasets extracting from live projects.

Declarations 

Conflict of interest  Authors have no Conflicts of interest/Competing interests.

37053Multimedia Tools and Applications (2022) 81:37033–37055



1 3

References

	 1.	 Balogun AO, Lafenwa-Balogun FB, Mojeed HA, Adeyemo VE, Akande ON, Akintola AG, Bajeh 
AO, Usman-Hamza FE (2020) SMOTE-Based Homogeneous Ensemble Methods for Software 
Defect Prediction. Computational Science and Its Applications – ICCSA 2020: 20th International 
Conference, Cagliari, Italy, July 1–4, 2020. Proceedings, Part VI 12254:615–631. https://​doi.​org/​
10.​1007/​978-3-​030-​58817-5_​45

	 2.	 Boucher A, Badri M (2018) Software metrics thresholds calculation techniques to predict fault-
proneness: an empirical comparison. Inf Softw Technol 96:38–67

	 3.	 Chen L, Fang B, Shang Z et al (2018) Tackling class overlap and imbalance problems in software 
defect prediction. Softw Qual J 26:97–125. https://​doi.​org/​10.​1007/​s11219-​016-​9342-6

	 4.	 Erturk E, Sezer EA (2015) A comparison of some soft computing methods for software fault pre-
diction. Expert Syst Appl 42:1872–1879

	 5.	 Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2011) A review on ensembles for 
the class imbalance problem: bagging-, boosting- and hybrid-based approaches. IEEE Trans Syst 
Man Cybernetics Part C 42(4):463–484

	 6.	 Goyal S, Bhatia P (2020) Comparison of machine learning techniques for software quality predic-
tion. Int J Knowl Syst Sci IJKSS 11(2):21–40. https://​doi.​org/​10.​4018/​IJKSS.​20200​40102

	 7.	 Goyal S, Bhatia PK (2020 ) Empirical software measurements with machine learning. In: Bansal A, 
Jain A, Jain S, Jain V, Choudhary A (eds) Computational intelligence techniques and their applica-
tions to software engineering problems, pp 49–64. CRC Press, Boca Raton. https://​doi.​org/​10.​1201/​
97810​03079​996

	 8.	 Haixiang G, Yijing Li, Jennifer Shang Gu, Mingyun HY, Bing G (2017) Learning from class-
imbalanced data: review of methods and applications. Expert Syst Appl 73:220–239

	 9.	 Haykin S (2010) Neural networks and learning machines, 3/e. PHI Learning, India
	10.	 Huda S, Liu K, Abdelrazek M, Ibrahim A, Alyahya S, Al-Dossari H, Ahmad S (2018) An Ensemble 

Oversampling Model for Class Imbalance Problem in Software Defect Prediction. IEEE Access 
6:24184–24195. https://​doi.​org/​10.​1109/​access.​2018.​28175​72

	11.	 Khuat TT, Le MH (2020) Evaluation of Sampling-based ensembles of classifiers on imbalanced 
data for software defect prediction problems. SN Comput Sci 1:108. https://​doi.​org/​10.​1007/​
s42979-​020-​0119-4

	12.	 Laradji IH, Alshayeb M, Ghouti L (2015) Software defect prediction using ensemble learning on 
selected features. Inf Softw Technol 58:388–402

	13.	 Lee HK, Kim SB (2018) An overlap-sensitive margin classifier for imbalanced and overlapping 
data. Expert Syst Appl 98:72–83

	14.	 Lehmann EL, Romano JP (2008) Testing statistical hypothesis: springer texts in statistics. Springer, 
New York

	15.	 Miholca, D., G., Czibula, I., Czibula. A novel approach for software defect prediction through 
hybridizing gradual relational association rules with artificial neural networks. J. Information Sci-
ences. Feb 2018

	16.	 (NASA 2015) https://​www.​nasa.​gov/​sites/​defau​lt/​files/​files/​Space_​Math_​VI_​2015.​pdf. Accessed 
23 Aug 2018

	17.	 Ozakıncı R, Tarhan A (2018) Early software defect prediction: ¨a systematic map and review. J Syst 
Softw 144:216–239. https://​doi.​org/​10.​1016/j.​jss.​2018.​06.​025

	18.	 Rathore S, Kumar S (2017) Towards an ensemble-based system for predicting the number of soft-
ware faults. Expert Syst Appl 82:357–382

	19.	 (PROMISE) http://​promi​se.​site.​uotta​wa.​ca/​SERep​osito​ry. Accessed 23 Aug 2018
	20.	 Rathore SS, Kumar S (2019) A study on software fault prediction techniques. Artif Intell Rev 

51(2):255–327. https://​doi.​org/​10.​1007/​s10462-​017-​9563-5
	21.	 Sayyad S, Menzies T (2005) The PROMISE repository of software engineering databases. Canada: 

University of Ottawa, http://​promi​se.​site.​uotta​wa.​ca/​SERep​osito​ry.
	22.	 Siers MJ, Islam MZ (2015) Software defect prediction using a cost sensitive decision forest and 

voting, and a potential solution to the class imbalance problem. Inf Syst 51:62–71
	23.	 Son LH, Pritam N, Khari M, Kumar R, Phuong PTM, Thong PH (2019) Empirical study of soft-

ware defect prediction: a systematic mapping. Symmetry. MDPI AG. https://​doi.​org/​10.​3390/​sym11​
020212

	24.	 Tong H, Liu B, Wang S (2018) Software defect prediction using stacked denoising autoencoders and 
two-stage ensemble learning. Inf Softw Technol 96:94–111. https://​doi.​org/​10.​1016/j.​infsof.​2017.​11.​
008

37054 Multimedia Tools and Applications (2022) 81:37033–37055

https://doi.org/10.1007/978-3-030-58817-5_45
https://doi.org/10.1007/978-3-030-58817-5_45
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.4018/IJKSS.2020040102
https://doi.org/10.1201/9781003079996
https://doi.org/10.1201/9781003079996
https://doi.org/10.1109/access.2018.2817572
https://doi.org/10.1007/s42979-020-0119-4
https://doi.org/10.1007/s42979-020-0119-4
https://www.nasa.gov/sites/default/files/files/Space_Math_VI_2015.pdf
https://doi.org/10.1016/j.jss.2018.06.025
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.1007/s10462-017-9563-5
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.3390/sym11020212
https://doi.org/10.3390/sym11020212
https://doi.org/10.1016/j.infsof.2017.11.008
https://doi.org/10.1016/j.infsof.2017.11.008


1 3

	25.	 Wang S, Yao X (2013) Using class imbalance learning for software defect prediction. IEEE Trans 
Reliab 62(2):434–443

	26.	 Wang T, Zhang Z, Jing X, Zhang L (2015) Multiple kernel ensemble learning for software defect pre-
diction. Autom Softw Eng 23:569–590

	27.	 Xia X, Lo D, Shihab E, Wang X, Yang X (2015) ELBlocker: Predicting blocking bugs with ensemble 
imbalance learning. Inf Softw Technol 61:93–106

	28.	 Yang X, Lo D, Xia X, Sun J (2017) TLEL: a two-layer ensemble learning approach for just-in-time 
defect prediction. Inf Softw Technol 87:206–20

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

37055Multimedia Tools and Applications (2022) 81:37033–37055


	Heterogeneous stacked ensemble classifier for software defect prediction
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2 Related works
	3 Research methodology
	3.1 Research questions
	3.2 Proposed stacked ensemble classifier
	3.3 Experimental set-up
	3.4 Mathematical background

	4 Dataset and evaluation criteria used
	4.1 Dataset and software metrics
	4.2 Performance evaluation criteria

	5 Result analysis and discussion
	5.1 Finding the answer to RQ1-
	5.2 Finding the answer to RQ2-
	5.3 Finding the answer to RQ3

	6 Conclusion
	References


