
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11437-3

1 3

1188: ARTIFICIAL INTELLIGENCE FOR PHYSICAL AGENTS

Deep reinforcement learning based control for Autonomous
Vehicles in CARLA

Óscar Pérez‑Gil1  · Rafael Barea1 · Elena López‑Guillén1 · Luis M. Bergasa1 ·
Carlos Gómez‑Huélamo1 · Rodrigo Gutiérrez1 · Alejandro Díaz‑Díaz1

Received: 29 January 2021 / Revised: 13 July 2021 / Accepted: 10 August 2021

© The Author(s) 2021

Abstract
Nowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields
of technology, and Autonomous Vehicles (AV) research is one more of them. This paper
proposes the using of algorithms based on Deep Learning (DL) in the control layer of an
autonomous vehicle. More specifically, Deep Reinforcement Learning (DRL) algorithms
such as Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) are
implemented in order to compare results between them. The aim of this work is to obtain a
trained model, applying a DRL algorithm, able of sending control commands to the vehi-
cle to navigate properly and efficiently following a determined route. In addition, for each
of the algorithms, several agents are presented as a solution, so that each of these agents
uses different data sources to achieve the vehicle control commands. For this purpose, an
open-source simulator such as CARLA is used, providing to the system with the ability
to perform a multitude of tests without any risk into an hyper-realistic urban simulation
environment, something that is unthinkable in the real world. The results obtained show
that both DQN and DDPG reach the goal, but DDPG obtains a better performance. DDPG
perfoms trajectories very similar to classic controller as LQR. In both cases RMSE is lower
than 0.1m following trajectories with a range 180-700m. To conclude, some conclusions
and future works are commented.

Keywords  Autonomous Vehicles · Deep Reinforcement Learning · DQN · DDPG ·
CARLA Simulator

1  Introduction

In recent years, autonomous driving plays a pivotal role to solve traffic and transportation prob-
lems in urban areas (traffic congestions, accidents, etc) and it is going to change the way of
travelling in our world in the future [5]. In the last decade, various challenges, such as the well-
known DARPA Urban Challenge and the Intelligent Vehicle Future Challenge (IVFC) have

 *	 Óscar Pérez‑Gil
	 o.perezg@edu.uah.es

Extended author information available on the last page of the article

Published online: 13 January 2022

Multimedia Tools and Applications (2022) 81:3553–3576

/

http://orcid.org/0000-0001-6350-3076
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11437-3&domain=pdf

1 3

proven that autonomous driving can be a reality in the near future. The teams participating in
these events have demonstrated numerous technical frameworks for autonomous driving [36,
43, 44, 51]. Nowadays, most self-driving vehicles are geared up with multiple high-precision
sensors such as LIDAR and cameras. LIDAR-based detection methods provide accurate depth
information and obtain robust results in location, object detection and scene understanding [26]
while camera-based methods provide much more detailed semantic information [2].

Considering a typical AV architecture, the control layer consists of a set of processes that
implements the vehicle control and navigation functionality. A well defined control layer
makes the vehicle robust regardless the varying environment situations, such as the traffic par-
ticipants, weather conditions or traffic scenario, on the premise of guarantying vehicle stability
and covering the route provided by any global planner, assuming that the control layer is based
on a previous mapping and path planning layer that loads the map and planes the route. In that
sense, a large number of classic controllers as [3, 30, 38] have been successfully implemented
in AV architectures.

In this context, AI is expanding through AV architecture, dealing with different processes
such as detection, Multi-Object Tracking (MOT) and environment prediction, or evaluating the
current situation of the ego-vehicle to conduct the safest decision, for example making use of
DRL algorithms for behavioural driving [31]. DRL based algorithms have been recently used
to solve Markov Decision Processes (MDPs), where the scope of the algorithm is to calculate
the optimal policy of an agent to choose actions in an environment with the goal of maximize
a reward function, obtaining quite successful results in fields like solving computer games [42]
or simple decision-making system [35]. In terms of autonomous driving, DRL approaches have
been developed to learn how to use the AV sensor suite on-board the vehicle [23, 28].

In this paper, we study the inclusion of AI techniques into the control layer, referred to clas-
sic AV control architecture, through implementation of a control based on DRL algorithms for
autonomous vehicle navigation. More specifically, two different approaches will be developed,
the Deep Q-Network (DQN) and the Deep Deterministic Policy Gradient (DDPG). Figure 1
shows the framework overview that has been developed in this work. The goal is to follow a
predetermined route as fast as possible avoiding collisions and road departures in a dynamic
urban environment in simulation. On the one hand, the discrete nature of DQN is not well
studied ongoing problem like self-driving, due to the infinite possibles of movement the car
in each step. Studying DQN and the obtained results, we will analyze the limitations of this
method for this navigation purpose. On the other hand, the DDPG algorithm has a continu-
ous nature that fits better to autonomous driving task. Both algorithms will be implemented
in order to compare them, and then decide which could be transferred to a real vehicle. As a
previous design step all algorithms will be tested in simulation by using CARLA Simulator
[14]. In terms of autonomous driving, DRL approaches have been developed to learn how to
use the AV sensor suite on-board the vehicle [23, 28]. The analysis of the DQN algorithm has
been previously published by the authors in WAF2020 workshop [37]. This work studies the
DDPG algorithm, compare results between the two methods in simulation, and prepare the
best option for a real application.

2 � Related works

As mentioned in the previous section, several approaches for the control layer of an
AV have been developed, which are commonly classified into classic controller and AI
based controllers. The basics of control systems state that the transfer functions decides

3554 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

the relationship between the outputs and the inputs given the plant. While classic con-
trollers use the system model to define their input-output relations, AI based control-
lers may or may not use the system model and rather manage the vehicle based on the
experience they have with the system while training, as occur with Imitation Learning,
or possible enhance it in real-time as well, as Reinforcement Learning. Then, the dif-
ference in terms of applicability between classic and AI based controllers is actually
the difference between deterministic and stochastic behaviour. While pure conventional
control techniques offer a deterministic behaviour, AI based controllers have stochastic
behaviour due to the fact that they learn from a certain set of features. So the learning
process can be poor depending on a lot of intrinsic and extrinsic factors, such as the
model architecture, the data quality or the corresponding hyperparameters. Hereafter
we present some of the most relevant algorithms used in the control layer.

2.1 � Classic controllers

Classic autonomous driving systems usually use advanced sensor for environment per-
ception and complex control algorithms for safety navigation in arbitrarily challenging

Fig. 1   Framework overview

3555Multimedia Tools and Applications (2022) 81:3553–3576

1 3

scenarios. Typically, these frameworks use a modular architecture where individual
modules process information asynchronously. The perception layer captures information
from the surroundings using different sensors such cameras, LiDAR, RADAR, GNSS,
IMU and so on. Regarding the control layer, some of most used control methods are the
PID control method [6, 24], the Model Predictive Control algorithm [25], the Fuzzy
Control method [9, 21], the Model-Reference Adaptive method [4, 46], the Fractional
Order control method [52], the Pure-Pursuit (PP) path tracking control method [11] and
the Linear-Quadratic Regulator (LQR) algorithm [20].

However, despite their good performance, these controllers are often environment
dependent, so their corresponding hyperparameters must be properly fine-tuned for each
environment in order to obtain the expected behaviour, which is not a trivial task to do.

2.2 � Imitation learning

This approach tries to learn the optimal policy by following and imitating an expert
system decisions. In that sense, an expert system (typically a human) provides a set of
driving data [7, 10], which is used to train the driving policy (agent) through supervised
learning. The main advantage of this method is its simplicity, since it achieves very
good results in end-to-end applications (navigating from the current position to a certain
goal as fast as possible avoiding collisions and road departures in an arbitrarily com-
plex dynamic environment). Nevertheless, its main drawback is the difficulty of imitat-
ing every potential driving scene being unable to reproduce behaviors that have not been
learnt. This drawback causes this approach can be dangerous in some real driving situa-
tions that have not been previously observed.

2.3 � Deep reinforcement learning

While Reinforcement learning (RL) algorithms are dynamically learning with a trial
and error method to maximize the outcome, being rewarded for a correct prediction and
penalized for incorrect predictions, and successfully tested for solving Markov Decision
Problems (MDPs). However, as illustrated above, it can be overwhelming for the algo-
rithm to learn from all states and determine the reward path. Then, DRL based algo-
rithms replaces tabular methods of estimating state values (need to store all possible
state and value pairs) with a function approximation (the Deep prefix comes here) that
enables the agent, in this case the ego-vehicle, to generalize the value of states it has
never seen before, or has partial by seen, by using the values of similar states. Regarding
this, the combination of Deep Learning techniques and Reinforcement Learning algo-
rithms have demonstrated its potential solving some of the most challenging tasks of
autonomous driving, such as decision making and planning [49]. Deep Reinforcement
Learning (DRL) algorithms include: Deep Q-learning Network (DQN) [17, 33], Double-
DQN, actor-critic (A2C, A3C) [27], Deep Deterministic Policy Gradient (DDPG)
[45, 47] and Twin Delayed DDPG (TD3) [50]. Our work is focused in DQN and DDPG
algorithms, which are explained in the following section.

3556 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

3 � Deep reinforcement learning algorithms

Deep Reinforcement Learning combines artificial neural networks with a reinforcement
learning architecture that enables software-defined agents to learn the best actions possible
in virtual environments in order to attain their own goals. That is, it unites function approx-
imation and target optimization, mapping state-action pairs to expected rewards. This algo-
rithms try to seem the human behaviour at learning time with his action-reward structure,
rewarding the agent when the chosen action is good, and penalizing it in opposite case.
This section is needed in order to understand how the algorithms used in our approaches
work, as well as to appreciate the existing differences between them. Deep Q-Network
algorithm must be explained from Q-learning and Deep Q-learning theory, while Deep
Deterministic Policy Gradient is explained later based on the previous DQN explanation.

3.1 � Deep Q‑Network

Recently, a great amount of reinforcement learning algorithms have been developed to
solve MDP [23, 33]. MDP is defined by a tuple (S, A, P, R), where S is the set of states, A is
the set of actions, P ∶ S × A → P(S) is the Markov transition kernel and R ∶ S × A → P(ℝ)
is the reward distribution. So taking any action a ∈ A at any state s ∈ S , P(⋅|s, a) defines the
probability of the next state and R(⋅|s, a) is the reward distribution. A policy � ∶ S → P(A)
maps any state s ∈ S to a probability distribution �(⋅|s) over A.

3.1.1 � Q‑Learning

Q-Learning algorithm [17] creates an exact matrix for the agent to maximize its reward in
the long run. This approach is only practical for restricted environment, with limited space
for observation, due to an increase in number of states or actions causes a wrong algorithm
behaviour. Q-Learning is an off-policy, model-free RL based on the Bellman Equation,
where v refers to its optimal value:

E refers to the expectation, while � refers to the discount factor for the ahead rewards, and
rewriting it in the form of Q-value:

Where the optimal Q-value Q∗ can be expressed as:

The goal of Q-Learning is to maximize the Q-value trough iteration policy, which tuns a
loop between policy evaluation and policy improvement. Policy evaluation estimates the
value of function V with the greedy policy, which has been obtained from the last policy
improvement. On the other hand, policy improvement updates the policy with the action
that maximize V function for each state. Value iteration updates the function V based on
the Optimal Bellman Equation as follows:

(1)v(s) = E[Rt+1 + �v(St+1)|St = s]

(2)Q�(s, a) = E[rt+1 + �rt+2 + �2rt+3 + ...|s, a] = Es� [r + �Q�(s�, a�)|s, a]

(3)Q∗(s, a) = Es� [r + �max
a�

Q∗(s�, a�)|s, a]

3557Multimedia Tools and Applications (2022) 81:3553–3576

1 3

When iteration converges, the optimal policy is obtained by applying an argument of max
function for all the states.

As result, the update equation is replaced by the following formula, where � refers to the
learning rate:

3.1.2 � Deep Q‑Learning

As we indicated above, Q-learning lacks of generality when space of observation increases.
Imagine one situation with 10 states and 10 possible actions, we have a 10x10 matrix, but
if the number of states increases to 1000, the Q-matrix dramatically increases and it is
difficult to manages the in a manual way. To solve this issue, Deep Q-Learning [17, 41]
manage of the two-dimensional array by introducing a Neural Network. So, DQN estimates
Q-values by using it in a learning process, where the state is the input of the Net, and the
output is the corresponding Q-value for each action. The difference between D-Learning
and Deep Q-Learning lies in the target equation y:

Where the � stands for the parameters in the Neural Network.

3.2 � Deep deterministic policy gradient

Deep Deterministic Policy Gradient (DDPG) [15, 22, 32] is a DRL algorithm that concur-
rently learns a Q-function and a policy. It uses off-policy data and the Bellman equation to
learn the Q-function, where the Q-function to learn is the policy.

The algorithm that learns and take the decisions is known as the agent, which is inter-
acting with the environment. The agent is continuously choosing actions ai from an Action
space A = ℝ

N and a State space st+1 , in such a way that a reward r(st, at) is returned by the
environment. The agent behaviour is governed by a policy ( � ) which plays as a state map
in the action probabilistic distribution � ∶ S → P(A) in a stochastic environment E.

The two main components in the policy gradient are the policy model and the value
function. It makes sense to learn the value function and the policy model simultaneously,
since the value function can assist the policy update by reducing the gradient variance in
vanilla policy gradients, what is actually what the Actor-Critic method does. This method
consists of two models (Critic and Actor), which may optionally share some parameters:
While the Critic updates the value function parameters in function of the action-value, the
Actor updates the policy parameters � according to the suggestions of the Critic.

The output of a state in the State space is defined as the sum of all future rewards
discounted:

(4)v∗(s) = max
a

E[Rt+1 + �v∗(St+1)|St = s,At = a] = max
a

∑
a� ,r

p(s�, r|s, a)[r + �v∗(s
�)]

(5)�(s) = max
a

∑
s�,r

p(s�, r|s, a)[r + �V(s�)]

(6)Q(st, at) = Q(st, at) + �[rt+1 + � max
a

Q(st+1, at) − Q(st, at)]

(7)yj = rj + � max
a

Q(sj+1, a
�;�−)

3558 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

Where � ∈ [0, 1] is a discount factor. Defining the action-value function as the expected
value when an action at is taken in the state st , the Q-function is used in order to follow the
policy � in the following way:

Besides this, the Bellman equation is used with a deterministic policy �:

Using Eq. 12 to update the Q-function defined in Eq. 9, we define yt as the discounted
reward for the current action:

Then, we consider function approximators parameterized by �Q , which we optimize by
minimizing the loss:

Where � represents any stochastic policy and p� the discounted distribution of visitation
for an action probabilistic distribution � . Note that since yt also depends on �Q , this is typi-
cally ignored.

Finally, through these updates the function Q(s, a) of the Critic is found. The updates
of the Actor are based on following the gradient of the expected value of the initial dis-
tribution J according to the parameters of the neural network of the Actor, which repre-
sents the gradient of the policy performance.

Nevertheless, despite the fact that DRL algorithms assume that independent samples follow
a similar distribution, this is not true in a context where there exists an environment inter-
action, where following a particular state is a direct consequence of the current state and
the executed action. In that sense, the DQN algorithm solves this problem by adding the
experience replay method also implemented in the DDPG method. The experience replay
method consists in keeping a buffer of past transitions available to update the algorithm
with them. This technique not only boosts the learning process and increases the efficiency
of the exploration [29, 34], but also has proven to be vital for the stability of the learning
process [12]. Updating the agent using past iterations allows to evaluate a single iteration
several times with different policies, increasing the efficiency of the initial exploration.

Moreover, one of the most important DQN contributions is using target networks that
makes the Critic update more stable, since in the absence of target networks, an update used
to increase the value of Q(st, at) and Q(st+1, a) , creates a bias that can lead to oscillations

(8)
T∑
i=t

� (i−t)r(si, ai)

(9)Q�(st, at) = Eri≥t,s≥t∼E,ai≥t∼�
[Rt|st, at]

(10)A = Ert ,st+1∼E
[r(st, at)

(11)B = �Q�(st+1,�(St + 1))]

(12)Q�(st, at) = A + B

(13)yt = r(st, at) + �Q(st+1,�(st+1|�Q))

(14)L(�Q) = Est∼�
� ,at∼�,rt∼E

[(Q(st, at|�Q) − yt)
2]

(15)∇�QJ ≈ Est∼�
� [∇�QQ(s, a|�Q)|s=st ,a=�(st|��)]

3559Multimedia Tools and Applications (2022) 81:3553–3576

1 3

or even divergence in the policy value. To deal with this problem, we modify the DDPG
features in order to emulate this Actor-Critic structure. Our modified version uses a soft
update with 𝜏 << 1 parameter to update the policy parameters, as shown in Eq. 16.

4 � Framework overview

Nowadays, hyper-realistic virtual testing is increasingly becoming one of the most impor-
tant concepts to build safe AV technology. Using photo-realistic simulation (virtual devel-
opment and validation testing) and an appropriate design of the driving scenarios are the
current keys to build safe and robust AV. Regarding Deep Learning based algorithms (found
in any layer of the navigation architecture), the complexity of urban environments requires
that these algorithms were tested in countless environments and traffic scenarios. This issue
causes that the cost and development time are exponentially increased using the physical
approach. For this reason, a simulator such as CARLA is used, which is currently one of the
most powerful and promising simulators for developing and testing AV technology.

CARLA Simulator (Car Learning to Act) [14] is an open-source simulator, based on
Unreal Engine, that provides quite interesting features to develop and test self-driving
architectures. However, regarding this work focused on the control layer, we highlight the
following: 1. It provides a powerful PythonAPI, that allows the user to control all aspects
related to the simulation, including weathers, pedestrian behaviours, sensors and traffic
generation, 2. It offers fast simulation for planning and control, where rendering is disabled
to offer a fast execution of road behaviors and traffic simulation when graphics are not
required, 3. Different traffic scenarios simulation can be built on Scenario Runner and 4.
ROS integration is possible through the CARLA ROS Bridge.

This simulator is grounded on Unreal Engine (UE4) [40], one of the most opened
and advanced real-time 3D creation tools nowadays, and uses OpenDrive standard [16]
to define the roads and urban settings, allowing CARLA to have an incredible realis-
tic appearance. CARLA has a double-head construction. On the one hand, the server is
responsible of everything related with the simulation itself, such as physics computation.
This server is recommended to run in a dedicated GPU in order to get the best possibles
results. On the other hand, the client-side controls the logic of actors on scene and settings
world conditions.

The simulator plays a crucial role in this paper for several reasons (see Fig. 1. First of
all, it allows performing as many tests as required, avoiding putting lives or goods at risk as
well as decreasing the development cost and the implementation time. It would be impos-
sible to carry out a project of this nature (training a DRL algorithm for AV navigation pur-
poses in arbitrarily complex scenarios) directly in a real environment, as it would represent
a risk to both the ego-vehicle and its surrounding environment, specially at the beginning
due to the randomness of the first actions taken by the algorithm. Second, in the same way
that there exist tons of datasets related to the perception layer of the vehicle (such as seg-
mentation segmentation [39] or object detection and tracking [19]), in order to validate the
effectiveness of a control algorithm, it is mandatory to compare it against the ideal route
the vehicle should perform. In terms of the control layer, CARLA provides the user the
actual odometry of the vehicle as well as the groundtruth of the route, what makes easier to
evaluate the performance of the proposals.

(16)�� ← ��(1 − �)��

3560 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

4.1 � Method

Based on the previous explanation, AV navigation tasks can be modelled as Markov Deci-
sion Processes (MDP). Our approach aims to develop an agent that generates autonomous
vehicle control based on Deep Reinforcement Learning algorithm that solves a MDP. The
following sections show our method applied to the basis MDP theory.

4.1.1 � MDP formulation

Considering the generic MDP explanation in previous section, we use a MDP to solve the
autonomous navigation task, which consists of an agent that observes the state (st) of the
ego-vehicle (environment state) and generates an action (at) . This causes the vehicle to
move to a new state (st+1) producing a reward (rt = R(st, at)) based on the new observa-
tion. A Markov decision process is a 4-tuple (S,A,Pa,Ra) where the goal is to find a good
“policy”, that is, a function �(s) that the decision maker will choose when is in state st.

a)	 State space (S): This term refers the information which is received from the environment
in each algorithm step. In our case, we model st as a tuple st = (vft, dft) where vft is the
visual features vector associated to the image It or a set of visual features extracted from
the image, typically a set of waypoints wt obtained using a model-based path planner
vft = f (It,wt) . dft is the driving features vector consisting of an estimation of vehicle´s
speed vt , distance to the center of the lane dt and angle between the vehicle and the centre
of the lane �t , dft = (vt, dt,�t) . Figure 2 shows the state space where the waypoints are
published by CARLA from the planning module.

b)	 Action space (A): To interact with the vehicle available in the simulator, the commands
for throttle, steering and brake must be provided in a continuous way. Throttle and brake
range is [0,1] and steering range is [-1,1]. Therefore, at each step the DRL agent must
publish an action (at) = (acct, steert, braket) with the commands into their ranges.

c)	 State transition function ( Pa ) is the probability that action a in state s at time t will
lead to state st+1 at time t+1. Pa = Pr(st+1|st, at).

d)	 Reward function R(st+1, st, at) : This function generates the immediate reward of trans-
lating the agent from st to st+1 . The goal in a Markov decision process is to find a good
“policy” �(s) = at that will choose an action given a state. This function will maximize
the expectation of cumulative future rewards and particularising the Eq. 8, we obtain:

4.2 � Deep Q‑Network Architecture

We have developed various agents that cover a wide variety of model architectures for the
Deep Q-Network agents. Models will be first developed in simulation for safety reasons.
Therefore, the agent will interact with CARLA and the code will be programmed in Python
based on several open-source RL frameworks [49] (see Fig. 3) .

Following the previous formulation of the MDP, it is necessary to establish the general
framework of what the developed DQN will be, clearly defining the actions and the reward

(17)E =

∞∑
t=0

� tR(st, st+1)

3561Multimedia Tools and Applications (2022) 81:3553–3576

1 3

that will come into play with the algorithm. The state vector depends on the data used as input
for the DRL algorithm, which will be explained in later sections.

a)	 Reward function. The proposed architecture obtains a driving features vector
dft = (vt, dt,�t) from the simulator. This vector is composed of the velocity of the vehi-
cle in the direction of its heading vt , the distance to the center of the lane dt and the
angle regarding the lane direction �t . Considering that the objective is to go as fast as
possible through the center of the lane without leaving the lane and avoiding collisions,
the reward function must reward the longitudinal velocity and penalize the transverse
velocity and divergence from the center of the lane. This approach is similar to the pro-
posal made in [18] where TORCS (The Open Racing Car Simulator) is used. Variables
involve in reward function are also shown in Fig. 2. Hereafter, we present the specific
values assigned to R in a deterministic way.

(18)R = −200 if collision or lane change or roadway departure

(19)R =
∑
t

|vtcos�t| − |vtsin�t| − |vt||dt| if car in lane

Fig. 2   State space definition

3562 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

b)	 Control commands (Actions). CARLA needs control commands for steering [-1,1] and
throttle [0,1]. Brake has not been implemented in this first version because the environ-
ment is free of obstacles and the regenerative braking of the vehicle is enough to stop the
vehicle. The DQN policy allows generating discrete actions, so it is necessary to simplify
the continuous control of actions to a discrete control. Taking this into account, the
number of control commands has been simplified to a set of 27 discrete driving actions,
discretizing steering angle and throttle position in an uniform way. Table 1 shows the set
of control commands where there are 9 steering wheel positions and 3 throttle position.

4.3 � Deep deterministic policy gradient architecture

This section presents the basis structure of the DDPG architecture based on the previous algo-
rithm explanation. This algorithm, as mentioned before, has two parts within it, the Actor and
the Critic. This will be noticeable in the Fig. 4

The system architecture based on DDPG algorithm, as can be seen, only change the Agent
module in relation with DQN architecture. But additional modifications have been needed to
assemble the whole system. In the same way as for the DQN, different models have been made
to carry out a comparison among them. It has been done in the same way, by modifying the
Agent and the data processing module to adapt the input data to the selected model in each case.
Actions, reward and states should be established as well. For both the reward and the states, what
was explained for the DQN algorithm can be applied, but the actions suffer an important change.

(20)R = 100 if goal position is reached

Fig. 3   DQN-based Deep Reinforcement Learning architecture

Table 1   Policy network. 27
classes

Control commands

Classes Steering Throttle
27 -1,-0.75,...0.75,1 0,0.5,1

3563Multimedia Tools and Applications (2022) 81:3553–3576

1 3

a)	 Control commands (Actions). As difference with to DQN, this algorithm has a continu-
ous character, so the actions do not have to be discrete in this case. Considering that the
neural network outputs of the DRL algorithm is in the range [-1, 1] and that steering and
throttle are in the range [-1, 1] and [0, 1] respectively, these outputs are directly mapped
with the control commands. For the case of the throttle, an adjustment must be made to
the ranges to match the ranges required by the simulator, but this is trivial.

5 � Architecture proposals (agents)

This section describes the main work in this DRL project, the developed models for both
Deep Q-Network and Deep Deterministic Policy Gradient will be explained in detail. Each
model in this section has been implemented for both algorithms in the same way, so in
following figures, a box representing both algorithms will be set and an internal switching
will be done between them. For any of the two proposals, only the number of inputs of the
first layer of the Net should be changed, which will depend on the data type taken as input
from that network.

5.1 � DRL‑flatten‑image agent

This agent uses a B/W segmented image of the road over the whole route that the vehicle
must drive. This proposed agent reshapes the B/W frontal image, taken from the vehicle,
from 640x480 pixels to 11x11, reducing the amount of data from 300k to 121. Once the
image is resized, data is flatten and the state vector is formed with those 121 vector com-
ponents. This vector is concatenated with the driving features vector and introduced to a
really simple 2 Fully-Connected Layers network. (see Fig. 5).

(21)S = ([Pt0,Pt1,Pt2...Pt120],�t, dt)

Fig. 4   DDPG-based Deep Reinforcement Learning architecture

3564 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

5.2 � DRL‑Carla‑Waypoints agent

In this case, no image will be used to obtain the path to be followed by the agent. The
waypoints will be received directly from the CARLA simulator, thanks to the available
PythonAPI, (see Fig. 6). The process of obtaining these waypoints starts by calling the
global planner (as explained above). This planner is given two points, initial and final,
of a trajectory inside the map, and it returns a list of waypoints that links both points.
The number of elements in this point list depends basically on how far apart the two
points are from each other and how far apart the waypoints were defined at the begin-
ning of the program.

These points are diretly referenced to the map, so passing these points to the DRL
algorithm will be wrong. For example, for two straight road sections of the map,

Fig. 5   DRL-Flatten-Image Agent

Fig. 6   DRL-Carla-Waypoints Agent

3565Multimedia Tools and Applications (2022) 81:3553–3576

1 3

different waypoints will be set, but the vehicle should acting the same way for both
trajectories, so it is impossible to obtain a good model with this approach. Waypoints
are globally referenced to the point (0, 0, 0) on CARLA’s map. Therefore, they must be
referenced to the ego_vehicle position. To do that, we apply the following transforma-
tion (rotation and translation) matrix and this local points are introduced as State vector
S, where [Xc, Yc, Zc] represents the current vehicle global position, and �c the current
heading or yaw angle.

A question to be solved is the size of the waypoints list taken into account that actions to be
taken depend on car position and orientation and the near ahead section where the vehicle
is driving. In an experimental way we fix a frame of 15 points. This list updates its content
each step, and starts with the closest waypoint to the vehicle’s position, and is filled with
the next 14 waypoints, working such as a FIFO (First In, First Out) along the episode. Like-
wise, for the image waypoints-based agent model, the dt and �t are added to form the state
vector which is introduced directly into a double Fully-Connected network.

Each component of this waypoint list forming the State vector has coordinates (x, y).
Although both options are provided in the program, the models are trained by entering only
the x-coordinate of the points. This x-coordinate provides information on the lateral posi-
tion of the waypoints with respect to the vehicle within the lane.

5.3 � DRL‑CNN agent

An step forward is trying to obtain road features from the ahead camera vehicle through a
CNN as shown in Fig. 7, and from these features to determine the action to be taken by the
vehicle in an end-to-end process and in online mode. To do this, two parts are proposed
to set the State vector S, the first part extracts the road features through the CNN, and the
second part is form by the same two Fully-Connected layers used in the previous cases.

(22)M =

⎡
⎢⎢⎢⎣

cos �c − sin�c 0 Xc

sin �c cos�c 0 Yc
0 0 1 Zc
0 0 1 1

⎤⎥⎥⎥⎦

(23)S = ([wpt0...wpt14],�t, dt)

Fig. 7   DRL-CNN Agent

3566 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

An RGB image as shown in Fig. 7, where the drivable area is highlighted, in the shape of
[640x480] is used as input for CNN stage.

The CNN consist of three convolutional layers with 64 filters of size [7x7], [5x5] and
[3x3] respectively, using all of them RELU as activation function and followed by an aver-
age polling layer. The output of this CNN is flattened and concatenated with driving fea-
tures, and the whole state vector is used to fed 2-Fully-Connected layers which decided the
final action to be taken.

Obviously, this agent model is more complex than the others, due to the nature of the
state vector. The system will have much more difficulty to learn using a state vector as the
one being considered, formed both by the road features extracted by the CNN and by the
driving features.

The total volume of data handle for this approach is quite a bit higher than for previous
cases. For an image of 640x480 pixels, there would be 307200 data, which is 2500 times
larger compared to the flatten-image-based model . This will lead to quite a few problems
in the training process, which will be discussed later.

5.4 � DRL‑Pre‑CNN agent

This case is quite similar to the previous one, except that now, the CNN is trained previ-
ously. This approach has been carried out because the model works well when waypoints
are provided and much worse when features must be extracted, so the two options are
mixed in this model. The option of training a network offline is considered, using a data-
base of images and waypoints obtained directly from CARLA, in order to predict the way-
points from these images. This way, once the network has been trained, it will only have
to be loaded into the main architecture and let it predict the waypoints at each step of the
process, and enter these waypoints in the same way that in the previous cases to predict the
action to be taken by the vehicle. Being concrete, once the Net is trained, it only will need
the input image to obtain the corresponding waypoints. The difference with the previous
CNN agent is observed in Fig. 8.

The network used to obtain the waypoints from the image is based on the developed by
the group on a previous project [13]. Starting from this network, some substantial modi-
fications have been carried out, such as the batch size, the size of intermediate layers, the

(24)S = ([It],�t, dt)

Fig. 8   DRL-Pre-CNN Agent

3567Multimedia Tools and Applications (2022) 81:3553–3576

1 3

elimination of some of the layers and the fitting of the sizes according to the images used
and the outputs required.

In a broad sense an image is being used to predict the action to be taken, and the state
vector could be:

In reality the waypoints obtained from the pre-trained network are being used directly to
feed the 2 Fully-Connected layers of the DRL so the state vector actually used, concatenat-
ing these points with the driving features, is as follows:

6 � Results

The proposed approaches must be validated both individually and comparing among them.
To carry out this validation process, a metric is defined in order to compare the error of
each algorithm with respect to a ground truth provided by CARLA Simulator. In this way,
the performance of the different approaches is compared following the same criteria.

Achieving a well-trained model from each proposed architecture for both algorithms
(DQN, DDPG) is necessary, which are firstly obtained in the training stage. To achieve the
trained models, a simple yet accurate training workflow is applied as follows:

1.	 Launch the simulator and iterate over M episodes and T steps for each episode.
2.	 At the beginning of the episode, call the A* based global planner to obtain the complete

route from two random points on the map. Therefore, the training uses a different route
in each episode.

3.	 At each episode, take an observation corresponding to the State S by concatenat-
ing the architecture-specific data entry D and the driving features vector. The State
S = ([D],�t, dt) is introduced to the DRL network which predicts the actions as output
A = (throttle, steering) . Then, the predicted actions are sent to the simulator and the
reward is calculated in function of this actuation.

4.	 The lane_invasor and collision_sensor are checked in each step. If any of these sensors
are activated, the episode ends, and a new one is reset. This reset is done by relocating
the vehicle in the centre of the lane, well oriented, and getting ready for the next route.
If these sensors are not activated, the training process iterates over another new step.

5.	 The training stage finishes when the maximum number of episodes is reached.

Once the trained model are obtained, the error metric is applied. On the one hand, the
training metrics are evaluated from the training episodes number needed to achieve the
model. On the other hand, the error metric is carried out comparing the driven trajec-
tories obtained by the trained models and an ideal route built by interpolating the way-
points provided by the CARLA’s A* based global planner. In addition, a classic method
based on an LQR controller [20] is also evaluated using this method, thus being able to
compare the AI-based controllers with one based on classic methodologies.

Both training stage and experimental results have been developed using a desktop PC
(Intel Core i7-9700k, 32GB RAM) with CUDA-based NVIDIA GeForce RTX 2080 Ti
11GB VRAM.

(25)S = ([It],�t, dt)

(26)S = ([wpt0...wpt14],�t, dt)

3568 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

6.1 � DQN‑DDPG performance comparison

In this section, the performance of the algorithms are compared both in training and
validation stages, so at the end of this section, we will be able to discuss what algorithm
relates to a better performance in a general way.

6.1.1 � Training stage

In this subsection, the performance in training stage by each agent is presented. For
this purpose, the total number of episodes used in training and the episode which regis-
ters the best performance, named as best episode, are used. The best episode choice is
obtained considering the total accumulated reward value at the end of the episode, as
well as the maximum distance driven in the episode. The model obtained in this best
episode is the one to be used in the validation stage. The training process necessary to
reach a trained model is carried out as was explained in the previous section.

Table 2 summarizes the results obtained for the two algorithms at this stage. These
results from each algorithm do not demonstrate much by themselves, but differences are
remarkable among them, translating them into longer or shorter training time. The dif-
ference between the performance of the DQN and the DDPG is that the first algorithm
needs at least 8300 episodes to obtain a good model in one of the proposed agents,
while the second one is able of doing it using only 50 episodes. This fact implies a dras-
tic training time reduction. DQN obtains best results as the episodes increases, whereas
DDPG reach the best models in early episodes, and this is the reason why the maximum
number of training episodes is larger in DQN. DQN needs more episodes for training
due to its learning process uses a decay parameter in the reward sequence.

6.1.2 � Validation stage

This subsection presents the quantitative results obtained using the trained models. In order
to compare both algorithms well, a certain route is selected on the map and each agent
is driven along it. Each agent drives on this track over 20 iterations, thus calculating the
RMSE from the real route and an ideal route obtained by interpolating the waypoints, as
describes [20]. In the same way is obtained the RMSE produced by the classic control
method and the simulator manual control mode driven by a random user.

Table 2   Training performance metrics for DQN & DDPG

Method Model Training Episodes Best Episode

DQN-Flatten-Image 20000 16500
DQN DQN-Carla-Waypoints 20000 8300
 Pérez-Gil et al. [37] DQN-CNN 120000 108600

DQN-Pre-CNN 20000 13200
DDPG-Flatten-Image 500 50

DDPG DDPG-Carla-Waypoints 500 150
DDPG-CNN 60000 45950
DDPG-Pre-CNN 500 150

3569Multimedia Tools and Applications (2022) 81:3553–3576

1 3

The chosen route is shown in Fig. 9 and is driven by each agent for both algorithms,
being completed at each attempt. This stretch of road has curves in both directions and
straight sections, which is quite convenient for testing this kind of algorithms, hav-
ing a route distance of approximately 180 meters, and belonging to CARLA map named
“Town01”. Table 3 shows the RMSE generating when the agent navigates the route 20
times. In addition, the maximum error on the route, and the average time spent in getting
from the starting to the end point are shown too.

Improving the performance of a classic controller is not an easy task, so the results
shown in the table must be put into perspective, due to an AI based controller for AV is an
innovative research line. Both the DQN and the DDPG obtain good results when driving
the trajectories. Although none of the agents presented is able to improve the performance
of the LQR-based controller, the DDPG is quite close. The results can be considered quali-
tatively similar to others published in the literature [8, 48].

This table also shows the notorious difference in validation performance of the DDPG
with respect to the DQN.

One of the main drawbacks using DQN is its discrete nature (discrete actions for con-
trolling speed and steer). This provokes that driving is much more complex and training
requires more time and worse results are obtained.

Considering the better performance of DDPG we will focus on this strategy, having in
mind that our final goal is the implementation of the navigation architecture in the real
vehicle [1]. Therefore, in the following section, architecture based in DDPG algorithm,
which is more stable and reliable, is testing in some new routes.

Fig. 9   Evaluation trajectory for DQN & DDPG

3570 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

6.2 � DDPG performance in validation stage

This section focuses only on the DDPG algorithm due to the results obtained in the previ-
ous comparison. To validate the architecture based on DDPG, 20 different routes, with a
range between [180, 700] meters, are driven by each agent, obtaining the same metrics dis-
cussed above based on the MRSE. The results shown are calculated from the mean of the
20 routes driven. In this case the whole routes are also completed on each attempt.

Table 4 confirms the fact presented in previous section, related to the difficulty of
improving the classic controllers performance, but following the same line, the DDPG
performs trajectories very similar to the LQR control method. It is observed how our
approaches are able to complete the specified routes in a way that is practically identical
to the LQR controller, getting the best performance with Carla-Waypoints based agent. As
can also see in the table, the approach based on Carla-Waypoints achieves the best results
in relation with our proposals, although Pre-CNN and Flatten-Image approaches are also
very close.

To complete this section, some qualitative results are presented in two of the paths per-
formed, comparing the trajectory followed by each controller.

As we can see in Fig. 10 two routes are established within the “Town01” of CARLA, and
the trained models are driven over these routes recording trajectory while navigate. In order to
compare their performance, the path recorded by the LQR and the one obtained by the ground
truth are also included. All the agents are able to follow the path in a proper way. Although
some do it in a better way than others, all of them completes the defined route.

Comparing the agents with lower RMSE than those obtained when using a classic control
method, a difference of between 4 and 7 centimetres are found, distances that in relation to the
width of any lane are practically irrelevant, as well as at the driving time. The advantage of

Table 3   Validation metrics for
DQN & DDPG

Model RMSE (m) Max Error (m) Time (s)

LQR [20] 0.06 0.74 17.4
Manual Control [14] 0.40 1.80 22.7
DQN-Flatten-Image [37] 0.64 3.15 27.3
DQN-Carla-Waypoints [37] 0.21 1.32 29.3
DQN-CNN [37] 0.83 2.15 33.3
DQN-Pre-CNN [37] 0.33 1.72 28.2
DDPG-Flatten-Image 0.15 1.43 19.9
DDPG-Carla-Waypoints 0.13 1.50 20.6
DDPG-CNN 0.75 2.55 34.2
DDPG-Pre-CNN 0.10 1.41 23.8

Table 4   Validation metrics for
DDPG

Model RMSE (m) Max Error (m) Time (s)

LQR [20] 0.095 1.305 65.60
DDPG-Flatten-Image 0.134 1.522 63.97
DDPG-Carla-Waypoints 0.10 1.46 62.25
DDPG-CNN 0.67 2.78 125.43
DDPG-Pre-CNN 0.115 1.512 65.12

3571Multimedia Tools and Applications (2022) 81:3553–3576

1 3

the robustness and reliability of the classic control methods is offset by the difficulty of tuning
these controllers, unlike if Deep Learning methods are used to, which are fully reproducible
by anyone in any environment without making major changes, and which is more important,
without having a specific knowledge of electronic control theory.

Fig. 10   Qualitative results by trajectories comparison

3572 Multimedia Tools and Applications (2022) 81:3553–3576

1 3

7 � Conclusions

In this paper, an approach for autonomous driving navigation based on Deep Reinforcement
Learning algorithms is shown, by using CARLA Simulator in order to both train and evaluate.
After countless tests, a robust structure for the training of these algorithms has been carried
out, being able to implement both Deep Q-Network and Deep Deterministic Policy Gradient
algorithms.

The results reported in this work show how it is possible to treat the paradigm of navigation
in autonomous vehicles using new techniques based on Deep Learning. Both DQN and DDPG
are capable of reaching the goal by driving the trajectory, although DDPG obtain better per-
formance and driving is more similar to that performed by a human driver since it implements
continuous control in both speed and steering. We hope that our proposed architecture based
on DRL control layer, will serve as a solid baseline in the state-of-the art of Autonomous
Vehicles navigation tested in realistic simulated environments.

8 � Future works

As future work, we are working on implementing the DDPG-based control into our autono-
mous vehicle. Currently we have implemented the CARLA-waypoints Agent because it is the
most similar to the one available in the real vehicle since the mapping and planning modules
obtain the same data provided by CARLA (waypoints), but in the future the goal is to use
the perception system based on camera and lidar. The main drawbacks that we are going to
tackle are modelling the real environment to obtain a precise map to train in CARLA and to
incorporate ROS in the system because the proposed architecture has to work properly both in
simulation and real.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been funded in part from the Spanish MICINN/FEDER through the Techs4AgeCar project
(RTI2018-099263-B-C21) and from the RoboCity2030-DIH-CM project (P2018/NMT- 4331), funded by
Programas de actividades I+D (CAM) and cofunded by EU Structural Funds.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Arango JF, Bergasa LM, Revenga PA, Barea R, López-Guillén E, Gómez-Huélamo C, Araluce J,
Gutiérrez R (2020) Drive-by-wire development process based on ros for an autonomous electric vehi-
cle. Sensors 20(21):6121

	 2.	 Barea R, Pérez C, Bergasa LM, López-Guillén E, Romera E, Molinos E, Ocana M, López J
(2018) Vehicle detection and localization using 3d lidar point cloud and image semantic segmenta-
tion. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, pp
3481–3486

3573Multimedia Tools and Applications (2022) 81:3553–3576

http://creativecommons.org/licenses/by/4.0/

1 3

	 3.	 Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for
constrained systems. Automatica 38(1):3–20

	 4.	 Byrne R, Abdallah C (1995) Design of a model reference adaptive controller for vehicle road follow-
ing. Math Comput Model 22(4–7):343–354

	 5.	 Chan CY (2017) Advancements, prospects, and impacts of automated driving systems. Int J Transp Sci
Technol 6(3):208–216

	 6.	 Cheein FAA, De La Cruz C, Bastos TF, Carelli R (2010) Slam-based cross-a-door solution approach
for a robotic wheelchair. Int J Adv Robot Syst 155–164

	 7.	 Chen J, Yuan B, Tomizuka M (2019) Deep imitation learning for autonomous driving in generic urban
scenarios with enhanced safety. arXiv preprint arXiv:​1903.​00640

	 8.	 Chen L, Hu X, Tang B, Cheng Y (2020) Conditional DQN-based motion planning with fuzzy logic for
autonomous driving. IEEE Trans Intell Transp Syst

	 9.	 Choomuang R, Afzulpurkar N (2005) Hybrid kalman filter/fuzzy logic based position control of auton-
omous mobile robot. Int J Adv Robot Syst 2(3):20

	10.	 Codevilla F, Miiller M, López A, Koltun V, Dosovitskiy A (2018) End-to-end driving via condi-
tional imitation learning. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp 1–9

	11.	 Coulter RC (1992) Implementation of the pure pursuit path tracking algorithm. Tech. rep., Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST

	12.	 De Bruin T, Kober J, Tuyls K, Babuška R (2015) The importance of experience replay database com-
position in deep reinforcement learning. In: Deep reinforcement learning workshop, NIPS

	13.	 del Egido J, Bergasa LM, Romera E, Huélamo CG, Araluce J, Barea R (2018) Self-driving a car in
simulation through a CNN. In: Workshop of Physical Agents. Springer, pp 31–43

	14.	 Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) Carla: An open urban driving simula-
tor. arXiv preprint arXiv:​1711.​03938

	15.	 Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learn-
ing for continuous control. In: International Conference on Machine Learning. pp 1329–1338

	16.	 Dupuis M, Strobl M, Grezlikowski H (2010) Opendrive 2010 and beyond–status and future of the de
facto standard for the description of road networks. In: Proc. of the Driving Simulation Conference
Europe. pp 231–242

	17.	 Fan J, Wang Z, Xie Y, Yang Z (2020) A theoretical analysis of deep Q-learning. In: Learning for
Dynamics and Control. PMLR, pp 486–489

	18.	 Ganesh A, Charalel J, Sarma MD, Xu N (2016) Deep reinforcement learning for simulated autono-
mous driving

	19.	 Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the Kitti vision benchmark
suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 3354–3361

	20.	 Gutiérrez R, López-Guillén E, Bergasa LM, Barea R, Pérez Ó, Gómez-Huélamo C, Arango F, Del
Egido J, López-Fernández J (2020) A waypoint tracking controller for autonomous road vehicles using
ros framework. Sensors 20(14):4062

	21.	 Hessburg T, Tomizuka M (1994) Fuzzy logic control for lateral vehicle guidance. IEEE Control Syst
Mag 14(4):55–63

	22.	 Hou Y, Liu L, Wei Q, Xu X, Chen C (2017) A novel DDPG method with prioritized experience replay.
In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 316–321

	23.	 Kendall A, Hawke J, Janz D, Mazur P, Reda D, Allen JM, Lam VD, Bewley A, Shah A (2019) Learn-
ing to drive in a day. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp
8248–8254

	24.	 Le-Anh T, De Koster M (2006) A review of design and control of automated guided vehicle systems.
Eur J Oper Res 171(1):1–23

	25.	 Lenain R, Thuilot B, Cariou C, Martinet P (2005) Model predictive control for vehicle guidance in
presence of sliding: Application to farm vehicles path tracking. In: Proceedings of the 2005 IEEE
international conference on robotics and automation. IEEE, pp 885–890

	26.	 Liang M, Yang B, Wang S, Urtasun R (2018) Deep continuous fusion for multi-sensor 3d object detec-
tion. In: Proceedings of the European Conference on Computer Vision (ECCV). pp 641–656

	27.	 Liang X, Wang T, Yang L, Xing E (2018) Cirl: Controllable imitative reinforcement learning
for vision-based self-driving. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp 584–599

	28.	 Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous
control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971

	29.	 Lin LJ (1992) Reinforcement learning for robots using neural networks (phd thesis)

3574 Multimedia Tools and Applications (2022) 81:3553–3576

https://arxiv.org/abs/1903.00640
https://arxiv.org/abs/1711.03938
https://arxiv.org/abs/1509.02971

1 3

	30.	 Luo Y, Chen Y (2009) Fractional order [proportional derivative] controller for a class of fractional
order systems. Automatica 45(10):2446–2450

	31.	 Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement
learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks. pp 50–56

	32.	 Martín UI et al (2018) Generación de trayectorias robóticas mediante aprendizaje profundo por
refuerzo. Master’s thesis, Universitat Politècnica de Catalunya

	33.	 Matt V, Aran N (2017) Deep reinforcement learning approach to autonomous driving
	34.	 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing

Atari with deep reinforcement learning. arXiv preprint arXiv:​1312.​5602
	35.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,

Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533

	36.	 Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dolgov D, Ettinger S, Haehnel D, Hilden T, Hoffmann
G, Huhnke B et al (2008) Junior: The stanford entry in the urban challenge. J Field Rob 25(9):569–597

	37.	 Pérez-Gil Ó, Barea R, López-Guillén E, Bergasa LM, Revenga PA, Gutiérrez R, Díaz A (2020) DQN-
based deep reinforcement learning for autonomous driving. In: Workshop of Physical Agents. Springer,
pp 60–76

	38.	 Raimondi FM, Melluso M (2005) A new fuzzy robust dynamic controller for autonomous vehicles
with nonholonomic constraints. Robot Auton Syst 52(2–3):115–131

	39.	 Sáez Á, Bergasa LM, López-Guillén E, Romera E, Tradacete M, Gómez-Huélamo C, del Egido J
(2019) Real-time semantic segmentation for fisheye urban driving images based on erfnet. Sensors
19(3):503

	40.	 Sanders A (2016) An introduction to unreal engine 4. AK Peters/CRC Press
	41.	 Sasaki H, Horiuchi T, Kato S (2017) A study on vision-based mobile robot learning by deep q-

network. In: 2017 56th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE). IEEE, pp 799–804

	42.	 Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D,
Graepel T et al (2017) Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:​1712.​01815

	43.	 Urmson C, Anhalt J, Bagnell D, Baker C, Bittner R, Clark M, Dolan J, Duggins D, Galatali T, Geyer
C et al (2008) Autonomous driving in urban environments: Boss and the urban challenge. J Field Rob
25(8):425–466

	44.	 Wang FY (2017) Ai and intelligent vehicles future challenge (IVFC) in China: From cognitive intelli-
gence to parallel intelligence. In: 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU
K). IEEE, pp 1–2

	45.	 Wang S, Jia D, Weng X (2018) Deep reinforcement learning for autonomous driving. arXiv preprint
arXiv:​1811.​11329

	46.	 Wang W, Nonami K, Ohira Y (2008) Model reference sliding mode control of small helicopter XRB
based on vision. Int J Adv Robot Syst 5(3):26

	47.	 Xiong X, Wang J, Zhang F, Li K (2016) Combining deep reinforcement learning and safety based con-
trol for autonomous driving. arXiv preprint arXiv:​1612.​00147

	48.	 Ye F, Zhang S, Wang P, Chan CY (2021) A survey of deep reinforcement learning algorithms for
motion planning and control of autonomous vehicles. arXiv preprint arXiv:​2105.​14218

	49.	 Yurtsever E, Capito L, Redmill K, Ozguner U (2020) Integrating deep reinforcement learning with
model-based path planners for automated driving. arXiv preprint arXiv:​2002.​00434

	50.	 Zhang F, Li J, Li Z (2020) A td3-based multi-agent deep reinforcement learning method in mixed
cooperation-competition environment. Neurocomputing 411:206–215

	51.	 Zhao J, Ye C, Wu Y, Guan L, Cai L, Sun L, Yang T, He X, Li J, Ding Y, et al (2018) Tiev: The tongji
intelligent electric vehicle in the intelligent vehicle future challenge of China. In: 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC). IEEE, pp 1303–1309

	52.	 Zhuang D, Yu F, Lin Y (2007) The vehicle directional control based on fractional order pd^ m^ u con-
troller. Journal-Shanghai Jiaotong University-Chinese Edition 41(2):0278

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

3575Multimedia Tools and Applications (2022) 81:3553–3576

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1811.11329
https://arxiv.org/abs/1612.00147
https://arxiv.org/abs/2105.14218
https://arxiv.org/abs/2002.00434

1 3

Authors and Affiliations

Óscar Pérez‑Gil1  · Rafael Barea1 · Elena López‑Guillén1 · Luis M. Bergasa1 ·
Carlos Gómez‑Huélamo1 · Rodrigo Gutiérrez1 · Alejandro Díaz‑Díaz1

	 Rafael Barea
	 rafael.barea@uah.es

	 Elena López‑Guillén
	 elena.lopezg@uah.es

	 Luis M. Bergasa
	 luism.bergasa@uah.es

	 Carlos Gómez‑Huélamo
	 carlos.gomez@edu.uah.es

	 Rodrigo Gutiérrez
	 rodrigo.gutierrez@edu.uah.es

	 Alejandro Díaz‑Díaz
	 alejando.diazd@edu.uah.es

1	 Electronics Department, University of Alcalá, Alcalá de Henares, Spain

3576 Multimedia Tools and Applications (2022) 81:3553–3576

http://orcid.org/0000-0001-6350-3076

	Deep reinforcement learning based control for Autonomous Vehicles in CARLA
	Abstract
	1 Introduction
	2 Related works
	2.1 Classic controllers
	2.2 Imitation learning
	2.3 Deep reinforcement learning

	3 Deep reinforcement learning algorithms
	3.1 Deep Q-Network
	3.1.1 Q-Learning
	3.1.2 Deep Q-Learning

	3.2 Deep deterministic policy gradient

	4 Framework overview
	4.1 Method
	4.1.1 MDP formulation

	4.2 Deep Q-Network Architecture
	4.3 Deep deterministic policy gradient architecture

	5 Architecture proposals (agents)
	5.1 DRL-flatten-image agent
	5.2 DRL-Carla-Waypoints agent
	5.3 DRL-CNN agent
	5.4 DRL-Pre-CNN agent

	6 Results
	6.1 DQN-DDPG performance comparison
	6.1.1 Training stage
	6.1.2 Validation stage

	6.2 DDPG performance in validation stage

	7 Conclusions
	8 Future works
	References

