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Abstract
Identifying those nodes that play a critical role within a network is of great importance. 
Many applications such as gossip spreading, disease spreading, news dispersion, identify-
ing prominent individuals in a social network, etc. may take advantage of this knowledge 
in a complex network. The basic concept is generally to identify the nodes with the high-
est criticality in a network. As a result, the centrality principle has been studied exten-
sively and in great detail, focusing on creating a consistent and accurate location of nodes 
within a network in terms of their importance. Both single centrality measures and group 
centrality measures, although, have their certain drawbacks. Other solutions to this prob-
lem include the game-theoretic Shapley Value (SV) calculations measuring the effect of a 
collection of nodes in complex networks via dynamic network data propagation process. 
Our novel proposed algorithm aims to find the most significant communities in a graph 
with community structure and then employs the SV-based games to find the most influen-
tial node from each community. A Susceptible-Infected-Recovered (SIR) model has been 
employed to distinctly determine each powerful node’s capacity to spread. The results of 
the SIR simulation have also been used to show the contrast between the spreading capac-
ity of nodes found through our proposed algorithm and that of nodes found using SV-
algorithm and centrality measures alone.
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1  Introduction

The identification of influential nodes in complex networks has attracted considerable 
attention within the research community [36]. Social networking has become a modern 
tool for people to connect and spread the news with the development of science and tech-
nology. Thus, the critical issue of detecting a collection of the most prominent individu-
als in a network can help monitor the dissemination of social networking messages and 
rumours, discovering social influencers, etc. Particularly in the case of rumour propaga-
tion, as rumours spread quickly and widely and they have great power of destruction. It is 
therefore of great theoretical and practical importance to decide whether there is an influ-
ential spreader and to recognize who is the influential spreader in the process of spreading 
or controlling the spread of information [10, 14, 20].

Various approaches to the identification of influential nodes in complex networks 
including single centrality and group centrality measures have been explored in the past 
[21, 23]. A brief understanding of these concepts is discussed in Sect. 4.2. Other than the 
basic centrality measures, SV-based centrality algorithms have also been employed for 
similar problems [1, 22]. This is based on the main concept of a game-theoretic network 
which means defining a cooperative game across a network where agents are nodes, coali-
tions are node groups, and coalition payoffs are specified to meet the requirements of a 
given application.

Although many methods have been proposed, most of them fail to take into account the 
community structure of graphs while identifying influential nodes. Community structure 
organizes the nodes into sets such that a dense internal connection exists among the nodes 
in each set. In large and complex real-world networks, it is rarely the case that a single node 
could be able to dissipate a piece of information to the entire network. Therefore, we aim 
at identifying a group of nodes that might be able to scatter information to the rest of the 
network. Community structures refer to a subset of nodes in which all nodes are densely 
connected to all the other nodes present within the same community, but loosely connected 
to all the nodes present in other communities [27]. Higher-order community structure deals 
with small dense subgraph patterns and also the density of connections between two dif-
ferent communities. The benefit of identifying these is that we are able to find such a set 
of communities (rather than an individual nodes or just one community), that can dissipate 
information to majority of the network.

Various approaches have been used in the past for leveraging higer-order community 
structure such as Harmonic Motif Modularity [12], HBNmining [15], Attribute Homoge-
neous Motif [16], etc. The major drawback with all of them, however, is that they do not 
optimally deal with the lower-order topological structure. They do not take into considera-
tion the smaller, isolated, and fragmented components that may be present in a large real-
world network, and focus only on the larger connected components. EdMot [17] approach 
overcomes this by rewiring the network and by taking into account the higher-order com-
munity structure instead of only the lower-order one.

Graph clustering aims at partitioning the vertices of a graph into good clusters (based on 
different objective functions). Yang et al. [34] have studied and compared eight state-of-the-art 
clustering algorithms. They have also metioned the various merits and demerits of each of the 
approaches. Poulin et al. [26] proposes the ECG algorithm which outperforms all the algo-
rithms studied by Yang et al. [34]. The ECG algorithm has been used to detect communities in 
a graph and is based on Multi-level Louvain algorithm [5]. Furthermore, the ECG algorithm 
also provides the information about strength between different communities present.
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Our proposed algorithm initially aims to employ the EdMot approach that leverages the 
higher-order characteristics at the level of dense sub-graph patterns to identify the com-
munity structure in a graph. We propose an enhancement in this approach by using the 
Ensemble Clustering for Graph (ECG) algorithm for network partitioning, thus the rewired 
network is then fed to the ECG algorithm. After this, the most influential node from each 
partitioned community is identified according to the Shapely centrality value using EDGly 
algorithm. The ECG algorithm is based on the Louvain algorithm but produces more accu-
rate results as a consequence of the ensembles of clusters used. Thus, we obtain the most 
significant partitioned communities from the original network and then employ SV based 
games to find the most significant nodes from each significant community identified. This 
gives us a list of all the influential nodes in the graph.

We have used the measures of prime centrality, the game-theoretical approach and our 
proposed algorithm to identify the most prominent top-k nodes and demonstrated a distinct 
and detailed contrast between all the approaches. We have finally used the SIR model to 
evaluate the performance of the proposed algorithm in comparison to the centrality-based 
measures and the SV games. The SIR model simulates an information spreading process 
in which our most significant nodes, identified via any of the algorithms, are considered as 
infected and tries to spread the information in the entire network. This helped to portray the 
different aspects and accuracy of the varied approaches vividly. More details on the work-
ing of SIR model and the evaluation criteria are mentioned in Section 7.3.

The main contribution of our work is to detect influential nodes in a graph by incor-
porating the community structure. EDGly algorithm uses and leverages the EdMot 
approach—an Edge enhancement approach for Motif-aware community detection, and 
ECG algorithm—a graph clustering method. The SV of each node is then calculated and 
the most influential nodes are obtained.

The remainder of this paper is organized as follows. Section 2 gives a detailed study 
of the various works done in the related field. Section 3 explains the datasets used. Sec-
tion 4.1 explains the preliminaries while Sect. 6 explains the algorithmic flow. Section 7.1 
illustrates the working of the proposed algorithm with the help of a diagram. Section 7.3 
describes the evaluations performed and the results obtained. Section  9. concludes the 
research work with detailed insight into its future scope.

2 � Literature review

One of the fundamental research discussions in the literature on network analysis is the 
topic of connectivity. The first to experiment to detect the primary top-k nodes were 
Domingos and Richardson [8]. They developed an algorithmic model to address this prob-
lem by modelling social media network as Markov random fields which mathematically 
characterized the probability of occurrence of an event. Chen and Teng [7] explained that 
single node centrality measures are suitable for assessing individual influence in isolation 
while Shapley centrality assesses individuals’ performance in group influence settings.

Wei et al. [32] explored the need to learn distributed representation of the vectors for 
each vertex in a network. They laid emphasis on node classification and link prediction. A 
unique approach to identify influential nodes is to consider the k-shell value of each vertex 
as the mass and shortest path distance between two vertices as the distance, and then apply 
the concept of gravity centrality index [20].
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We further investigated various kinds of centrality measures used for finding the most 
influential nodes in a network. Degree Centrality (DC), discussed by Gao et  al. [10], is 
used to efficiently measure the significance of nodes. However, it does not take into consid-
eration the overall, detailed anatomy of the network. Eigen-Vector Centrality (EC), accord-
ing to Stephenson and Zelen [29], overcomes the defects associated with DC. It takes into 
account the influence of neighbours of the node in consideration. Betweenness Centrality 
(BC), as explored by Freeman [9], learns topology-related data of networks in advance. Al-
Garadi et al. [2] describes how Closeness Centrality (CC) can be efficiently used to identify 
more than one prominent spreader.

Previous research by Tan et al. [30] on spreading rumours focused primarily on com-
munities’ viral epidemics. The normal (and somewhat standard) model for viral epidemics 
is called the restored or SIR model that is susceptible-infected- recovered. Various methods 
have been defined for the same, including weighted k-core decomposition method [2] and 
rumour centrality with a mass centre technique [30]. Algorithms with low complexity have 
been devised that can be applied to large scale networks by introducing entropy into a com-
plex network and using the SIR model for evaluation. Such a model [37] can be used for 
rumour management and targeted advertisements.

We studied the disadvantages associated with using centrality algorithms to find the 
most significant node in [7, 19, 24]. An attempt has been made to find the most influen-
tial node in a network using Mapping Entropy (ME) that reflects the correlation between 
a node and its neighbours [24]. We particularly inspected the application of ME using 
ENRON email dataset which is commonly used for the study of social networks [28].

Game-theory is a significant paradigm that finds its applications in various fields. It is 
used in statistics and business analytics for prototyping the interactivity among participat-
ing agents [4]. One of its most prominent applications is finding the most influential node 
within a network. Typical social network analysis cannot capture the dynamics of strate-
gic interactions among the individuals in the network. Our proposed model is based on 
cooperative game theory that solves this issue [33]. The elemental constituents of intricate 
interactivities in a network can be efficiently processed using a rich class of games, called 
influence games, as has been demonstrated in [13]. Game-theoretic network centrality 
measures along with their computational complexity and axiomatic properties have been 
neatly explained in [31].

We studied about Explosion-Trust (ET) Game Model by referring to [18]. It remark-
ably explains how a rumour spreading model can be constructed using game-theory by 
considering two very significant factors—rumour explosion degree and trust degree of the 
source node. In complex networks, dense clusters [14] can be formed by detecting influ-
ential nodes using degree centrality and selecting the most influential nodes as the initial 
spreaders. This ensures that not just the spreader nodes are prominent themselves, but also 
that the distance among the nodes is relatively scattered. In [36], the probability of trans-
fer of information was used between any pair of nodes and the clustering method, called 
k-medoid. Such an efficient algorithm helps to classify large scale powerful nodes in com-
plex networks with community structures.

Amati et al. [3] aimed to find the most influential nodes from various Twitter scraped 
datasets. Primitive centrality measures like degree centrality, closeness centrality, eigen-
vector centrality, and page-rank centrality were employed for the same. They also studied 
how the influence of spreaders evolved over time with the help of Dynamic Retweet Graph 
(DRG) that focused on how retweets of a tweet were made over time. This helped them bet-
ter analyze the relationship between users. They concluded that closeness centrality gave 
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too many nodes with high centrality and was, therefore, not a good indicator. Furthermore, 
the remaining measures gave almost similar results in terms of the most influential nodes.

3 � Data sets

This section gives an elaborate description of the datasets that have been used for our 
implementation. We have used two datasets which have been described below.

The first dataset is the USAir97 dataset [6] which has been transformed into an undi-
rected network, created by 332 nodes, where one airport represents a node, and 2126 
edges, with each edge reflecting a direct air-line between two American airports, if any. 
Here, weights represent the normalized distance between two airports.
The second dataset is a tiny Facebook network [25] made up of 899 users serving as 
nodes and having 7089 edges. An edge occurs between two vertices if a few messages 
have been exchanged between the two users and are weighted by the number of mes-
sages exchanged.

3.1 � Unweighted graph

An unweighted graph can be technically defined as a graph G(N, E) having ‘n’ nodes repre-
sented by set N and ‘e’ edges represented by set E consisting of unordered pairs, such that 
(n1, n2) = (n2, n1) and (n1, n2) ∈ E and n1, n2 ∈ N. Games 1 and 2 are played by creating an 
unweighted network from both the datasets.

3.2 � Weighted graph

A weighted graph can be technically defined as a graph G(N, E) having ‘n’ nodes repre-
sented by set N and ‘e’ edges represented by set E consisting of ordered pairs, such that (n1, 
n2) ≠ (n2, n1) and (n1, n2) ∈ E and n1, n2 ∈ N. Games 3–5 are played by creating a weighted 
network from both the datasets.

4 � Preliminaries

Section  4.2 explains the centrality measures used while Sect.  4.3 describes the process 
used for community detection in detail.

4.1 � Centrality measures

We have used certain centrality measures in our implementation to compare the results our 
proposed algorithm with these already existing measures. For more insight into these cen-
trality measures along with their mathematical derivations, refer to the work of Zhan et al. 
[35]. The centrality measures used in our study are as follows:
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	 (i)	 Eigen-vector Centrality (EC): EC [29] considers the relative power or significance of 
the nodes. Here, each node is assigned a value representing its relative significance 
considering the fact that nodes which are connected to high-power nodes have high 
influence over the network in comparison to those who are connected to low-power 
nodes.

		    In Eq. (1), M(vi) is set of neighbours of vi , and � is a constant. Ce(vi) is the measure 
of EC for vertex vi.

	 (ii)	 Betweenness Centrality (BC): BC [9] measures how strongly two nodes are con-
nected via a given node. It is estimated as the ratio of the aggregate of shortest dis-
tances between any two nodes in the network, on which the node lies, to the shortest 
path between the two nodes considered.

		    In Eq. (2), gjk is the total number of shortest paths from vj to vk , and gjik is the 
number of paths that pass through vi . Cb(vi) is the measure of betweenness centrality 
for vertex vi.

	 (iii)	 Closeness Centrality (CC): CC [2] measures how quickly information can be spread 
from one node to all the other nodes in a network. It is measured as the inverse of 
the total sum of all shortest path distances between a given node to all other nodes 
in a network.

		    In Eq. (3), d(vi, vj) is the distance between vertices viandvj , and Cc(vi) is the meas-
ure of closeness centrality for vertex vi.

Single centrality measures suffer from certain disadvantages due to the failure to rec-
ognize the effects when considered in groups on node functionality. Group centrality 
measures place great focus on operating in groups of nodes and not on their individual 
functionalities. Nonetheless, group centrality also suffers from a drawback by focusing on 
a- priori-determined node groups and contributing to confusion when prioritizing individ-
ual nodes within the network.

4.2 � Community detection

The algorithm divides the task of detecting influential nodes into two parts:

	 (i)	 Detecting significant communities in a graph
		    We used the ECG algorithm to detect the communities present in the graph, pri-

marily because of its efficiency in accuracy and the number of communities found. 
The latter metric enables us to experiment with the number of communities and see 
the effect of that on the infected scale in our SIR Model. The ECG algorithm works 
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with consensus clustering. It has two main steps—generation and integration. The 
generation process uses the Multilevel Louvain algorithm [5]. The ML algorithm 
creates a hierarchy of partitions, and ECG uses the randomized partitions at level-1. 
The number of the randomised partitions used determines the size of the ensemble 
of clusters. The integration step involves applying ML on the weighted version of a 
graph, G, where the weight of each edge is given by:

		    In Eq. (4), 0 < w∗  < 1 is the minimum ECG weight and vPi
(u, v) =

∑li
j=1

1
C
j

i

(u).1
C
j

i

(v) 
indicates if the vertices u and v co-occur in the same cluster of Pi or not. The k-core of a 
graph is its maximal subgraph such that every vertex has degree of atleast k. In this case, 
the 2—core of G is its maximal subgraph such that each vertex has degree of atleast 2.

		    For this, we proposed an enhanced version of the EdMot algorithm by replacing 
the Louvain algorithm for network partitioning by the ECG algorithm. The EdMot 
approach for network rewiring has been used to increase connectivity within connected 
components in the graph. This approach takes into account the higher-order community 
structure instead of only lower-order structures. The algorithm aims to unravel peculiar 
characteristics at the level of network motifs. These are basic interaction patterns in 
a graph that recur throughout graph networks, much more than in random networks. 
This is crucial to inculcate while considering the influence of nodes in a graph.

	 (ii)	 Finding the most influential node from each community
		    For finding the most influential node per community in a graph, we use The Shap-

ley Value. On the basis of the concept of marginal (or borderline) contribution, an 
important solution concept was proposed by Shapely [1, 22].

		    Player i′s SV, denoted by SVi(v) is equal to the weighted mean of i′s borderline 
contributions to each coalition C, to which the player may belong.

		    In Eq. (5), the aggregate count of players is given by ‘n’ while π(I) gives the set 
of all permutations with ‘n’ players. More insight into the SV and its derivation can 
be found in [1, 22].

This idea is based on the theory of cooperative games—an element of game theory that 
allows players to form coalitions to maximize their game yields. Cooperative games theory pro-
vides a high-level approach as it describes only the coalitions’ structure, strategies and benefits.

4.3 � Coalition games

Coalitions are gatherings of players that form the essential or fundamental elements of 
decision making. These are assumed to uphold cooperative conduct which makes it reason-
able to view these games as a contest between alliances of participants and not between 
separate players. The core assumption here is that as the game proceeds, an eminent alli-
ance or coalition comprising all participants will manifest eventually.
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5 � Proposed EDGly algorithm for influential nodes detection

Focusing on Game Theory’s Shapley algorithm, we referred to the algorithms described in 
Michalak and Szczepański’s work [1, 22]. In both weighted and unweighted networks, the 
exact analytical formulae for SV-based centrality were established. The SV-based centrality 
polynomial-time algorithms have been developed.

Step 1: Creation of weighted and un-weighted network graphs	� Graphs are created by 
using the networkx 
library in Python for 
both USAir97 and 
Facebook datasets. 
Games 1 and 2 require 
unweighted graphs 
whereas the remaining 
games require weighted 
graphs. Please refer 
Sect. 3.

Step 2: Detection of communities	� Connectivity within the network is enhanced 
by network rewiring as explained in Algo-
rithm 1. After this, communities are detected 
using the ECG algorithm for the detection of 
network communities. In line with EDGly 
algorithm, from each community, we picked 
the most influential node (as described in 
Step 3). It was observed that the number 
of communities identified does not change 
results significantly. We have shown the 
seven communities and their corresponding 
influential nodes.

Step 3: Coalition games based on Shapely algorithm	� SV is the average marginal cost 
contribution across all potential 
coalitions of a function value. 
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The Shapley algorithm is applied 
carefully and tries to find the 
top-k nodes that might be the 
most prominent ones.

Step 3: Coalition games based on Shapely algorithm	� Specifically, we concentrated on 
five underlying network-defined 
coalition games that vary in 
degree and centrality of the net-
work. Each game has a certain 
characteristic function v(C) which 
represents how prominent a par-
ticular node is to a given coali-
tion C. For more insight into the 
working of these games and their 
underlying mathematics, refer to 
[1, 22]. The game descriptions are 
as follows:

(i)	 Game 1: In this game, we consider all the permutations of all the nodes that are imme-
diately reachable, by one hop to the node ni ∈ N(G). Let each random permutation 
be denoted by Ρi, the neighbours of node ni, in the graph G(N, E) be denoted by 
ni.neighbours and the degree of node ni, be denoted by ni.degree. Algorithm 2 describes 
the procedure involved in SV calculation.

(ii)	 Game 2: In many real-life social scenarios, often taking into account nodes that are 
directly attached to each other is not enough. A rumour source, will more often than 
not, affects farther nodes.

	   For the purpose of taking relationships with farther nodes into account, and gener-
alising the game, we introduce a value, p, depicting the number of agents that the node 
is adjacent to in a coalition. In this game, a node is considered ‘influenced’ if at least 
p of its neighbours are influenced. We divide the analysis using this game into 2 parts, 
first, where the degree of the node is less than p and second where the degree is more 
than p. Algorithm 3 describes the procedure involved in SV calculation.

(iii)	 Game 3. In this game, we introduce the concept of weighted graph networks. This 
game is an extension of game 1; it uses the Dijkstra Algorithm to compute the distance 
between 2 nodes. The cutoff value, d, is the maximum permissible distance of a node 
from any member in a given coalition. The extended degree is defined as the size of 
the set of all nodes that are at-most distance ‘d’ away from the node ni. Algorithm 4 
describes the procedure involved for SV calculation.

(iv)	 Game 4. This is a generalization of game 3. Here we work with the assumption that a 
node closer to a coalition will have a greater effect on it than some other node farther 
away, even if both nodes satisfy the cut-off criteria as in game 3. For this purpose, we 
introduce a positive-valued decreasing function f(x). f(d) refers to the function which 
has a directly proportional effect on SV of the coalition which is ‘d’ units away from a 
node. The marginal contribution of each node ni through node ni ≠ nj, for each coalition 
Ci gives SV, as shown in Algorithm 5.

(v)	 Game 5. This is a generalization of game 2 in case of weighted networks. Here we 
have defined a cut-off value (ni) for each ni ∈ N(G). For every coalition C, d(nj, 
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C) = ∑nj∈ ni.neighbours W(ni, nj ), where W(ni, nj) represents the edge’s weight between 
nodes ni and nj (0, if no edge exists).

A node ni marginally contributes node nj ∈ ni. neighbours to the value of coalition Ci if 
and only if nj ∉ Ci and d(nj) - W(ni, nj ) ≤ W(Ci , nj ) < d(nj, C). Algorithm 6 describes the 
procedure for calculating the SVs.

Step 4: Estimating centrality measures	� After working on the five coalition games, we 
introduced multiple centrality measures to deter-
mine the network’s most powerful node with the 
highest scope or effect. To generate an elaborate 
comparison, various network centrality measures 
such as EC, BC, CC, have been used.

6 � Illustration with example

A synthetic network is constructed to illustrate the working of our proposed EDGly algo-
rithm, where nodes in communities are denoted with different colours and the edges repre-
sent the connection between communities.

A hypergraph, is formed in the first step as shown in Fig. 1. After partitioning the 
largest connected component into modules in Step 2, two modules can be identified 
and a new edge set is constructed to derive a clique from each module, A clique is a 
graph that has an edge connecting every pair of vertices—the new edges are shown as 
the dashed lines. A rewired network is obtained by combining the current edge set into 
the original network by reorienting the network in Step 3. Finally, ECG algorithm is 
used to partition the rewired network into communities.

After the community structure of the graph is obtained via ECG algorithm in Step 4, 
the game-theoretic Shapely centrality value is used to detect the most influential node 
from each community. Accumulation of these nodes from all communities in the graph 
gives the set of most influential nodes of the network.

Table 1 depicts the results of using EDGly on the synthetic dataset. Three commu-
nities are detected and further influential nodes are obtained by applying the Shapely 
centrality using Games 1–5. The three influential nodes obtained from game 1 and 4 are 
nodes 1, 9 and 12. Similarly, for game 2, the nodes are 3, 5 and 11. For game 3, the nodes 
are 1, 6 and 12 while for game 5, the nodes are 3, 9 and 11. We get the set of influential 
nodes by accumulating the most influential node from each community.

7 � Evaluations and results

Section  7.2 explains SIR Model [37] used to compare our model with the promi-
nent existing centrality algorithms to identify the network’s most powerful node. To 
evaluate and compare the performance of EDGly, we have used various benchmark 
network centrality measures such as EC, BC, CC; these centrality measures describe 
the influence of nodes on the basis of the structure of the network, and are helpful to 
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depict an accurate effect of the impact of community structure on the influence of the 
nodes in a graph. We have further used the SIR model. We have compared the algorti-
hms on the basis of their spreading abilities that can be measured by final infected 
scale F(tc) value, that is obtained from SIR simulation and widely used to measure the 
spreading ability of nodes.

To generate an elaborate comparison, Sect. 7.3 explains the evaluations performed. 
Sect. 7.1 shows the detailed comparison of results of our proposed EDGly algorithm 
with those of the Shapely centrality measure and of Shapely centrality with EdMot-
Louvain for community detection.

Fig. 1   Algorithmic flow for EDGly

Table 1   Result of EDGly on 
synthetic dataset

Community Games

G1 G2 G3 G4 G5
1 1 3 1 1 3
2 9 5 6 9 9
3 12 11 12 12 11
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7.1 � SIR model

According to this model, the dynamics of rumour spreading can be studied. There are three 
types of nodes in a typical rumour propagation model: (i) susceptible nodes capable of 
infection, (ii) infected nodes capable of further spreading the rumour, and iii) recovered 
nodes that are healed and no longer capable of infection. The most influential nodes identi-
fied by any of the algorithms are considered to be the initial sources of rumour propagation. 
These nodes are marked as infected and all the remaining nodes are marked as susceptible.

We used the USAIR97 dataset [6] to find the most significant airports in an air-travel 
network. We assumed the initially infected nodes to be most influential airport per graph 
community. As each edge holds the attribute for the number of flights from one airport to 
another, we were able to determine the coverage of all locations via the initial influential 
airport at the end of the simulation.

In the Facebook dataset [25], we aimed to depict a simulation of rumour spreading. The 
most influential nodes identified by any of the algorithms were considered to be the initial 
sources of rumour propagation. These nodes were marked as infected and all the remaining 
nodes were marked as susceptible. At the end of the simulation, we were able to under-
stand the influence of each person predicted by our algorithm. A similar understanding can 
be used for targeted advertising. The versatility of the model can be gauged by analyzing 
results on datasets from various domains.

Each iteration is considered to be one time-step, where each of the infected nodes 
can spread the rumour to its susceptible neighbours with a probability β. Also, each cur-
rently infected node becomes recovered with a probability γ, i.e., this node will not spread 
rumours in the further iterations.

7.2 � Evaluations

For the purpose of our experiments, we set β = 0.8 and γ = 0.2. The iterations go on till 
there are no more new infected nodes. The term R0 = β/ γ is known as the reproduction 
rate and is extremely crucial to the spreading process. If R0>1, then rumour will spread 
otherwise it will die out soon. Spreading potential is assessed at each time-step ‘t’ by the 
infected F(t) scale [11]. The value of F(t) is obtained by using the formula given by Eq. (6).

Here, ni(t) is the number of infected nodes at time t, nr(t) is the number of recovered 
nodes at time t, and n is the total number of nodes. Larger the value of F(t), more the influ-
encing capacity of our initial infected set.

After a few iterations, when the rumour spread starts to slow down, we reach a point 
of saturation where no more new nodes get infected. This is considered to be a stable state 
and is represented by F(tc), as shown in Eq. (7).

(6)F(t) =
ni(t) + nr(t)

n

(7)F
(
tc
)
=

nr(tc)

n

1636 Multimedia Tools and Applications (2022) 81:1625–1647



1 3

Table 2   Comparison of infected 
scale at stable state in various 
benchmark algorithms for 
USAIR97 dataset

Method Initial spreading nodes F(tc)

1 2 3 4 5 6 7

GAME 1
 EC 26 187 182 169 322 147 258 0.421
 BC 144 116 46 67 183 112 219 0.370
 CC 110 47 197 67 104 322 248 0.337
 SHAPELY 182 255 230 201 8 166 67 0.319
 SHAPELY 8 65 182 118 201 258 261 0.352

+EdMot
EDGly 195 71 100 152 261 118 35 0.472
GAME 2
 EC 26 187 182 169 322 147 258 0.334
 BC 144 116 46 67 183 112 219 0.391
 CC 110 47 197 67 104 322 248 0.397
 SHAPELY 166 152 182 230 7 147 112 0.346
 SHAPELY 4 74 140 93 312 302 272 0.415

+EdMot
EDGly 195 130 100 215 119 145 35 0.439
GAME 3
 EC 26 187 182 169 322 147 258 0.373
 BC 144 116 46 67 183 112 219 0.352
 CC 110 47 197 67 104 322 248 0.312
 SHAPELY 201 248 313 67 144 182 261 0.412
 SHAPELY 8 59 182 118 313 256 230 0.418

+EdMot
EDGly 195 130 100 256 67 118 35 0.454
GAME 4
 EC 26 187 182 169 322 147 258 0.388
 BC 144 116 46 67 183 112 219 0.388
 CC 110 47 197 67 104 322 248 0.406
 SHAPELY 152 201 255 230 8 67 166 0.382
 SHAPELY 8 65 182 118 201 258 261 0.313

+EdMot
EDGly 195 71 100 152 261 118 139 0.412
GAME 5
 EC 26 187 182 169 322 147 258 0.445
 BC 144 116 46 67 183 112 219 0.430
 CC 110 47 197 67 104 322 248 0.382
 SHAPELY 248 255 47 293 67 166 233 0.313
 SHAPELY 8 65 67 112 313 109 221 0.346

+EdMot
EDGly 195 71 100 248 261 118 35 0.490
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Table 3   Comparison of infected 
scale at stable state in various 
benchmark algorithms for 
Facebook dataset

Method Initial spreading nodes F(tc)

1 2 3 4 5 6 7

GAME 1
 EC 13 68 59 870 101 186 443 0.634
 BC 68 8 54 150 650 173 175 0.636
 CC 75 570 150 60 650 29 176 0.620
 SHAPELY 75 194 82 12 67 208 8 0.638
 SHAPELY 8 59 298 121 164 10 212 0.635

+EdMot
EDGly 164 7 19 75 10 13 59 0.648
GAME 2
 EC 13 68 59 870 101 186 443 0.599
 BC 68 8 54 150 650 173 175 0.615
 CC 75 570 150 60 650 29 176 0.641
 SHAPELY 164 75 82 12 91 18 19 0.625
 SHAPELY 67 13 384 331 405 500 212 0.604

+EdMot
EDGly 437 600 488 316 873 435 718 0.655
GAME 3
 EC 13 68 59 870 101 186 443 0.622
 BC 68 8 54 150 650 173 175 0.599
 CC 75 570 150 60 650 29 176 0.610
 SHAPELY 13 82 164 18 59 208 75 0.590
 SHAPELY 67 2 482 441 164 10 212 0.636

+EdMot
EDGly 151 117 225 149 453 22 91 0.650
GAME 4
 EC 13 68 59 870 101 186 443 0.586
 BC 68 8 54 150 650 173 175 0.627
 CC 75 570 150 60 650 29 176 0.645
 SHAPELY 75 67 82 12 194 164 208 0.619
 SHAPELY + EdMot 67 59 298 121 164 10 212 0.635

EDGly 164 7 19 75 10 13 91 0.656
GAME 5
 EC 13 68 59 870 101 186 443 0.647
 BC 68 8 54 150 650 173 175 0.641
 CC 75 570 150 60 650 29 176 0.599
 SHAPELY 13 18 82 290 59 75 164 0.647
 SHAPELY 67 75 107 650 164 247 212 0.604

+EdMot
EDGly 707 174 19 17 841 13 356 0.666
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7.3 � Results

Tables 2 and 3 display the F(tc) results obtained in the SIR simulations for each of the five 
coalition games. Out of the seven communities identified, the most influential node from 
each community is identified via the EDGly algorithm. The final infected scale, produced 
by these spreading nodes are then compared for each algorithm. It can be seen that the 

Fig. 2   Spreading speeds and influence of initially infected nodes of the various methods employed for 
USAIR97 dataset
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nodes identified by the EDGly algorithm constantly result in a higher final infected scale 
F(tc) and hence a better coverage of the network.

It was observed that the change in the number of communities identified in the graph, 
does not show significant variation in the infected scale, hence we have picked the number 
of communities as 7.

In Figs. 2 and 3, each graph shows the experimental results of the infected scales by 
time, F(t)/t received by the SIR Model, on the five different coalition games, using 
USAIR97 and Facebook datasets respectively. The results are obtained by taking the aver-
age of the results of 100 independent runs of SIR simulations. Larger F(t) implies a 

Fig. 3   Spreading speeds and influence of initially infected nodes of the various methods employed for Face-
book dataset
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larger scale of control in a network with the same spreading time t, which in turn shows 
a faster spreading rate. It can be seen that the nodes identified by the EDGly algorithm 
result in a significantly higher final infected scale F(tc)—depicted by navy blue—and thus, 
EDGly performs significantly better than the centrality measures EC, BC and CC, marked 
by colours—brown, light blue and sea green.

Further, it is seen that EDGly also consistently performs better than other algorithms. 
The addition of community detection using the EdMot—Louvain algorithm results in a 
significant jump in the infected scale, further the replacement of Louvain, by the ECG 
algorithm drastically improves the model. Thus, it can be seen from the figures that EDGly 
spreads faster than other benchmark methods in all games in almost all scenarios and over 
varied data.

8 � Conclusion

We aimed at organizing the nodes into community structures and employing SV-based 
centrality algorithm for finding the most influential nodes from each community. EdMot 
approach, in tandem with ECG algorithm, was used to detect communities in a graph 
because of its unique quality of considering not only lower-order structures but also 
higher-order community structures. Finally, the SIR model was used to evaluate the 
capability and scope of spreading ability of each influential node identified during the 
process.

To evaluate our algorithm on various real-world scenarios, we examined five differ-
ent game situations, thereby taking into consideration various approaches to determine 
the most influential nodes in a given dataset. This helped us to gain a deeper and holistic 
understanding of the game-theoretical algorithm.

It is observed that our proposed algorithm, EDGly algorithm, not only compares well 
to other commonly-accepted centrality measures, but also drastically improves results 
by the addition of the task of community detection, to the idea of using coalitional game 
theory. This is in line with our intuitive prediction, that the application of solely using 
coalitional game theory on an interconnected network, where each node acts as a player, 
and maximizes his cumulative yield over all permutations, creates a certain level of 
restriction in all the possible permutations.

With the application of community detection, we were able to analyze the network 
on a more individualistic level along with combining the positive effects of coalitions in 
game theory. This approach thus creates a fine balance between the two approaches and 
performs better than state of the art approaches.

The model has shown significant success as the most prominent nodes are successfully 
identified for both the datasets used. We plan to extend the idea of finding the most power-
ful node in social networks to numerous other similar applications for future work, such as 
the Internet, or urban networks, and involving a given node in disease dynamics. This will 
help us understand our algorithm’s efficiency and accuracy in multiple applications in the 
real world.

Further, various optimisation techniques on the SV algorithm, for example, Fuzzy Logic 
will be implemented for mining much larger social networks and to improve accuracy and 
other relevant metrics of the project. Fuzzy-based implementation will solve various com-
plexities and limitations that we’re currently encountering.
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