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Abstract
Influence maximization with application to viral marketing aims to find a small set of influ-
encers in a social network to maximize the number of influenced users under a certain 
propagation model. However, in many actual marketing scenarios, companies are usually 
concerned about precision marketing before the specified deadline. In this paper, differ-
ent from most of influence maximization problems, we focus on an issue of time-bounded 
targeted influence spread, where it asks for finding a seed set to maximize the influence on 
a specific set of target users within a bounded time in the network. This problem is NP-
hard, and its objective function maintains the monotonicity and submodularity. We devise 
a greedy algorithm with approximate guarantee to effectively solve the problem. To over-
come the low calculational efficiency of this algorithm in large networks, we further pro-
pose several efficient heuristic algorithms to greatly speed up the seed selection. Extensive 
experiments over real-world available social networks of different sizes show the effective-
ness and efficiency of the proposed algorithms.
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1  Introduction

As an increasingly popular medium, online social networks (e.g., Twitter, Facebook, etc.) 
play a very important role in the communication between people in reality. Moreover, they 
have also become one of the most important marketing platforms, which allow information 
to be widely disseminated around the social relationships during a short period of time [7]. 
Therefore, the analysis of online social networks has attracted extensive attention in both 
theory and practice. In this field, one of the most fundamental problems is influence maxi-
mization problem [9, 25]. Formally, Kempe et al. [15] are the first to formulate influence 
maximization as a discrete optimization problem. The problem aims to find at most K seeds 
in a network to maximize the expected number of activated nodes under a certain propaga-
tion model. Furthermore, Kempe et  al. propose two basic influence propagation models, 
i.e., Independent Cascade (IC) model and Linear Threshold (LT) model. In general, the IC 
model mainly emphasizes the individual interaction and influence among friends, while the 
LT model focuses on the influence of group behavior to others. Under these two models, 
Kempe et  al. show that the problem is NP-hard. The influence maximization problem is 
also very useful in some other domains, such as recommendation services [8, 14], rumor 
control [27, 35], network monitoring [17] and influential twitters selection [2, 33].

In most of the previous research on influence maximization problem, they focus pri-
marily on maximizing the number of influenced users or blocking the influence spread of 
competitors in the social networks [3, 5, 13, 16, 18, 22, 24, 29, 30, 32]. However, in many 
real-world marketing campaigns, companies are usually more concerned about precision 
marketing within a finite time horizon. In other words, before the specified marketing dead-
line, they try to narrow the scope of product promotion to those potential high-value users, 
who are very interested in the product and are more likely to purchase it, rather than all 
users. Moreover, because of clearer promotion goals and more accurate resource alloca-
tion, this kind of marketing can avoid some invalid promotions, and greatly reduce many 
unnecessary expenses. Therefore, it is considered very effective and reasonable in practice.

The above situation is not scarce in the real world. Let us consider several realistic sce-
narios. In order to market an e-sports match among the public, the marketers tend to tar-
get the sale of tickets primarily to young people before the opening date. This is mainly 
because compared with other groups, the young people pay more attention to the e-sports 
and are more likely to buy tickets to watch it live. Moreover, the people to be influenced 
after the match would not bring any revenue. In addition, conference organizers wish to 
invite some top experts with similar research fields or interests to attend their confer-
ence before it starts. It may be a good idea for the organizers to first know some friends 
of those experts. Then, by them or their friends, the organizers can know those experts 
finally. In particular, one may argue that if the marketers or organizers have known their 
target groups, they do not need any marketing, but directly deliver advertising messages or 
send invitations. However, since there may exist both social and physical distances between 
them in reality, which means that the marketers or organizers may be viewed as strangers 
or untrustworthy people by their target groups, these ways no longer work. On the con-
trary, the target groups are more willing to trust their friends and accept their suggestions 
actually.

Motivated by these realistic scenarios, we are very interested in exploring a new prob-
lem of maximizing the influence on a specific set of target users within a bounded time by 
nurturing a small number of seeders (i.e., the initial adopters) in a social network. Whereas 
there is relatively little work that has fully taken into account this problem. Moreover, it 
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can see that the most influential nodes in the whole network may not be directly applied to 
this problem. We take the following example to illustrate such an observation. Consider a 
directed graph G′ with ten nodes shown in Fig. 1, it assumes that the activation probability 
on each edge is 0.5, the bounded time is 2 and the set of target nodes contains {u1, u2, u3} . 
We can find that when considering the influence spread on the graph G′ , node u4 should be 
selected as the seed. This is because it achieves the maximal influence spread in G′ . How-
ever, for the influence spread on those target nodes within the given bounded time, the seed 
is node u5 , but not node u4 . It demonstrates that the proposed problem is actually very dif-
ferent from the traditional influence maximization problem. Additionally, there are many 
potentially promising applications for further research on the proposed problem in prac-
tice, such as optimizing location or item selection by the targeted preference and behavior 
analysis, targeted customer service, more accurate advertising and recommendations. In 
this sense, it is very essential to further investigate the targeted influence spread when time 
is bounded in social networks.

In this paper, we focus on a more realistic Time-Bounded Targeted Influence Maximi-
zation (TB-TIM) problem in social networks, which is a novel variant of influence maxi-
mization. This problem asks for identifying a seed set of size at most K in a network to 
maximize the influence on a specific set of target nodes within a bounded time under the IC 
model. We show that the problem is NP-hard1, and its influence spread function maintains 
the properties of monotonicity and submodularity. To solve the problem, we propose an 
effective greedy algorithm that can provide a solution with (1 − e−1) approximation ratio. 
However, this algorithm has the high computational cost and low efficiency in large net-
works. Therefore, instead of the computationally expensive simulation-based method, we 
further propose two efficient heuristic methods to greatly speed up the seed selection in the 
network.

To summarize, the main contributions of this paper are as follows.

•	 We study a more realistic TB-TIM problem. This problem is NP-hard, and computing 
the influence spread of a seed set on the target nodes within a given bounded time is 
#P-hard. Moreover, the influence spread function has the desirable monotonicity and 
submodularity.

Fig. 1   The example of a directed 
graph with ten nodes
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1  NP-hard problem refers to a problem that all NP problems can be reduced to within polynomial time 
complexity, while NP problem is a problem that can verify a solution in polynomial time. In general, 
#P-hard problem is more complicated than NP-hard problem. Therefore, in practice, it usually needs to find 
the approximate solutions for such problems.
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•	 We propose a greedy algorithm with theoretical guarantee to effectively solve the prob-
lem. To further improve its calculational efficiency in the seed selection, we propose 
two efficient heuristic algorithms.

•	 We evaluate the performance of the proposed methods over several real-world social 
networks of different sizes and structural features, the experimental results demonstrate 
that the proposed methods are effective and efficient.

The rest of this paper is structured as follows. Section 2 reviews the related work on influ-
ence maximization. In the Sect. 3, we give the definition of the TB-TIM problem. In the 
Sect. 4, we propose several approximate algorithms. Section 5 presents the experimental 
results and analysis. Finally, we conclude this paper and discuss several future research 
directions in the Sect. 6.

2 � Related work

To approximately solve the influence maximization problem, a line of algorithms have 
been actively studied. On the one hand, it focuses on greedy algorithm and its enhance-
ments. Kempe et al. [15] first propose a greedy hill-climbing algorithm. To overcome its 
computational deficiency, Leskovec et al. [17] propose an efficient method based on Cost-
Effective Lazy Forward (CELF), which can reduce many unnecessary calculations. It has 
been reported that this method achieves about 700 times improvement on the greedy algo-
rithm. Kim et al. [16] propose a random walk and rank merge based pruning method, which 
can efficiently find and filter out many uninfluential nodes. In [1, 6, 12], the authors exploit 
the communities of a network and devise more efficient algorithms. Additionally, on the 
other hand, it explores heuristic algorithms to cut down the computational cost in evaluat-
ing the influence spread. Chen et al. [5] consider that influence flows only via the maxi-
mum influence paths among nodes, and propose Maximum Influence Arborescence (MIA) 
algorithm and the extended prefix excluding MIA (PMIA) algorithm. Borgs et al. [3] pro-
pose a near-linear time algorithm based on random reverse reachable set. This method runs 
in O(kl2(m + n)�−3log2n) expected time and provides a (1 − e−1 − �) approximate solution 
with at least (1 − n−l) probability. Tang et al. [30] propose the Two-phase Influence Maxi-
mization (TIM) method that effectively reduces the number of the random reverse reach-
able samples. The TIM method can obtain the same approximate guarantee as the method 
proposed by Borgs et al. while achieving much higher empirical efficiency. Furthermore, 
Tang et  al. [29] propose the improved Influence Maximization via Martingales (IMM) 
method. This method uses the martingale technique under the triggering model, which is 
more efficient in practice. Nguyen et al. [22] develop the Stop-and-Stare Algorithm (SSA) 
and its dynamic version (D-SSA), which can also provide (1 − e−1 − �) approximate guar-
antee. Recently, Ohsaka et al. [23] devise an efficient and scalable algorithm for influence 
graph reduction under the IC model. Wang et  al. [32] propose a bottom-k sketch based 
reverse influence sampling algorithm for both IC model and LT model.

However, all of these works mainly focus on the classical influence maximization prob-
lem that makes great effort to maximize the spread of influence in the whole network. 
Moreover, they do not consider both target nodes and temporal constraint in the influence 
diffusion.

Several work about targeted influence propagation and maximization are discussed. 
In [10, 11], the authors consider finding k most influential users or investigating optimal 
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influence propagation policies for a user in a network. Wong et al. [34] focus on the maxi-
mum flow problem, where it adds k edges into a flow graph to maximize the flow incre-
ment from a source node s to a sink node t. But this work has never involved influence 
maximization. Li et al. [19] study the problem that maximizes the influence spread over the 
users related to a certain topic or query keywords. Su et al. [26] consider the problem that 
finds a seed set to maximize the influence spread over the users, who have topic and geo-
graphical preferences on promotional products. However, none of these works has taken 
into account temporal constraint information in the influence diffusion, which is also a very 
important factor for successful and effective marketing in reality. Our proposed problem 
focuses on maximizing the influence on a specific set of target users within a finite time 
horizon, and these target users may be arbitrarily large or dispersed in a network. Moreo-
ver, it can be considered as an important complement to these works, and can closely mir-
ror many real-world marketing scenarios.

3 � Problem definition

We first introduce the basic IC model. Then, we give the definition of the TB-TIM problem 
under this model. Table 1 lists the notations that are used extensively in the rest of this 
paper

3.1 � Independent cascade model

The IC model is widely used in the influence maximization problem. A social network is 
modeled as a directed graph G = (V, E,�) , where V is a set of nodes, E is a set of edges and 
�(u, v) is a weight function on each edge (u, v), which represents the probability that node 
v is activated by u. If (u, v) ∉ E , it satisfies �(u, v) = 0 . In the IC model, each node has only 
two states, which is either active or non-active. Moreover, the state of each node can switch 
from non-active to active, but not vice verse. In general, the IC model works as follows. At 
the time step 0, a seed set S is selected and becomes activated initially. The influence diffu-
sion proceeds in the discrete time steps t = 0, 1, 2,… . Let St be the set of activated nodes at 

Table 1   Notation explanation

Notation Description

G = (V, E) A directed graph with node set V and edge set E
K The number of seeds to be selected in G
L A non-empty set of target nodes chosen from V
�(u, v) The activation probability on the edge (u, v) in E
IL(S|�) The influence spread of a seed set S on the target set L within the bounded time � in G
Pr(P(u, v)) The probability of node v is activated by node u along the propagation path P(u, v)
P
max

(u, v) The propagation path with the maximal influence probability between nodes u and v
Pr(S, v) The probability of node v is activated by a seed set S
Pr

t
(S, u) The probability of node u is activated by a seed set S at the time step t

Pr(S, u|�) The probability of node u can be activated by a seed set S within the bounded time �
Δ

u
IL(S|�) The incremental influence spread of node u with a seed set S on the target set L 

within the bounded time � in G
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the time step t (t ≥ 0) , and it has S0 = S . At the time step t + 1 , each active node in St has 
a single chance to independently activate each of its currently non-active neighbor v with 
an activation probability, where v ∈ V ⧵ ∪0≤i≤tSi

2. Once the node v is activated, it stays 
active and continues to activate its non-active neighbors similar to the above process in the 
next time step. Furthermore, any node can only be activated at most once in this model. 
When there are no more nodes to be activated at a time step, the influence diffusion process 
terminates.

3.2 � Problem definition and its NP‑hardness

Given a positive integer K, a bounded time � and a non-empty set L = {u1, u2,… , u
N
}

(1 ≤ N < |V|) , where L ⊆ V is a specific set of target nodes. We define IL(⋅) ∶ 2V → ℝ as 
a set function such that IL(S|�) is the influence probability that the target set L is activated 
by a seed set S within the bounded time � in G when the influence diffusion process ends. 
The objective of the TB-TIM problem is to find an optimal seed set S∗ of size at most K in 
V ⧵ L to maximize the influence spread IL(S|�) under the IC model, which can be formally 
expressed as S∗ = argmax{IL(S|𝜏)|S ⊆ V ⧵ L, |S| ≤ K}.

Theorem 1  The TB-TIM problem is NP-hard under the IC model.

Proof  When the target set L is V , the bounded time � is infinite and it selects a seed set S 
from V (i.e., S ⊆ V ), the traditional influence maximization problem can be regarded as a 
special case of the TB-TIM problem. It is well known that any generalization of a NP-hard 
problem is also NP-hard. Because the traditional influence maximization problem has been 
proven to be NP-hard under the IC model [5, 15], it can imply that the TB-TIM problem is 
NP-hard. 	�  ◻

4 � Approximate algorithms

To solve the TB-TIM problem, we first propose an effective greedy algorithm with approx-
imate guarantee. Then, to implement this algorithm, we propose two efficient heuristic 
methods to approximate the influence spread calculation.

4.1 � Greedy algorithm

For any two sets S1 and S2 where S1 ⊆ S2 ⊆ V , a set function F ∶ 2V → ℝ is monotone 
if F(S1) ≤ F(S2) . Meanwhile, for any w ∈ V ⧵ S2 , the set function F  is submodular if 
F(S1 ∪ {w}) − F(S1) ≥ F(S2 ∪ {w}) − F(S2) . In the TB-TIM problem, its influence 
spread function is monotone and submodular.

Theorem 2  The influence spread function IL(S|�) is monotone and submodular under the 
IC model.

2  The symbol “ ⧵ ” represents the difference set in the set operation.
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Proof  Consider the “live-edge” model proposed in [15], it flips a coin once 
for each edge (u,  v) with bias �(u, v) . In this situation, the edge (u,  v) is “liv-
ing” with probability �(u, v) and “blocking” with probability 1 − �(u, v) . Moreo-
ver, all coin-flips in the above process are independent of each other. There-
fore, it can generate a random graph X = (V, E�) (E� ⊆ E) , and its probability is 
Pr(X) =

∏
(u,v)∈E� �(u, v)

∏
(u� ,v�)∈E⧵E� (1 − �(u�, v�)) . We define X  as the set of all possi-

ble random graphs generated from G with a seed set S . For any X in X  , IL(S|�) can be 
calculated as 

∑
X∈X Pr(X)IL(S;X��) , where IL(S;X|�) refers to the influence probabil-

ity of the seed set S can activate the target set L within � in X. According to the “live-
edge” model, IL(S;X|�) equals 

∑
u∈L �(S, u;X��) , where �(S, u;X|�) is 1 if there exists at 

least one “living” path from some nodes in S to u within � in X, and otherwise it is 0. 
Therefore, IL(S|�) is calculated as follows.

For any v ∈ V ⧵ S ∪ L in X, it is not hard to find that IL(S;X|�) ≤ IL(S ∪ {v};X|�) , which 
means that IL(S;X|�) is monotone. Due to Pr(X) ∈ (0, 1] , IL(S|�) is monotone. In addi-
tion, for the sets S1 and S2 , and any w ∈ V ⧵ S2 ∪ L , it considers that a node u in L is 
reachable from S2 ∪ {w} in X, which means that there is at least one “living” path from 
S2 ∪ {w} to u within � , and the node u is not reachable from S2 . Due to S1 ⊆ S2 , node 
u must not be reachable from S1 , but it can be reachable from S1 ∪ {w} within � in X. 
It implies that IL(S1 ∪ {w};X|�) − IL(S1;X|�) ≥ IL(S2 ∪ {w};X|�) − IL(S2;X|�) in X. 
Therefore, IL(S;X|�) is submodular. Since IL(S|�) is a non-negative linear combination of 
the submodular functions, IL(S|�) is submodular. 	�  ◻

Given a non-negative, monotone and submodular function, we have the following 
important theorem [21].

Theorem  3  For a non-negative, monotone and submodular function � , let S be a set of 
size K generated by the greedy algorithm. Then, the set S satisfies �(S) ≥ (1 − e−1)�(S∗) , 
where S∗ is the optimal solution.

According to Theorem  2 and 3, we propose a greedy algorithm with (1 − e−1) 
approximation ratio to effectively solve the TB-TIM problem. Algorithm 1 presents 
the pseudocode of the greedy algorithm. We can see that its time complexity is 
O(K(|V| − |L|)T(IL(S|�))) , where |V| is the number of nodes in V  , |L| is the number of 
nodes in L and T(IL(S|�)) is the maximum running time for calculating IL(S|�) in G . 
However, before selecting a new seed in each iteration, this algorithm must equally 
evaluate each node in V ⧵ L , which is very time-consuming in large networks. There-
fore, we consider using the CELF optimization technique to accelerate selecting the 
seeds in this algorithm. In this case, when the incremental influence spread of cer-
tain nodes in the previous iterations are less than those results for other nodes in the 
current iteration, these nodes do not need to be evaluated repeatedly in the current 
iteration. As a result, some nodes can be filtered out in the seed selection.

(1)IL(S|�) =
∑

X∈X

∑

u∈L

Pr(X)�(S, u;X|�)
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4.2 � Calculation of the influence spread

In the greedy algorithm, an essential building block is to calculate the influence spread 
IL(S|�) of a given seed set S in the graph, whose special case has been reported to be 
#P-hard [5, 31]. Therefore, to improve the performance of calculating IL(S|�) , instead 
of using simulation-based method based on the equation (1), we propose an efficient 
Time-bounded Maximal Propagation Probability based heuristic (TMPP) method, which 
integrates the information of target nodes and temporal constraint simultaneously.

For any two nodes u and v in a graph, we define a propagation path from node u to v as 
P(u, v) = (u = u1, u2,… , uq = v) (q ≥ 2) , which is an acyclic sequence of nodes. The edge 
linked with adjacent nodes in the propagation path P(u, v) refers to ei = (ui, ui+1) ∈ E 
(i = 1, 2,… , q − 1) , and the influence probability of P(u, v) is Pr(P(u, v)) =

∏q−1

i=1
�(ei) . 

Obviously, it can find that the longer the propagation path, the smaller its influence 
probability. In particular, if there are multiple propagation paths between nodes u and 
v in the graph, we only choose the propagation path with the maximal influence prob-
ability. Accordingly, we define Pmax(u, v) as the propagation path with the maximal 
influence probability from node u to v, i.e., Pmax(u, v) = argmax{Pr(P)|P ∈ P(u, v|G)} , 
where P(u, v|G) refers to the set of all propagation paths from node u to v in G . Addition-
ally, it may occur that the maximal influence probabilities of certain paths are too small. 
In fact, they have very little impact on the calculation of the influence spread, and can 
be ignored. Therefore, we use a small threshold 𝜂(𝜂 > 0) to prune those paths whose the 
maximal influence probabilities do not exceed � . In this situation, if Pr(P

max
(u, v)) < 𝜂 , 

it considers that node u can not activate v through the propagation path Pmax(u, v) . For 
the calculation of Pmax(u, v) in a graph, when translating the activation probability �(e) 
on each edge e to a distance weight −log(�(e)) , it is equivalent to finding the shortest 
path from node u to v with distance smaller than −log(�) . Therefore, it allows for Dijk-
stra shortest path-based algorithm to calculate it efficiently.

Let Pr(S, u|�) denote the probability that a node u in L is activated by a seed set 
S within the bounded time � . For the TB-TIM problem, IL(S|�) is calculated as 
∑

u∈L Pr(S, u��) . To calculate the probability Pr(S, u|�) more efficiently, we build a tree 
structure, which includes all important propagation paths from other nodes to node u 
and takes u as its root. We define Prt(S, u) as the probability of u being activated by S at 
the time step t. Since there is a finite time horizon � for the influence spread of the seed 
set S on the target nodes, it means that all possible time steps at which S can activate u 
within � need to be considered. In this case, Pr(S, u|�) equals 

∑
t≤� Prt(S, u) . Therefore, 

IL(S|�) can be calculated as follows.
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In the Eq. (2), it needs to calculate the probability Prt(S, u) for any node u in L at a time step 
t. To tackle such an issue, we employ a dynamic programming-based algorithm [4] in the 
trees. Let Ni(u) be the set of in-neighbour nodes of u. When the time step t = 0 , because node 
u must not be in S , it satisfies Prt(S, u) = 0 . When the time step t > 0 , Prt(S, u) is recursively 
calculated as 

∏
v∈Ni(u)

(1 −
∑t−2

i=0
Pri(S, v)Pr(v, u)) −

∏
v∈Ni(u)

(1 −
∑t−1

i=0
Pri(S, v)Pr(v, u)) in 

the tree. Furthermore, when a node v in S , it has Prt(S, v) = 1 for t = 0 and Prt(S, v) = 0 
for t > 0 . Because it focuses on the spread of influence on the target set L , we pre-compute 
the tree structures only for each node in L instead of all nodes in V , and make use of these 
trees to calculate the influence on L by the end of time step � . Moreover, when selecting a 
seed in each iteration, we only need to evaluate those nodes in the trees of the target nodes, 
rather than traversing all other nodes that are not in the trees. This is mainly because they 
would not have any influence on the target nodes. Algorithm 2 presents the pseudocode of 
calculating IL(S|�) with a given seed set S in a graph. The time complexity of this algo-
rithm is O(min(ki, hm)|L|na) , where ki is the number of nodes in the current seed set S , hm 
is the maximum height in the trees and na is the average number of nodes in the trees.

4.3 � Fast calculation of the incremental influence spread

In each iteration of the greedy algorithm, it has to exactly calculate the incremen-
tal influence spread of each node on the target set L within the bounded time � , i.e., 
ΔuIL(S|�) = IL(S ∪ {u}|�) − IL(S|�) . However, when the number of nodes in a graph 
and the size of selected seed set are both large, this process is very expensive and time-
consuming. Therefore, instead of calculating ΔuIL(S|�) for each node u directly, we con-
sider approximately estimating their values to greatly improve the efficiency of selecting 
the seed in each iteration. Due to the correlations between different seeds to other nodes 
in the influence diffusion, it satisfies ΔuIL(S|�) ≤ IL({u}|�) . We fully employ the influ-
ence spread of single nodes, and propose a Fast Incremental Influence Spread based heu-
ristic (FIIS) method to estimate ΔuIL(S|�) approximately. Follow the work [20], we can 
approximate ΔuIL(S|�) by multiplying a reasonable scale factor on IL({u}|�) . For each 
node u ∈ V ⧵ S ∪ L , ΔuIL(S|�) is estimated as follows.

(2)IL(S|�) =
∑

u∈L

∑

t≤�

Prt(S, u)
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In the Eq. (3), IL({u}|�) is calculated based on the Eq. (2) when selecting the first seed in 
the greedy algorithm. Therefore, it can be used directly in this equation. SF({u}) denotes 
the scale factor that belongs to (0,1], and it is calculated as follows.

In the above Eq. (4), No(u) represents the set of out-neighbour nodes of u. Let No(S) be the 
set of out-neighbour nodes of S . For the IC model, when node v is in No(u) ∩No(S) , the 
probability Pr(S, v) is 1 −

∏
s∈S(1 − Pr(s, v)) for any s ∈ S and (s, v) ∈ E . When node v is 

in No(u) ⧵No(S) , Pr(S, v) is 0. Furthermore, if node v is in L , it considers that IL({v}|�) 
is 1. In the i(i > 1) iteration of the greedy algorithm, it can fast calculate the incremental 
influence spread ΔuIL(S|�) of each node u by making use of the Eqs. (3) and (4), and select 
all remaining seeds efficiently. Due to it only reuses the influence spread of single nodes, 
and does not need to calculate the incremental influence spread of each node exactly, FIIS 
method can significantly improve the computational efficiency in the seed selection.

5 � Experiments

We conduct extensive experiments over several real-world social networks to evaluate the 
performance of the proposed algorithms on various metrics. Furthermore, we also investi-
gate the affect of some important parameters on their performance.

5.1 � Experimental setup

We first introduce four real-world social network datasets. Then, we present all evalu-
ated algorithms. Finally, we set the parameters. The code for each evaluated algorithm is 
implemented in C++, and all experiments are run on windows machine with an Intel Core 
3.30GHz CPU and 24GB memory.

5.1.1 � Experimental datasets

Four social network datasets [28] of different sizes are used, and their basic statistics are 
summarized in Table 2. The first dataset is Wiki-vote network, which is a voting history 
network from Wikipedia. Nodes in Wiki-vote represent Wikipedia users and directed 
edges represent the voting relationships between users. The second dataset, Epinions, is a 

(3)ΔuIL(S|�) ≈ IL({u}|�)SF({u})

(4)SF({u}) =

∑
v∈No(u)

Pr(u, v)(1 − Pr(S, v))IL({v}��)
∑

v∈No(u)
Pr(u, v)IL({v}��)

Table 2   The Statistics of Four 
Social Networks

Networks Wiki-vote Epinions Email LiveJournal

No. of Nodes 7115 76K 265K 1.3M
No. of Edges 104K 509K 420K 4.47M
Average Degree 29.2 13.4 3.17 6.76
Direction directed directed directed directed
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who-trust-whom network of a popular review site, where nodes represent members of the 
site and a directed edge from u to v means v trusts u. The third dataset is Email network, 
where nodes represent email addresses and a directed edge from i to j means i sends at least 
one email to j. The last dataset is LiveJournal network, where nodes represent users and 
directed edges represent the friendships between them.

5.1.2 � Evaluated algorithms

To evaluate the performance, we compare our proposed algorithms3 with several other 
widely used heuristic algorithms4. All evaluated algorithms are presented as follows. Larg-
est Degree method (LD). It selects nodes with the largest degrees in the whole graph, 
which is also used as a baseline method in [15]. Random method. It randomly selects nodes 
in a graph, which is popularly used by the work [4, 5, 15]. IMM method. One of the state-
of-the-art heuristic algorithms for the traditional influence maximization problem proposed 
by [29]. For the purpose of comparisons, it does not include both target nodes and temporal 
constraint in the seed selection in the whole graph. The seeds selected by this method is 
used as the baseline solution for the TB-TIM problem. TMPP method. It calculates the 
influence spread based on the maximal propagation paths among nodes in the greedy algo-
rithm, which considers the target nodes and temporal constraint information. FIIS method. 
It approximately estimates the incremental influence spread of each node in the seed selec-
tion in the greedy algorithm.

5.1.3 � Parameters setting

To simulate the TB-TIM problem, we randomly pick a subset of nodes from V as the target 
set L . The size of the target set L is defined as N. The threshold � is set to 0.001 to achieve 
the trade-off between the calculation of the influence spread and running time. For the acti-
vation probability on each edge, we apply the weighted cascade model [5, 15, 29, 30], 
where the probability is the reverse of the indegree of a node.

5.2 � Experimental results and analysis

We present the experimental results and analysis for each method over the four social net-
works. We evaluate their performance on various metrics, such as the quality of seed set, 
running time. Moreover, we further evaluate the affect of some important parameters on 
the influence spread.

5.2.1 � Quality of seed set

The quality of seed set is evaluated mainly based on the influence spread on the target set 
within a bounded time in a network. Figure 2 shows the influence spread of each evaluated 

3  The proposed algorithms are based on the greedy algorithm in Algorithm 1, and their difference is the 
method of calculating the incremental influence spread.
4  We do not compare the greedy algorithm using Monte Carlo simulation. It mainly considers that the num-
ber of possible random graphs is exponential and usually very large, and a sufficient number of random 
simulations are required to obtain the accurate estimates with high probability. As a result, the time con-
sumption of this method is too high for all social network datasets.
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method with varying K over the four social networks when N is 200 and � is 5. From this 
figure, we can clearly observe that the influence spread of each method increases with K 
grows. This result keeps in line with the practical situations, where a larger number of 
seeders usually achieve the larger influence on a set of target users within a finite time hori-
zon. In this figure, we can also observe that TMPP and FIIS methods achieve the similar 
influence spread, which are larger than other methods. Therefore, it verifies their effective-
ness for solving the TB-TIM problem. Meanwhile, IMM and LD methods for the tradi-
tional influence maximization problem achieve the lower influence spread. It demonstrates 
that the influential nodes in the whole network may not work well for the TB-TIM problem. 
Unsurprisingly, Random method has the least influence spread in all methods.

5.2.2 � Running time

Figure 3 shows the time taken by the evaluated methods with varying K over the four social 
networks when N is 200 and � is 5. We do not include LD and Random methods due to 
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Fig. 2   The results of the influence spread over all social networks
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their running time is too trivial for all social networks. In this figure, we can find that the 
running time of TMPP and FIIS methods is relatively small in all networks. Moreover, 
the running time of FIIS method is almost unchanged even for the large social networks. 
Therefore, these results can verify the efficiency of the proposed methods in the seed selec-
tion for the TB-TIM problem. Because it does not need to exactly calculate the incremental 
influence spread of each node in the seed selection, the time consumption of IMM method 
is very small in the networks.

5.2.3 � The affect of the size of target set on influence spread

To investigate the affect of the size of target set in the TB-TIM problem, we evaluate the 
performance of influence spread for different N in social networks. Figure  4 shows the 
influence spread of each method over the Wiki-vote and Epinions social networks when 
K is 50 and � is 5. From this figure, we can see that the influence spread of each method 
also increases with N grows. More specifically, TMPP and FIIS methods have the similar 
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Fig. 3   The results of running time over all social networks

9077Multimedia Tools and Applications (2023) 82:9065–9081



1 3

influence spread, which are larger than other evaluated methods. IMM, LD and Random 
methods achieve the lower influence spread in these two social networks.

5.2.4 � The affect of bounded time on influence spread

We further study the affect of temporal constraint in the TB-TIM problem. Figure 5 shows 
the influence spread of each method with varying � over the Wiki-vote and Epinions 
social networks when K is 50 and N is 150. In this figure, we can find that the influence 
spread increases with � grows. However, when � exceeds about three propagation hops, the 
influence spread almost no longer increases. This result is consistent with some previous 
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Fig. 4   The results of the influence spread for different N over the Wiki-vote and Epinions social networks
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measurement-driven studies that the spread of influence is basically limited within only few 
propagation hops from the sources in many real-world social network services. Moreover, 
it also demonstrates that the influential nodes for the TB-TIM problem are actually near the 
target nodes. Therefore, we can conclude that for the TB-TIM problem, the bounded time 
of influence propagation has an important impact on the influence spread.

5.2.5 � The scalability of the proposed methods

We evaluate the scalability of TMPP and FIIS methods in the social network datasets of 
different sizes, which is measured by the running time. Figure 6 shows the running time 
with varying K over the four social networks when N is 300 and � is 5. In this figure, we 
can see that TMPP and FIIS methods take relatively little time. Furthermore, we can find 
from Fig. 6(b) that FIIS method is more efficient in the large networks. For example, it only 
takes no more than four minutes to finish in the large Email and LiveJournal social net-
works, even for the large K. As expected, it can finish much faster for the relatively small 
Wiki-vote and Epinions social networks. It demonstrates that TMPP and FIIS methods can 
solve the TB-TIM problem efficiently when handling the large networks in practice.

6 � Conclusion and future work

In this work, we address the TB-TIM problem in social networks, which can closely mir-
ror many real-world marketing scenarios. To solve this problem, we develop an effective 
greedy algorithm with theoretical guarantee. Moreover, we further propose several heu-
ristic methods to significantly improve the computational efficiency. Our empirical experi-
ments over the real-world social networks of different sizes show that the proposed algo-
rithms outperform intuitive baselines in the effectiveness and efficiency, and can scale to 
large networks in practice.

This work also inspires us a number of extensions and promising directions for future 
research. Because this work only focuses on the IC model, it is possible to study the TB-
TIM problem under other propagation models. Furthermore, in addition to the social 
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relationships, the influence on users may also be from external sources (e.g., TV, news-
papers, broadcast, etc.) in reality. Therefore, it is very interesting to further explore how 
social connections together with the external sources affect the spread of influence on the 
target users in the TB-TIM problem.
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