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Abstract
Nowadays, Artificial Intelligence (AI) is growing by leaps and bounds in almost all fields 
of technology, and Autonomous Vehicles (AV) research is one more of them. This paper 
proposes the using of algorithms based on Deep Learning (DL) in the control layer of an 
autonomous vehicle. More specifically, Deep Reinforcement Learning (DRL) algorithms 
such as Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) are 
implemented in order to compare results between them. The aim of this work is to obtain a 
trained model, applying a DRL algorithm, able of sending control commands to the vehi-
cle to navigate properly and efficiently following a determined route. In addition, for each 
of the algorithms, several agents are presented as a solution, so that each of these agents 
uses different data sources to achieve the vehicle control commands. For this purpose, an 
open-source simulator such as CARLA is used, providing to the system with the ability 
to perform a multitude of tests without any risk into an hyper-realistic urban simulation 
environment, something that is unthinkable in the real world. The results obtained show 
that both DQN and DDPG reach the goal, but DDPG obtains a better performance. DDPG 
perfoms trajectories very similar to classic controller as LQR. In both cases RMSE is lower 
than 0.1m following trajectories with a range 180-700m. To conclude, some conclusions 
and future works are commented.

Keywords  Autonomous Vehicles · Deep Reinforcement Learning · DQN · DDPG · 
CARLA Simulator

1  Introduction

In recent years, autonomous driving plays a pivotal role to solve traffic and transportation prob-
lems in urban areas (traffic congestions, accidents, etc) and it is going to change the way of 
travelling in our world in the future [5]. In the last decade, various challenges, such as the well-
known DARPA Urban Challenge and the Intelligent Vehicle Future Challenge (IVFC) have 
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proven that autonomous driving can be a reality in the near future. The teams participating in 
these events have demonstrated numerous technical frameworks for autonomous driving [36, 
43, 44, 51]. Nowadays, most self-driving vehicles are geared up with multiple high-precision 
sensors such as LIDAR and cameras. LIDAR-based detection methods provide accurate depth 
information and obtain robust results in location, object detection and scene understanding [26] 
while camera-based methods provide much more detailed semantic information [2].

Considering a typical AV architecture, the control layer consists of a set of processes that 
implements the vehicle control and navigation functionality. A well defined control layer 
makes the vehicle robust regardless the varying environment situations, such as the traffic par-
ticipants, weather conditions or traffic scenario, on the premise of guarantying vehicle stability 
and covering the route provided by any global planner, assuming that the control layer is based 
on a previous mapping and path planning layer that loads the map and planes the route. In that 
sense, a large number of classic controllers as [3, 30, 38] have been successfully implemented 
in AV architectures.

In this context, AI is expanding through AV architecture, dealing with different processes 
such as detection, Multi-Object Tracking (MOT) and environment prediction, or evaluating the 
current situation of the ego-vehicle to conduct the safest decision, for example making use of 
DRL algorithms for behavioural driving [31]. DRL based algorithms have been recently used 
to solve Markov Decision Processes (MDPs), where the scope of the algorithm is to calculate 
the optimal policy of an agent to choose actions in an environment with the goal of maximize 
a reward function, obtaining quite successful results in fields like solving computer games [42] 
or simple decision-making system [35]. In terms of autonomous driving, DRL approaches have 
been developed to learn how to use the AV sensor suite on-board the vehicle [23, 28].

In this paper, we study the inclusion of AI techniques into the control layer, referred to clas-
sic AV control architecture, through implementation of a control based on DRL algorithms for 
autonomous vehicle navigation. More specifically, two different approaches will be developed, 
the Deep Q-Network (DQN) and the Deep Deterministic Policy Gradient (DDPG). Figure 1 
shows the framework overview that has been developed in this work. The goal is to follow a 
predetermined route as fast as possible avoiding collisions and road departures in a dynamic 
urban environment in simulation. On the one hand, the discrete nature of DQN is not well 
studied ongoing problem like self-driving, due to the infinite possibles of movement the car 
in each step. Studying DQN and the obtained results, we will analyze the limitations of this 
method for this navigation purpose. On the other hand, the DDPG algorithm has a continu-
ous nature that fits better to autonomous driving task. Both algorithms will be implemented 
in order to compare them, and then decide which could be transferred to a real vehicle. As a 
previous design step all algorithms will be tested in simulation by using CARLA Simulator 
[14]. In terms of autonomous driving, DRL approaches have been developed to learn how to 
use the AV sensor suite on-board the vehicle [23, 28]. The analysis of the DQN algorithm has 
been previously published by the authors in WAF2020 workshop [37]. This work studies the 
DDPG algorithm, compare results between the two methods in simulation, and prepare the 
best option for a real application.

2 � Related works

As mentioned in the previous section, several approaches for the control layer of an 
AV have been developed, which are commonly classified into classic controller and AI 
based controllers. The basics of control systems state that the transfer functions decides 
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the relationship between the outputs and the inputs given the plant. While classic con-
trollers use the system model to define their input-output relations, AI based control-
lers may or may not use the system model and rather manage the vehicle based on the 
experience they have with the system while training, as occur with Imitation Learning, 
or possible enhance it in real-time as well, as Reinforcement Learning. Then, the dif-
ference in terms of applicability between classic and AI based controllers is actually 
the difference between deterministic and stochastic behaviour. While pure conventional 
control techniques offer a deterministic behaviour, AI based controllers have stochastic 
behaviour due to the fact that they learn from a certain set of features. So the learning 
process can be poor depending on a lot of intrinsic and extrinsic factors, such as the 
model architecture, the data quality or the corresponding hyperparameters. Hereafter  
we present some of the most relevant algorithms used in the control layer.

2.1 � Classic controllers

Classic autonomous driving systems usually use advanced sensor for environment per-
ception and complex control algorithms for safety navigation in arbitrarily challenging 

Fig. 1   Framework overview
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scenarios. Typically, these frameworks use a modular architecture where individual 
modules process information asynchronously. The perception layer captures information 
from the surroundings using different sensors such cameras, LiDAR, RADAR, GNSS, 
IMU and so on. Regarding the control layer, some of most used control methods are the 
PID control method [6, 24], the Model Predictive Control algorithm [25], the Fuzzy 
Control method [9, 21], the Model-Reference Adaptive method [4, 46], the Fractional 
Order control method [52], the Pure-Pursuit (PP) path tracking control method [11] and 
the Linear-Quadratic Regulator (LQR) algorithm [20].

However, despite their good performance, these controllers are often environment 
dependent, so their corresponding hyperparameters must be properly fine-tuned for each 
environment in order to obtain the expected behaviour, which is not a trivial task to do.

2.2 � Imitation learning

This approach tries to learn the optimal policy by following and imitating an expert 
system decisions. In that sense, an expert system (typically a human) provides a set of 
driving data [7, 10], which is used to train the driving policy (agent) through supervised 
learning. The main advantage of this method is its simplicity, since it achieves very 
good results in end-to-end applications (navigating from the current position to a certain 
goal as fast as possible avoiding collisions and road departures in an arbitrarily com-
plex dynamic environment). Nevertheless, its main drawback is the difficulty of imitat-
ing every potential driving scene being unable to reproduce behaviors that have not been 
learnt. This drawback causes this approach can be dangerous in some real driving situa-
tions that have not been previously observed.

2.3 � Deep reinforcement learning

While Reinforcement learning (RL) algorithms are dynamically learning with a trial 
and error method to maximize the outcome, being rewarded for a correct prediction and 
penalized for incorrect predictions, and successfully tested for solving Markov Decision 
Problems (MDPs). However, as illustrated above, it can be overwhelming for the algo-
rithm to learn from all states and determine the reward path. Then, DRL based algo-
rithms replaces tabular methods of estimating state values (need to store all possible 
state and value pairs) with a function approximation (the Deep prefix comes here) that 
enables the agent, in this case the ego-vehicle, to generalize the value of states it has 
never seen before, or has partial by seen, by using the values of similar states. Regarding 
this, the combination of Deep Learning techniques and Reinforcement Learning algo-
rithms have demonstrated its potential solving some of the most challenging tasks of 
autonomous driving, such as decision making and planning [49]. Deep Reinforcement 
Learning (DRL) algorithms include: Deep Q-learning Network (DQN) [17, 33], Double- 
DQN, actor-critic (A2C, A3C) [27], Deep Deterministic Policy Gradient (DDPG)  
[45, 47] and Twin Delayed DDPG (TD3) [50]. Our work is focused in DQN and DDPG 
algorithms, which are explained in the following section.
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3 � Deep reinforcement learning algorithms

Deep Reinforcement Learning combines artificial neural networks with a reinforcement 
learning architecture that enables software-defined agents to learn the best actions possible 
in virtual environments in order to attain their own goals. That is, it unites function approx-
imation and target optimization, mapping state-action pairs to expected rewards. This algo-
rithms try to seem the human behaviour at learning time with his action-reward structure, 
rewarding the agent when the chosen action is good, and penalizing it in opposite case. 
This section is needed in order to understand how the algorithms used in our approaches 
work, as well as to appreciate the existing differences between them. Deep Q-Network 
algorithm must be explained from Q-learning and Deep Q-learning theory, while Deep 
Deterministic Policy Gradient is explained later based on the previous DQN explanation.

3.1 � Deep Q‑Network

Recently, a great amount of reinforcement learning algorithms have been developed to 
solve MDP [23, 33]. MDP is defined by a tuple (S, A, P, R), where S is the set of states, A is 
the set of actions, P ∶ S × A → P(S) is the Markov transition kernel and R ∶ S × A → P(ℝ) 
is the reward distribution. So taking any action a ∈ A at any state s ∈ S , P(⋅|s, a) defines the 
probability of the next state and R(⋅|s, a) is the reward distribution. A policy � ∶ S → P(A) 
maps any state s ∈ S to a probability distribution �(⋅|s) over A.

3.1.1 � Q‑Learning

Q-Learning algorithm [17] creates an exact matrix for the agent to maximize its reward in 
the long run. This approach is only practical for restricted environment, with limited space 
for observation, due to an increase in number of states or actions causes a wrong algorithm 
behaviour. Q-Learning is an off-policy, model-free RL based on the Bellman Equation, 
where v refers to its optimal value:

E refers to the expectation, while � refers to the discount factor for the ahead rewards, and 
rewriting it in the form of Q-value:

Where the optimal Q-value Q∗ can be expressed as:

The goal of Q-Learning is to maximize the Q-value trough iteration policy, which tuns a 
loop between policy evaluation and policy improvement. Policy evaluation estimates the 
value of function V with the greedy policy, which has been obtained from the last policy 
improvement. On the other hand, policy improvement updates the policy with the action 
that maximize V function for each state. Value iteration updates the function V based on 
the Optimal Bellman Equation as follows:

(1)v(s) = E[Rt+1 + �v(St+1)|St = s]

(2)Q�(s, a) = E[rt+1 + �rt+2 + �2rt+3 + ...|s, a] = Es� [r + �Q�(s�, a�)|s, a]

(3)Q∗(s, a) = Es� [r + �max
a�

Q∗(s�, a�)|s, a]
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When iteration converges, the optimal policy is obtained by applying an argument of max 
function for all the states.

As result, the update equation is replaced by the following formula, where � refers to the 
learning rate:

3.1.2 � Deep Q‑Learning

As we indicated above, Q-learning lacks of generality when space of observation increases. 
Imagine one situation with 10 states and 10 possible actions, we have a 10x10 matrix, but 
if the number of states increases to 1000, the Q-matrix dramatically increases and it is 
difficult to manages the in a manual way. To solve this issue, Deep Q-Learning [17, 41] 
manage of the two-dimensional array by introducing a Neural Network. So, DQN estimates 
Q-values by using it in a learning process, where the state is the input of the Net, and the 
output is the corresponding Q-value for each action. The difference between D-Learning 
and Deep Q-Learning lies in the target equation y:

Where the � stands for the parameters in the Neural Network.

3.2 � Deep deterministic policy gradient

Deep Deterministic Policy Gradient (DDPG) [15, 22, 32] is a DRL algorithm that concur-
rently learns a Q-function and a policy. It uses off-policy data and the Bellman equation to 
learn the Q-function, where the Q-function to learn is the policy.

The algorithm that learns and take the decisions is known as the agent, which is inter-
acting with the environment. The agent is continuously choosing actions ai from an Action 
space A = ℝ

N and a State space st+1 , in such a way that a reward r(st, at) is returned by the 
environment. The agent behaviour is governed by a policy ( � ) which plays as a state map 
in the action probabilistic distribution � ∶ S → P(A) in a stochastic environment E.

The two main components in the policy gradient are the policy model and the value 
function. It makes sense to learn the value function and the policy model simultaneously, 
since the value function can assist the policy update by reducing the gradient variance in 
vanilla policy gradients, what is actually what the Actor-Critic method does. This method 
consists of two models (Critic and Actor), which may optionally share some parameters: 
While the Critic updates the value function parameters in function of the action-value, the 
Actor updates the policy parameters � according to the suggestions of the Critic.

The output of a state in the State space is defined as the sum of all future rewards 
discounted:

(4)v∗(s) = max
a

E[Rt+1 + �v∗(St+1)|St = s,At = a] = max
a

∑
a� ,r

p(s�, r|s, a)[r + �v∗(s
�)]

(5)�(s) = max
a

∑
s�,r

p(s�, r|s, a)[r + �V(s�)]

(6)Q(st, at) = Q(st, at) + �[rt+1 + � max
a

Q(st+1, at) − Q(st, at)]

(7)yj = rj + � max
a

Q(sj+1, a
�;�−)
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Where � ∈ [0, 1] is a discount factor. Defining the action-value function as the expected 
value when an action at is taken in the state st , the Q-function is used in order to follow the 
policy � in the following way:

Besides this, the Bellman equation is used with a deterministic policy �:

Using Eq.  12 to update the Q-function defined in Eq.  9, we define yt as the discounted 
reward for the current action:

Then, we consider function approximators parameterized by �Q , which we optimize by 
minimizing the loss:

Where � represents any stochastic policy and p� the discounted distribution of visitation 
for an action probabilistic distribution � . Note that since yt also depends on �Q , this is typi-
cally ignored.

Finally, through these updates the function Q(s, a) of the Critic is found. The updates 
of the Actor are based on following the gradient of the expected value of the initial dis-
tribution J according to the parameters of the neural network of the Actor, which repre-
sents the gradient of the policy performance.

Nevertheless, despite the fact that DRL algorithms assume that independent samples follow 
a similar distribution, this is not true in a context where there exists an environment inter-
action, where following a particular state is a direct consequence of the current state and 
the executed action. In that sense, the DQN algorithm solves this problem by adding the 
experience replay method also implemented in the DDPG method. The experience replay 
method consists in keeping a buffer of past transitions available to update the algorithm 
with them. This technique not only boosts the learning process and increases the efficiency 
of the exploration [29, 34], but also has proven to be vital for the stability of the learning 
process [12]. Updating the agent using past iterations allows to evaluate a single iteration 
several times with different policies, increasing the efficiency of the initial exploration.

Moreover, one of the most important DQN contributions is using target networks that 
makes the Critic update more stable, since in the absence of target networks, an update used 
to increase the value of Q(st, at) and Q(st+1, a) , creates a bias that can lead to oscillations 

(8)
T∑
i=t

� (i−t)r(si, ai)

(9)Q�(st, at) = Eri≥t,s≥t∼E,ai≥t∼�
[Rt|st, at]

(10)A = Ert ,st+1∼E
[r(st, at)

(11)B = �Q�(st+1,�(St + 1))]

(12)Q�(st, at) = A + B

(13)yt = r(st, at) + �Q(st+1,�(st+1|�Q))

(14)L(�Q) = Est∼�
� ,at∼�,rt∼E

[(Q(st, at|�Q) − yt)
2]

(15)∇�QJ ≈ Est∼�
� [∇�QQ(s, a|�Q)|s=st ,a=�(st|��)]

3559Multimedia Tools and Applications (2022) 81:3553–3576



1 3

or even divergence in the policy value. To deal with this problem, we modify the DDPG 
features in order to emulate this Actor-Critic structure. Our modified version uses a soft 
update with 𝜏 << 1 parameter to update the policy parameters, as shown in Eq. 16.

4 � Framework overview

Nowadays, hyper-realistic virtual testing is increasingly becoming one of the most impor-
tant concepts to build safe AV technology. Using photo-realistic simulation (virtual devel-
opment and validation testing) and an appropriate design of the driving scenarios are the 
current keys to build safe and robust AV. Regarding Deep Learning based algorithms (found 
in any layer of the navigation architecture), the complexity of urban environments requires 
that these algorithms were tested in countless environments and traffic scenarios. This issue 
causes that the cost and development time are exponentially increased using the physical 
approach. For this reason, a simulator such as CARLA is used, which is currently one of the 
most powerful and promising simulators for developing and testing AV technology.

CARLA Simulator (Car Learning to Act) [14] is an open-source simulator, based on 
Unreal Engine, that provides quite interesting features to develop and test self-driving 
architectures. However, regarding this work focused on the control layer, we highlight the 
following: 1. It provides a powerful PythonAPI, that allows the user to control all aspects 
related to the simulation, including weathers, pedestrian behaviours, sensors and traffic 
generation, 2. It offers fast simulation for planning and control, where rendering is disabled 
to offer a fast execution of road behaviors and traffic simulation when graphics are not 
required, 3. Different traffic scenarios simulation can be built on Scenario Runner and 4. 
ROS integration is possible through the CARLA ROS Bridge.

This simulator is grounded on Unreal Engine (UE4) [40], one of the most opened 
and advanced real-time 3D creation tools nowadays, and uses OpenDrive standard [16] 
to define the roads and urban settings, allowing CARLA to have an incredible realis-
tic appearance. CARLA has a double-head construction. On the one hand, the server is 
responsible of everything related with the simulation itself, such as physics computation. 
This server is recommended to run in a dedicated GPU in order to get the best possibles 
results. On the other hand, the client-side controls the logic of actors on scene and settings 
world conditions.

The simulator plays a crucial role in this paper for several reasons (see Fig. 1. First of 
all, it allows performing as many tests as required, avoiding putting lives or goods at risk as 
well as decreasing the development cost and the implementation time. It would be impos-
sible to carry out a project of this nature (training a DRL algorithm for AV navigation pur-
poses in arbitrarily complex scenarios) directly in a real environment, as it would represent 
a risk to both the ego-vehicle and its surrounding environment, specially at the beginning 
due to the randomness of the first actions taken by the algorithm. Second, in the same way 
that there exist tons of datasets related to the perception layer of the vehicle (such as seg-
mentation segmentation [39] or object detection and tracking [19]), in order to validate the 
effectiveness of a control algorithm, it is mandatory to compare it against the ideal route 
the vehicle should perform. In terms of the control layer, CARLA provides the user the 
actual odometry of the vehicle as well as the groundtruth of the route, what makes easier to 
evaluate the performance of the proposals.

(16)�� ← ��(1 − �)��
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4.1 � Method

Based on the previous explanation, AV navigation tasks can be modelled as Markov Deci-
sion Processes (MDP). Our approach aims to develop an agent that generates autonomous 
vehicle control based on Deep Reinforcement Learning algorithm that solves a MDP. The 
following sections show our method applied to the basis MDP theory.

4.1.1 � MDP formulation

Considering the generic MDP explanation in previous section, we use a MDP to solve the 
autonomous navigation task, which consists of an agent that observes the state (st) of the 
ego-vehicle (environment state) and generates an action (at) . This causes the vehicle to 
move to a new state (st+1) producing a reward (rt = R(st, at)) based on the new observa-
tion. A Markov decision process is a 4-tuple (S,A,Pa,Ra) where the goal is to find a good 
“policy”, that is, a function �(s) that the decision maker will choose when is in state st.

a)	 State space (S): This term refers the information which is received from the environment 
in each algorithm step. In our case, we model st as a tuple st = (vft, dft) where vft is the 
visual features vector associated to the image It or a set of visual features extracted from 
the image, typically a set of waypoints wt obtained using a model-based path planner 
vft = f (It,wt) . dft is the driving features vector consisting of an estimation of vehicle´s 
speed vt , distance to the center of the lane dt and angle between the vehicle and the centre 
of the lane �t , dft = (vt, dt,�t) . Figure 2 shows the state space where the waypoints are 
published by CARLA from the planning module.

b)	 Action space (A): To interact with the vehicle available in the simulator, the commands 
for throttle, steering and brake must be provided in a continuous way. Throttle and brake 
range is [0,1] and steering range is [-1,1]. Therefore, at each step the DRL agent must 
publish an action (at) = (acct, steert, braket) with the commands into their ranges.

c)	 State transition function ( Pa ) is the probability that action a in state s at time t will 
lead to state st+1 at time t+1. Pa = Pr(st+1|st, at).

d)	 Reward function R(st+1, st, at) : This function generates the immediate reward of trans-
lating the agent from st to st+1 . The goal in a Markov decision process is to find a good 
“policy” �(s) = at that will choose an action given a state. This function will maximize 
the expectation of cumulative future rewards and particularising the Eq. 8, we obtain:

4.2 � Deep Q‑Network Architecture

We have developed various agents that cover a wide variety of model architectures for the 
Deep Q-Network agents. Models will be first developed in simulation for safety reasons. 
Therefore, the agent will interact with CARLA and the code will be programmed in Python 
based on several open-source RL frameworks [49] (see Fig. 3) .

Following the previous formulation of the MDP, it is necessary to establish the general 
framework of what the developed DQN will be, clearly defining the actions and the reward 

(17)E =

∞∑
t=0

� tR(st, st+1)
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that will come into play with the algorithm. The state vector depends on the data used as input 
for the DRL algorithm, which will be explained in later sections.

a)	 Reward function. The proposed architecture obtains a driving features vector 
dft = (vt, dt,�t) from the simulator. This vector is composed of the velocity of the vehi-
cle in the direction of its heading vt , the distance to the center of the lane dt and the 
angle regarding the lane direction �t . Considering that the objective is to go as fast as 
possible through the center of the lane without leaving the lane and avoiding collisions, 
the reward function must reward the longitudinal velocity and penalize the transverse 
velocity and divergence from the center of the lane. This approach is similar to the pro-
posal made in [18] where TORCS (The Open Racing Car Simulator) is used. Variables 
involve in reward function are also shown in Fig. 2. Hereafter, we present the specific 
values assigned to R in a deterministic way.

(18)R = −200 if collision or lane change or roadway departure

(19)R =
∑
t

|vtcos�t| − |vtsin�t| − |vt||dt| if car in lane

Fig. 2   State space definition
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b)	 Control commands (Actions). CARLA needs control commands for steering [-1,1] and 
throttle [0,1]. Brake has not been implemented in this first version because the environ-
ment is free of obstacles and the regenerative braking of the vehicle is enough to stop the 
vehicle. The DQN policy allows generating discrete actions, so it is necessary to simplify 
the continuous control of actions to a discrete control. Taking this into account, the 
number of control commands has been simplified to a set of 27 discrete driving actions, 
discretizing steering angle and throttle position in an uniform way. Table 1 shows the set 
of control commands where there are 9 steering wheel positions and 3 throttle position.

4.3 � Deep deterministic policy gradient architecture

This section presents the basis structure of the DDPG architecture based on the previous algo-
rithm explanation. This algorithm, as mentioned before, has two parts within it, the Actor and 
the Critic. This will be noticeable in the Fig. 4

The system architecture based on DDPG algorithm, as can be seen, only change the Agent 
module in relation with DQN architecture. But additional modifications have been needed to 
assemble the whole system. In the same way as for the DQN, different models have been made 
to carry out a comparison among them. It has been done in the same way, by modifying the 
Agent and the data processing module to adapt the input data to the selected model in each case. 
Actions, reward and states should be established as well. For both the reward and the states, what 
was explained for the DQN algorithm can be applied, but the actions suffer an important change.

(20)R = 100 if goal position is reached

Fig. 3   DQN-based Deep Reinforcement Learning architecture 

Table 1   Policy network. 27 
classes

Control commands

Classes Steering Throttle
27 -1,-0.75,...0.75,1 0,0.5,1
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a)	 Control commands (Actions). As difference with to DQN, this algorithm has a continu-
ous character, so the actions do not have to be discrete in this case. Considering that the 
neural network outputs of the DRL algorithm is in the range [-1, 1] and that steering and 
throttle are in the range [-1, 1] and [0, 1] respectively, these outputs are directly mapped 
with the control commands. For the case of the throttle, an adjustment must be made to 
the ranges to match the ranges required by the simulator, but this is trivial.

5 � Architecture proposals (agents)

This section describes the main work in this DRL project, the developed models for both 
Deep Q-Network and Deep Deterministic Policy Gradient will be explained in detail. Each 
model in this section has been implemented for both algorithms in the same way, so in 
following figures, a box representing both algorithms will be set and an internal switching 
will be done between them. For any of the two proposals, only the number of inputs of the 
first layer of the Net should be changed, which will depend on the data type taken as input 
from that network.

5.1 � DRL‑flatten‑image agent

This agent uses a B/W segmented image of the road over the whole route that the vehicle 
must drive. This proposed agent reshapes the B/W frontal image, taken from the vehicle, 
from 640x480 pixels to 11x11, reducing the amount of data from 300k to 121. Once the 
image is resized, data is flatten and the state vector is formed with those 121 vector com-
ponents. This vector is concatenated with the driving features vector and introduced to a 
really simple 2 Fully-Connected Layers network. (see Fig. 5).

(21)S = ([Pt0,Pt1,Pt2...Pt120],�t, dt)

Fig. 4   DDPG-based Deep Reinforcement Learning architecture 
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5.2 � DRL‑Carla‑Waypoints agent

In this case, no image will be used to obtain the path to be followed by the agent. The 
waypoints will be received directly from the CARLA simulator, thanks to the available 
PythonAPI, (see Fig. 6). The process of obtaining these waypoints starts by calling the 
global planner (as explained above). This planner is given two points, initial and final, 
of a trajectory inside the map, and it returns a list of waypoints that links both points. 
The number of elements in this point list depends basically on how far apart the two 
points are from each other and how far apart the waypoints were defined at the begin-
ning of the program.

These points are diretly referenced to the map, so passing these points to the DRL 
algorithm will be wrong. For example, for two straight road sections of the map, 

Fig. 5   DRL-Flatten-Image Agent

Fig. 6   DRL-Carla-Waypoints Agent
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different waypoints will be set, but the vehicle should acting the same way for both 
trajectories, so it is impossible to obtain a good model with this approach. Waypoints 
are globally referenced to the point (0, 0, 0) on CARLA’s map. Therefore, they must be 
referenced to the ego_vehicle position. To do that, we apply the following transforma-
tion (rotation and translation) matrix and this local points are introduced as State vector 
S, where [Xc, Yc, Zc] represents the current vehicle global position, and �c the current 
heading or yaw angle.

A question to be solved is the size of the waypoints list taken into account that actions to be 
taken depend on car position and orientation and the near ahead section where the vehicle 
is driving. In an experimental way we fix a frame of 15 points. This list updates its content 
each step, and starts with the closest waypoint to the vehicle’s position, and is filled with 
the next 14 waypoints, working such as a FIFO (First In, First Out) along the episode. Like-
wise, for the image waypoints-based agent model, the dt and �t are added to form the state 
vector which is introduced directly into a double Fully-Connected network.

Each component of this waypoint list forming the State vector has coordinates (x,  y). 
Although both options are provided in the program, the models are trained by entering only 
the x-coordinate of the points. This x-coordinate provides information on the lateral posi-
tion of the waypoints with respect to the vehicle within the lane.

5.3 � DRL‑CNN agent

An step forward is trying to obtain road features from the ahead camera vehicle through a 
CNN as shown in Fig. 7, and from these features to determine the action to be taken by the 
vehicle in an end-to-end process and in online mode. To do this, two parts are proposed 
to set the State vector S, the first part extracts the road features through the CNN, and the 
second part is form by the same two Fully-Connected layers used in the previous cases. 

(22)M =

⎡
⎢⎢⎢⎣

cos �c − sin�c 0 Xc

sin �c cos�c 0 Yc
0 0 1 Zc
0 0 1 1

⎤⎥⎥⎥⎦

(23)S = ([wpt0...wpt14],�t, dt)

Fig. 7   DRL-CNN Agent
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An RGB image as shown in Fig. 7, where the drivable area is highlighted, in the shape of 
[640x480] is used as input for CNN stage.

The CNN consist of three convolutional layers with 64 filters of size [7x7], [5x5] and 
[3x3] respectively, using all of them RELU as activation function and followed by an aver-
age polling layer. The output of this CNN is flattened and concatenated with driving fea-
tures, and the whole state vector is used to fed 2-Fully-Connected layers which decided the 
final action to be taken.

Obviously, this agent model is more complex than the others, due to the nature of the 
state vector. The system will have much more difficulty to learn using a state vector as the 
one being considered, formed both by the road features extracted by the CNN and by the 
driving features.

The total volume of data handle for this approach is quite a bit higher than for previous 
cases. For an image of 640x480 pixels, there would be 307200 data, which is 2500 times 
larger compared to the flatten-image-based model . This will lead to quite a few problems 
in the training process, which will be discussed later.

5.4 � DRL‑Pre‑CNN agent

This case is quite similar to the previous one, except that now, the CNN is trained previ-
ously. This approach has been carried out because the model works well when waypoints 
are provided and much worse when features must be extracted, so the two options are 
mixed in this model. The option of training a network offline is considered, using a data-
base of images and waypoints obtained directly from CARLA, in order to predict the way-
points from these images. This way, once the network has been trained, it will only have 
to be loaded into the main architecture and let it predict the waypoints at each step of the 
process, and enter these waypoints in the same way that in the previous cases to predict the 
action to be taken by the vehicle. Being concrete, once the Net is trained, it only will need 
the input image to obtain the corresponding waypoints. The difference with the previous 
CNN agent is observed in Fig. 8.

The network used to obtain the waypoints from the image is based on the developed by 
the group on a previous project [13]. Starting from this network, some substantial modi-
fications have been carried out, such as the batch size, the size of intermediate layers, the 

(24)S = ([It],�t, dt)

Fig. 8   DRL-Pre-CNN Agent
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elimination of some of the layers and the fitting of the sizes according to the images used 
and the outputs required.

In a broad sense an image is being used to predict the action to be taken, and the state 
vector could be:

In reality the waypoints obtained from the pre-trained network are being used directly to 
feed the 2 Fully-Connected layers of the DRL so the state vector actually used, concatenat-
ing these points with the driving features, is as follows:

6 � Results

The proposed approaches must be validated both individually and comparing among them. 
To carry out this validation process, a metric is defined in order to compare the error of 
each algorithm with respect to a ground truth provided by CARLA Simulator. In this way, 
the performance of the different approaches is compared following the same criteria.

Achieving a well-trained model from each proposed architecture for both algorithms 
(DQN, DDPG) is necessary, which are firstly obtained in the training stage. To achieve the 
trained models, a simple yet accurate training workflow is applied as follows: 

1.	 Launch the simulator and iterate over M episodes and T steps for each episode.
2.	 At the beginning of the episode, call the A* based global planner to obtain the complete 

route from two random points on the map. Therefore, the training uses a different route 
in each episode.

3.	 At each episode, take an observation corresponding to the State S by concatenat-
ing the architecture-specific data entry D and the driving features vector. The State 
S = ([D],�t, dt) is introduced to the DRL network which predicts the actions as output 
A = (throttle, steering) . Then, the predicted actions are sent to the simulator and the 
reward is calculated in function of this actuation.

4.	 The lane_invasor and collision_sensor are checked in each step. If any of these sensors 
are activated, the episode ends, and a new one is reset. This reset is done by relocating 
the vehicle in the centre of the lane, well oriented, and getting ready for the next route. 
If these sensors are not activated, the training process iterates over another new step.

5.	 The training stage finishes when the maximum number of episodes is reached.

Once the trained model are obtained, the error metric is applied. On the one hand, the 
training metrics are evaluated from the training episodes number needed to achieve the 
model. On the other hand, the error metric is carried out comparing the driven trajec-
tories obtained by the trained models and an ideal route built by interpolating the way-
points provided by the CARLA’s A* based global planner. In addition, a classic method 
based on an LQR controller [20] is also evaluated using this method, thus being able to 
compare the AI-based controllers with one based on classic methodologies.

Both training stage and experimental results have been developed using a desktop PC 
(Intel Core i7-9700k, 32GB RAM) with CUDA-based NVIDIA GeForce RTX 2080 Ti 
11GB VRAM.

(25)S = ([It],�t, dt)

(26)S = ([wpt0...wpt14],�t, dt)
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6.1 � DQN‑DDPG performance comparison

In this section, the performance of the algorithms are compared both in training and 
validation stages, so at the end of this section, we will be able to discuss what algorithm 
relates to a better performance in a general way.

6.1.1 � Training stage

In this subsection, the performance in training stage by each agent is presented. For 
this purpose, the total number of episodes used in training and the episode which regis-
ters the best performance, named as best episode, are used. The best episode choice is 
obtained considering the total accumulated reward value at the end of the episode, as 
well as the maximum distance driven in the episode. The model obtained in this best 
episode is the one to be used in the validation stage. The training process necessary to 
reach a trained model is carried out as was explained in the previous section.

Table 2 summarizes the results obtained for the two algorithms at this stage. These 
results from each algorithm do not demonstrate much by themselves, but differences are 
remarkable among them, translating them into longer or shorter training time. The dif-
ference between the performance of the DQN and the DDPG is that the first algorithm 
needs at least 8300 episodes to obtain a good model in one of the proposed agents, 
while the second one is able of doing it using only 50 episodes. This fact implies a dras-
tic training time reduction. DQN obtains best results as the episodes increases, whereas 
DDPG reach the best models in early episodes, and this is the reason why the maximum 
number of training episodes is larger in DQN. DQN needs more episodes for training 
due to its learning process uses a decay parameter in the reward sequence.

6.1.2 � Validation stage

This subsection presents the quantitative results obtained using the trained models. In order 
to compare both algorithms well, a certain route is selected on the map and each agent 
is driven along it. Each agent drives on this track over 20 iterations, thus calculating the 
RMSE from the real route and an ideal route obtained by interpolating the waypoints, as 
describes [20]. In the same way is obtained the RMSE produced by the classic control 
method and the simulator manual control mode driven by a random user.

Table 2   Training performance metrics for DQN & DDPG

Method Model Training Episodes Best Episode

DQN-Flatten-Image 20000 16500
DQN DQN-Carla-Waypoints 20000 8300
 Pérez-Gil et al. [37] DQN-CNN 120000 108600

DQN-Pre-CNN 20000 13200
DDPG-Flatten-Image 500 50

DDPG DDPG-Carla-Waypoints 500 150
DDPG-CNN 60000 45950
DDPG-Pre-CNN 500 150

3569Multimedia Tools and Applications (2022) 81:3553–3576



1 3

The chosen route is shown in Fig. 9 and is driven by each agent for both algorithms, 
being completed at each attempt. This stretch of road has curves in both directions and 
straight sections, which is quite convenient for testing this kind of algorithms, hav-
ing a route distance of approximately 180 meters, and belonging to CARLA map named 
“Town01”. Table  3 shows the RMSE generating when the agent navigates the route 20 
times. In addition, the maximum error on the route, and the average time spent in getting 
from the starting to the end point are shown too.

Improving the performance of a classic controller is not an easy task, so the results 
shown in the table must be put into perspective, due to an AI based controller for AV is an 
innovative research line. Both the DQN and the DDPG obtain good results when driving 
the trajectories. Although none of the agents presented is able to improve the performance 
of the LQR-based controller, the DDPG is quite close. The results can be considered quali-
tatively similar to others published in the literature  [8, 48].

This table also shows the notorious difference in validation performance of the DDPG 
with respect to the DQN.

One of the main drawbacks using DQN is its discrete nature (discrete actions for con-
trolling speed and steer). This provokes that driving is much more complex and training 
requires more time and worse results are obtained.

Considering the better performance of DDPG we will focus on this strategy, having in 
mind that our final goal is the implementation of the navigation architecture in the real 
vehicle [1]. Therefore, in the following section, architecture based in DDPG algorithm, 
which is more stable and reliable, is testing in some new routes.

Fig. 9   Evaluation trajectory for DQN & DDPG
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6.2 � DDPG performance in validation stage

This section focuses only on the DDPG algorithm due to the results obtained in the previ-
ous comparison. To validate the architecture based on DDPG, 20 different routes, with a 
range between [180, 700] meters, are driven by each agent, obtaining the same metrics dis-
cussed above based on the MRSE. The results shown are calculated from the mean of the 
20 routes driven. In this case the whole routes are also completed on each attempt.

Table  4 confirms the fact presented in previous section, related to the difficulty of 
improving the classic controllers performance, but following the same line, the DDPG 
performs trajectories very similar to the LQR control method. It is observed how our 
approaches are able to complete the specified routes in a way that is practically identical 
to the LQR controller, getting the best performance with Carla-Waypoints based agent. As 
can also see in the table, the approach based on Carla-Waypoints achieves the best results 
in relation with our proposals, although Pre-CNN and Flatten-Image approaches are also 
very close.

To complete this section, some qualitative results are presented in two of the paths per-
formed, comparing the trajectory followed by each controller.

As we can see in Fig. 10 two routes are established within the “Town01” of CARLA, and 
the trained models are driven over these routes recording trajectory while navigate. In order to 
compare their performance, the path recorded by the LQR and the one obtained by the ground 
truth are also included. All the agents are able to follow the path in a proper way. Although 
some do it in a better way than others, all of them completes the defined route.

Comparing the agents with lower RMSE than those obtained when using a classic control 
method, a difference of between 4 and 7 centimetres are found, distances that in relation to the 
width of any lane are practically irrelevant, as well as at the driving time. The advantage of 

Table 3   Validation metrics for 
DQN & DDPG

Model RMSE (m) Max Error (m) Time (s)

LQR [20] 0.06 0.74 17.4
Manual Control [14] 0.40 1.80 22.7
DQN-Flatten-Image [37] 0.64 3.15 27.3
DQN-Carla-Waypoints [37] 0.21 1.32 29.3
DQN-CNN [37] 0.83 2.15 33.3
DQN-Pre-CNN [37] 0.33 1.72 28.2
DDPG-Flatten-Image 0.15 1.43 19.9
DDPG-Carla-Waypoints 0.13 1.50 20.6
DDPG-CNN 0.75 2.55 34.2
DDPG-Pre-CNN 0.10 1.41 23.8

Table 4   Validation metrics for 
DDPG

Model RMSE (m) Max Error (m) Time (s)

LQR [20] 0.095 1.305 65.60
DDPG-Flatten-Image 0.134 1.522 63.97
DDPG-Carla-Waypoints 0.10 1.46 62.25
DDPG-CNN 0.67 2.78 125.43
DDPG-Pre-CNN 0.115 1.512 65.12
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the robustness and reliability of the classic control methods is offset by the difficulty of tuning 
these controllers, unlike if Deep Learning methods are used to, which are fully reproducible 
by anyone in any environment without making major changes, and which is more important, 
without having a specific knowledge of electronic control theory.

Fig. 10   Qualitative results by trajectories comparison
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7 � Conclusions

In this paper, an approach for autonomous driving navigation based on Deep Reinforcement 
Learning algorithms is shown, by using CARLA Simulator in order to both train and evaluate. 
After countless tests, a robust structure for the training of these algorithms has been carried 
out, being able to implement both Deep Q-Network and Deep Deterministic Policy Gradient 
algorithms.

The results reported in this work show how it is possible to treat the paradigm of navigation 
in autonomous vehicles using new techniques based on Deep Learning. Both DQN and DDPG 
are capable of reaching the goal by driving the trajectory, although DDPG obtain better per-
formance and driving is more similar to that performed by a human driver since it implements 
continuous control in both speed and steering. We hope that our proposed architecture based 
on DRL control layer, will serve as a solid baseline in the state-of-the art of Autonomous 
Vehicles navigation tested in realistic simulated environments.

8 � Future works

As future work, we are working on implementing the DDPG-based control into our autono-
mous vehicle. Currently we have implemented the CARLA-waypoints Agent because it is the 
most similar to the one available in the real vehicle since the mapping and planning modules 
obtain the same data provided by CARLA (waypoints), but in the future the goal is to use 
the perception system based on camera and lidar. The main drawbacks that we are going to 
tackle are modelling the real environment to obtain a precise map to train in CARLA and to 
incorporate ROS in the system because the proposed architecture has to work properly both in 
simulation and real.
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