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Quaternion cartesian fractional hahn moments for color 
image analysis

M. Yamni1 · H. Karmouni1 · M. Sayyouri2   · H. Qjidaa1

Abstract
Moment descriptors have been widely used for the analysis and representation of images. 
In this paper, we propose a new set of discrete orthogonal moments of fractional order, 
called Quaternion Cartesian Fractional Hahn Moments. The proposed QCFrHMs are 
based on new Fractional Hahn Polynomials and generalize the classical Quaternion Hahn 
Moments. First, FrHPs are proposed and defined using eigenvalue decomposition and the 
spectral representation of the classical Hahn polynomial matrix. Then, the proposed FrHPs 
are used as a kernel function to define the new Fractional Hahn Moments. Finally, based 
on quaternion algebra, the FrHMs for grayscale images are generalized to the QCFrHMs 
for color images. The proposed QCFrHMs depend on four parameters: two polynomial 
parameters and two fractional orders, which allow us to use them to propose a robust, blind 
and efficient watermarking scheme for the copyright protection of color images where the 
requirements of a watermarking scheme are successfully ensured thanks to the perfor‑
mance of the proposed QCFrHMs. Experimental results are provided to illustrate the effec‑
tiveness of the proposed color image descriptors.
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Abbreviations
QCFrHMs	� Quaternion Cartesian Fractional Hahn Moments.
QCHMs	� Quaternion Cartesian Hahn Moments.
FrHMs	� Fractional Hahn Moments.
FrHPs	� Fractional Hahn Polynomials.
PSNR	� Peak Signal to Noise Ratio.
BER	� Bit Error Rate

1  Introduction

Moments are important descriptors of image in computer vision. They have been widely 
used in many applications such as image reconstruction [11], image watermarking [33], 
image compression [21], image classification [10], edge detection [2], 3D object analysis 
[12, 38], image indexing [16], medical image analysis [5], and forgery detection [22].

Generally, moments are divided into two main categories: (1) non-orthogonal moments 
and (2) orthogonal moments. Geometric moments [6] are the most popular moments in 
the first category because they are the first that have been applied for image analysis due 
to their simplicity. However, they suffer from the problem of information redundancy due 
to the non-orthogonality of their kernel function, which limits their applications in cases 
where more discriminating information must be captured. This problem led the scientists 
to introduce the second category of moments, the orthogonal moments, which use orthogo‑
nal polynomials as kernel functions. Thanks to the orthogonality property, the orthogo‑
nal moments are able to represent images without information redundancy. Therefore, they 
have drawn considerable attention in several image-related applications. The orthogonal 
moments are also divided into two large families: Continuous orthogonal moments which 
are based on continuous orthogonal polynomials such as the moments of Legendre [29], 
Zernike [13], Gegenbauer [8], Fourier-Mellin [27], Gaussian-Hermite [41] and Chebyshev- 
Fourier [20]. The second category is the discrete orthogonal moments which are based 
on discrete orthogonal polynomials such as the moments of Tchebichef [17], Krawtchouk 
[43], Hahn [44], Charlier [48], Meixner [24], Dual Hahn [46] and Racah [47].

A thorough literature study has shown that the order of the existing orthogonal moments 
(continuous and discrete) is always limited to an integer, because the kernel function of 
these moments is defined for the integer order. However, it is sometimes necessary to cal‑
culate them for real or fractional orders for reasons of accuracy, security and location of 
regions in the image. Mathematically, fractional moments are a generalization of classical 
moments of fractional order equal to 1. In recent years, emphasis has been placed on the 
search for fractional orthogonal moments. In this direction, some continuous orthogonal 
moments of fractional order have been proposed, such as the fractional moments of Fou‑
rier-Mellin [45], Legendre [35], Zernike [35] and Chebyshev [1]. The continuous orthogo‑
nal moments of fractional order are defined by substituting x by xα ( � ∈ ℝ+ ) in the kernel 
function of classical moments. Therefore, the fractional order of moments becomes a posi‑
tive real number.

Since the images are discrete, the calculation of fractional continuous moments is char‑
acterized by: (1) the need for an appropriate transformation of the image coordinates for 
these moments to be applied, and by (2) the approximation of the integrals by summations, 
which causes discretization and approximation errors. To limit these errors, scientists are 
oriented towards discrete orthogonal moments of fractional order such as the fractional 
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discrete moments of Krawtchouk (FrKMs) [15], Tchebichef (FrTMs) [36], Charlier 
(FrCMs) [37], and separable Charlier-Meixner (FrCMMs) [40]. Since the method of sub‑
stitution (x by xα) cannot be applied in the case of discrete moments, the discrete moments 
of fractional order are derived by using the eigenvalue decomposition of the matrix of the 
classical kernel function. Fractional discrete orthogonal moments have the particularity of 
being directly defined in the discrete domain of the image, and that has established them as 
high discriminative power moment families.

With regard to discrete orthogonal moments of a fractional order, to date, only FrKMs, 
FrTMs FrCMs, and FrCMMs have been proposed for image processing. The fractional ver‑
sion of other discrete moments is still missing. In addition, FrKMs, FrTMs, FrCMs, and 
FrCMMs were only developed for grayscale images, which means that a color image can 
be processed by these descriptors by decomposing it into color systems (RGB or HSB) 
and each color channel is processed separately with these descriptors. This strategy has the 
drawbacks of applying the calculation scheme three times, by adding additional time over‑
head and the color information is not described in a compact and holistic way in a single 
moment coefficient.

In this paper, we propose a new set of discrete orthogonal moments of fractional order, 
named Quaternion Cartesian Fractional Hahn Moments (QCFrHMs), based on the new 
Fractional Hahn Polynomials (FrHPs) and quaternion theory, which can essentially be 
used for color images representation. First, new Fractional Hahn Polynomials (FrHPs) are 
proposed using the eigenvalue decomposition of the classical Hahn polynomial matrix. 
Then, the proposed FrHPs are used as a kernel function to define the new Fractional Hahn 
Moments (FrHMs). Finally, based on quaternion algebra, the FrHMs for grayscale images 
are generalized to the Quaternion Cartesian Fractional Hahn Moments (QCFrHMs) for 
color images. The QCFrHMs with two additional parameters α and β (�, � ∈ ℝ) , called 
fractional orders of QCFrHMs, can process color images in a compact and holistic way. 
Another advantage is that QCFrHMs and processed images are defined in the Cartesian 
coordinate system. Therefore, no coordinate conversion is necessary, which reduces the 
calculation complexity and improves the numerical stability of these descriptors.

To illustrate the application of QCFrHMs, we propose a watermarking scheme for the 
copyright protection of color images. Several numerical experiments are performed to con‑
firm the effectiveness of QCFrHMs, with respect to the imperceptibility, robustness, and 
security of the proposed watermarking scheme.

This paper is organized as follows: in the next section, we will give preliminaries which 
will be used in the rest of the paper, including the classic Hahn moments and their kernel 
functions. Section  3, which is the theoretical part of this article, provides the definition 
of FrHPs, FrHMs and QCFrHMs. The watermarking scheme for copyright protection of 
color images is proposed in Sect. 4 to evaluate the performance of QCFrHMs. Experimen‑
tal results are presented in Sects. 5 and 6 concludes the paper.

2 � Preliminaries

Hahn moments are scalar quantities, which have been used for more than fifteen years to 
characterize a digital image and capture its significant features [4, 7, 25, 32, 44, 48, 49]. 
From a mathematical point of view, Hahn moments are “projections” of an image or signal 
onto the discrete orthogonal Hahn polynomials. The (n+m)th order Hahn moments of a 
grayscale image g = {g(x, y)}

x,y=N−1

x,y=0
  are defined as [49]:
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where N is the number of pixels in each coordinate axis of the image, h̃(a,b)
n

(x;N) is the n-th 
order ortho-normalized Hahn polynomial (kernel function), defined as [48]

with ω(x) and ρ(n) are the weight function and the square norm of the Hahn polynomial, 
respectively, defined as:

and h(a,b)
n

(x;N) is the classical Hahn polynomials defined as [18]:

where a and b are adjustable parameters that control the shape of the Hahn polynomials, 
and 3F2(.) is the generalized hypergeometric function given by:

and (x)k is the Pochhammer symbol given by:

The Hahn polynomials satisfy the following orthogonality relationship:

Thanks to the orthogonality property of Hahn polynomials, an image can be recon‑
structed from its Hahn moments using the following formula:

where g(x, y) is the grey level of the image g = {g(x, y)}
x,y=N−1

x,y=0
  at position (x, y).

Note that, when the order of moments (n+m) increases, the calculation of Hahn 
moments can be limited by two major problems: The first is related to the propagation of 
numerical errors when calculating Hahn polynomials. The second is related to the high 
computational cost, especially for large images. To overcome these problems, Daoui et al. 

(1)Mn,m =

N−1∑
x=0

N−1∑
y=0

h̃(a,b)
n

(x;N)h̃(a,b)
m

(y;N)g(x, y) n,m = 0, 1, 2, ....,N − 1

(2)h̃(a,b)
n

(x;N) = h(a,b)
n

(x;N)

√
𝜔(x)

𝜌(n)

(3)�(x) =

(
a + x

x

)(
b + N − x

N − x

)

(4)�(n) =
(−1)nn!(n + a + b + 1)N+1(b + 1)n

N!(2n + a + b + 1)(a + 1)n(−N)n

(5)
h(a,b)
n

(x;N) =
(−1)n(b + 1)n(N − n)n

n!
× 3F2(−n,−x, n + 1 + a + b;b + 1, 1 − N;1)

with x, n = 0, 1,… ,N − 1, a > −1& b > −1

(6)3F2(x1, x2, x3;y1, y2;z) =

∞∑
k=0

(x1)k(x2)k(x3)kz
k

(y1)k(y2)kk!

(7)(x)k = x(x + 1)(x + 2)...(x + k − 1), for k ≥ 1 and (x)0 = 1

(8)
N−1∑
x=0

h̃(a,b)
n

(x;N)h̃(a,b)
m

(x;N) = 𝛿n,m;n,m = 1, 2, ....,N − 1

(9)g(x, y) =

N−1∑
n=0

N−1∑
m=0

h̃(a,b)
n

(x;N)h̃(a,b)
m

(y;N)Mn,m
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proposed a stable computation of Hahn polynomials using a method based on the modi‑
fied Gram-Shmidt Orthonormalization Process (GSOP) [4]. This process a considerably 
reduces the propagation of numerical errors during the calculation of Hahn polynomials. 
And to reduce calculation time, we use matrix formulas to calculate Hahn moments and to 
reconstruct the images from Hahn moments. These formulas are given as follows:

Where g denotes N×N grayscale image matrix, H is the Hahn polynomial matrix and M 
is the Hahn moment matrix, with.

Hahn polynomials are a generalization of several other types of polynomials such as the 
discrete orthogonal polynomials of Tchebichef, Krawtchouk and Meixner. The latter are 
obtained from Hahn polynomials by adjusting the parameters {a,b} [44], which shows the 
ability of Hahn polynomials to include properties for the description of local and global 
regions of interest in the images. However, Hahn moments introduced in the literature are 
limited to an integer order because Hahn polynomials (kernel functions) are defined for 
integer orders. In this direction, we propose, in the following sections, the calculation of 
the Hahn polynomials and the Hahn moments for fractional or real orders in order to gener‑
alize their calculation and to benefit other properties for non-integer orders.

3 � Proposed quaternion cartesian fractional hahn moments

In this section, we introduce new Hahn moments, which are the Quaternion Cartesian 
Fractional Hahn Moments (QCFrHMs). These latter are based on the new Fractional Hahn 
Polynomials (FrHPs) and generalize the classical Hahn moments, this is the case where the 
fractional order is equal to 1. In addition, the proposed moments are able to describe the 
color information of an image in a compact and holistic way.

3.1 � Proposed fractional hahn polynomials

Let H be Hahn’s polynomial matrix of size N × N . The matrix H checks the following four 
properties [18]: (1) orthogonal matrix, (2) real matrix, (3) unitary matrix, (4) the eigenval‑
ues �i (i = 1, 2,…, N) of H are of modulus 1, i.e.�i = ej�i , where �i is the argument of �i.

Using eigenvalue decomposition, the matrix H is written as:

where Λ = diag(�1, ......�N)  is the diagonal matrix whose diagonal coefficients are the 
eigenvalues of the matrix H. The passage matrix X = [u1, ......, uN]  is a square matrix 
whose i-th column is the eigenvector ui of the matrix H corresponds to the eigenvalue�i

(10)M = HTgH

(11)g = HMHT

(12)

M =
{
Mn,m

}n=N−1,m=N−1

n=0,m=0

H =
{
h̃(a,b)
n

(x;N)
}n=N−1,x=N−1

i=0,x=0

g = {g(x, y)}
x,y=N−1

x,y=0

(13)H = XΛX∗
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,X∗ = [u∗
1
, ......, u∗

N
]  is the conjugate transposed matrix of X, satisfyingPi ≜ uiu

∗
i
 , where Pi 

denotes the orthogonal projection onto the eigenspace corresponding to the eigenvalue �i.
The Eq. (13) can be rewritten as follows:

The spectral decomposition of H is given as follows:

Based on the spectral representation of the Hahn polynomials (Eq. 15), we define the 
Fractional Hahn Polynomials (FrHPs) of fractional order �, (� ∈ ℝ) by taking the orthogo‑
nal projection Pi on the eigenspace corresponding to the eigenvalue ��

i
 . Therefore, its spec‑

tral decomposition is given as follows:

Also, we can use the following matrix notation:

where Σ  is the diagonal matrix whose diagonal elements are the eigenvalues of the classi‑
cal matrix H in exponential form:

Fractional Hahn polynomials of fractional order have other important properties that 
generalize the properties of classical Hahn polynomials of order 1. These properties are 
summarized as follows:

	 (i)	 H0 = XΣ0X∗ = XX∗ = I , where I is the identity matrix.
	 (ii)	 H1 = XΣ1X∗ = XΣX∗ = H .
	 (iii)	 H�H� = (XΣ�X∗)(XΣ�X∗) = (XΣ�+�X∗) = H�+� .
	 (iv)	 H−� = (H�)−1 , because H�H−� = (XΣ�X∗)(XΣ−�X∗) = (XΣ�−�X∗) = I

The property (i) shows that the zero fractional order gives the identity matrix. The prop‑
erty (ii) indicates that classical Hahn polynomials can be obtained when the fractional 
order is equal to 1. the index additivity property (iii) shows that the product of two matrices 
of FrHPs of orders α and β can be calculated from the matrix of FrHPs of order α + β. The 
unitary property (iv) shows that the inverse of the FrHPs matrix of fractional order α is the 
FrHPs matrix of order α−.

3.2 � Proposed quaternion cartesian fractional hahn moments (QCFrHMs)

In this subsection, we first propose a new set of moments called Fractional Hahn Moments 
(FrHMs) which generalizes the classical Hahn moments, and which are based on the FrHPs 
proposed in the previous subsection. Next, we introduce a new set of Quaternion Cartesian 

(14)H =

N∑
i=1

�iuiu
∗
i
=

N∑
i=1

ej�i uiu
∗
i

(15)H = �1P1 + �2P2 + ......... + �NPN =

N∑
i=1

ej�iPi

(16)H� = ��
1
P1 + ��

2
P2 + ......... + ��

N
PN =

N∑
i=1

ej��iPi

(17)H� = XΣ�X∗

(18)Σ = Diag{ej�1 , ej�2 , .........., ej�N−1 , ej�N}
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Fractional Hahn Moments (QCFrHMs) where color images can be processed holistically 
and compactly with these descriptors.

Enlightened by the definition of classical Hahn Moments (Eq. 10), we project a gray‑
scale image on a polynomial basis formed by the proposed FrHPs to define the Fractional 
Hahn Moments (FrHMs).

Definition 1.  Let g represents a grayscale image matrix defined in Cartesian coordinate 
system, The Fractional Hahn Moments (FrHMs) of fractional orders α and β, (�, � ∈ ℝ) , 
are given by.

 and the reconstruction of the image g from its moments is given by.

where H� and H� are the FrHP matrices of fractional order α and β, respectively. H−� and 
H−� are the inverse matrices of H� and H� , respectively.

The compact representation of image content is a fundamental problem in image pro‑
cessing. The proposed FrHMs (Eq. 19) with the two additional parameters (�, �) general‑
ize the classical Hahn moments (of fractional orders equal to 1). However, FrHMs cannot 
represent color images directly in a compact and holistic way. To extend the properties of 
FrHMs to color image processing, we will generalize FrHMs from the scalar field to the 
vector field based on the quaternion representation of the color image.

Sangwine [23] proposed to encode the three channel components of a RGB image 
f = {f (x, y), (0 ≤ x, y < N)} on the three imaginary parts of a pure quaternion, that is.

where fR(x, y) , fG(x, y) and fB(x, y) are the red, green and blue components of the quaternion 
color pixel fq(x, y) , respectively, and i, j, k are complex operators obeying the following 
rules:

Also, the representation of the quaternion color image can be used by the following 
matrix form as.

where fR , fG and fB represent the matrices of the red, green and blue channels of the quater‑
nion color image matrix fq , respectively.

Sangwine’s quaternion representation is used in this paper to define the Quaternion Car‑
tesian Fractional Hahn Moments (QCFrHMs) for color image representation.

Definition 2.  Let fq = fRi + fGj + fBk  be a quaternion color image matrix defined in Carte‑
sian coordinate system, The Quaternion Cartesian Fractional Hahn Moments of fractional 
orders α and β, (�, � ∈ ℝ) , are given by.

(19)M�,� = H�gH�

(20)g = H−�M�,�H−�

(21)fq(x, y) = 0 + fR(x, y)i + fG(x, y)j + fB(x, y)k

(22)i2 + j2 + k2 = −1,ij = −ji = k,jk = −kj = i,ki = −ik = j

(23)fq = fRi + fGj + fBk

(24)Q�,� = H�fqH
�
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and the reconstruction of the quaternion color image fq from its moments is given by.

It should be noted that fractional orders �, � = 1 lead to the classical Hahn moments 
of integer order, called the Quaternion Cartesian Hahn Moments (QCHMs). In other 
words, QCFrHMs are a generalization of QCHMs for fractional orders. In addition, with 
QCFrHMs, the color image is processed directly by a single vector field where each coef‑
ficient of QCFrHMs simultaneously contains the color information of all three color chan‑
nels. Therefore, QCFrHMs can make a more compact and discriminating representation of 
the color image.

For grayscale images or single-channel images, FrHMs are special cases of QCFrHMs 
as shown in the following equation:

whereM�,�(fR) , M�,�(fG) and M�,�(fB) are the FrHMs of the red, green and blue channels of 
the color image fq , respectively,

Equation (26) shows that QCFrHMs can be expressed from FrHMs.
The proposed QCFrHMs depend on four parameters: the fractional orders α and β 

(�, � ∈ ℝ) and the polynomial parameters (a, b), unlike the classical Hahn moments which 
depend only on the polynomial parameters (a, b). The additional fractional orders (α, β) 
can give a wide choice in the domains where QCFrHMs are applied.

4 � Application in color image watermarking

With the easy accessibility of data and the increasing use of the Internet, color images can 
suffer from illegal copying and redistribution in unsecured networks. The digital water‑
marking method, one of the most important and popular methods for copyright protection 
of digital images [33]. The principle of the digital watermarking method, for copyright 
protection, is to integrate into an original image an invisible mark, called a watermark, 
containing a copyright code. The watermarked image can then be distributed in insecure 
networks because it will always bear the mark of its owner.

A watermarking scheme is efficient if the watermarked image is very close to the origi‑
nal image (Imperceptibility Requirement) and if the various attacks (including common 
image processing attacks and geometric distortions) do not prevent watermark extraction 
(Robustness Requirement). In addition, hidden watermark should only be identified by the 
owner of the original image (Security Requirement).

Many watermarking schemes based on quaternion moments have been proposed 
for the copyright protection of color images. Based on Quaternion Radial Tchebichef 
Moments (QRTMs), Tsougenis et al. [30] proposed a robust watermarking scheme 
against desynchronization attacks and common signal processing attacks. Based on 
these descriptors and MLNCML chaotic system, robust zero-watermarking method 
was proposed in [39] for the copyright protection of stereo color images. Based on the 

(25)fq = H−�Q�,�H−�

(26)

Q�,� = H�fqH
�

= H�(fRi + fGj + fBk)H
�

= H�fRH
� i + H�fGH

� j + H�fBH
�k

= M�,�(fR)i +M�,�(fG)j +M�,�(fB)k
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probability density gradient and the color invariance model, Wang et al. [34] proposed 
a robust color image watermarking scheme using local Quaternion Exponent Moments 
(QEMs). Based on Quaternion Polar Harmonic Transform (QPHT), Yang et al. [42] 
proposed another watermarking scheme that is robust against geometric distortions and 
resistant to some image processing operations. Niu et al. [19] proposed an invariant 
color image watermarking scheme using Quaternion Radial Harmonic Fourier Moments 
(QRHFMs), which has robustness against various attacks (including common image 
processing operations and geometric distortions). Hosny et al. [9] based on the Quater‑
nion Radial Substituted Chebyshev Moments (QRSCMs) to build a robustness water‑
marking scheme against geometric distortions and common signal processing attacks. 
Tsougenis et al. [31] proposed an adaptive watermarking system based on quaternion 
radial moments (QRTMs, QRKMs, QRdHMs). In this work, the genetic algorithm is 
used to adjust the watermark integration strength according to the complexity of the 
blocks of the original image. The aforementioned schemes seek to optimize a compro‑
mise between imperceptibility and robustness, since an improvement in imperceptibility 
leads to a lowering of robustness and vice versa.

Based on the proposed QCFrHMs, we propose in this section an invisible, robust and 
secure watermarking scheme for the copyright protection of color images. The proposed 
scheme ensures high imperceptibility and robustness thanks to the proposed QCFrHMs 
with the appropriate choice of fractional orders (α, β). In addition, the proposed scheme 
adopts a multi-level security strategy (3 levels) offering a high level of security. The 
proposed watermarking scheme includes two essential procedures: the watermark inte‑
gration procedure and the watermark extraction procedure. The description of these pro‑
cedures is presented in the following subsections.

4.1 � Watermark integration scheme

The purpose of this procedure is to insert an invisible watermark containing a copy‑
right code into an original color image. The watermarked image can then be distributed 
because it will always contain the mark of its owner.

Let f be the host color image of size N × N and L × L be the binary watermark of size 
8 × 8 . The procedure for inserting the watermark into the host color image is described 
as follows:

(1)	 The host color image is divided into 8 × 8-pixel blocks.
(2)	 For each color block, the proposed QCFrHMs are calculated using the following equa‑

tion:

where Qi is the matrix of QCFrHMs of the color blockBi, (i = 0, 1, 2, ..., (N2∕64) − 1) , 
α and β are the fractional orders of QCFrHMs. Fractional orders (�, �) and polyno‑
mial parameters (a, b) are used as security parameters in the proposed scheme. These 
values are denoted Key1.

(3)	 To enhance the security of the proposed scheme, the watermark is scrambled before 
inserting it into the host image. The scrambled watermark noted W1  can be obtained 
using the following Arnold transformation [33]:

(26)Qi = H�BiH
� , i = 0, 1, 2, ..., (N2∕64) − 1
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where (x, y) and (x�, y�) are the pixels of W and W1 , respectively, and L represents the 
size of watermark image matrix.

	   Finally, the scrambled watermark W1 is transformed into a one-dimensional vector 
W1:

(4)	 To integrate the scrambled watermark into the host image, we adopt the bits integration 
strategy. Indeed, we integrate a single bit of the watermark into an matrix Qi by modify‑
ing a single coefficient of the matrix Qi using the following quantization function [3, 
42]:

where W2 = {w2(i), i = 0, 2, ...,L2 − 1}  is the vector of the scrambled water‑
mark, W2 = {w2(i), i = 0, 2, ...,L2 − 1} is the old QCFrHMs matrix of the 
blockBi, (i = 0, 1, 2, ..., (N2∕64) − 1) , Qi{qi(j, k), 0 ≤ j, k < 8} is the modified 
QCFrHMs matrix of this block, Δ is the quantization step controlling the embedding 
strength of the watermark bit, and round(.) is the round operator.

	   The  pos i t ions  of  the  modif ied  coef f ic ien ts  in  the  mat r ices 
Qi, (i = 0, 1, 2, ..., (N2∕64) − 1) are reorganized to form the second secret key, denoted 
Key2.

(5)	 Apply the inverse transformation on each modified matrix Qi to obtain the color water‑
marked blocks B̂i using the following relationship:

then, cosllect the watermarked blocks B̂i, (i = 0, 1, 2, ..., (N2∕64) − 1) to obtain the 
color watermarked image f̂ .

The proposed watermarking scheme based on QCFrHMs offers robustness against 
various image processing attacks. However, geometric distortions such as rotation, 
scaling and change in length–width ratio can affect the watermark extraction process 
from the watermarked image. To ensure robustness against these geometrical distor‑
tions, we adopt in this paper the strategy presented in [14] for estimating the geomet‑
rical transformation parameters. The rotation angle and scaling factor of an attacked 
watermarked image can be directly estimated by taking into account the first three 
coefficients of the QCFrHMs ( Q0,0,Q1,0,Q0,1 ) of the original image. Therefore, the 
coefficientsQ0,0,Q1,0,Q0,1 , and the security keys Key1 and Key2 are stored in the Intel‑
lectual Property Rights database (IPR).

(27)
[
x�

y�

]
=

[
1 1

1 2

][
x

y

]
mod (L)

(28)W2 = {w2(i), i = 0, 1, ...,L2 − 1}

(29)�qi(j, k)� =

⎧
⎪⎪⎨⎪⎪⎩

2Δ × round

��qi(j, k)�
2Δ

�
+

Δ

2
, if w2(i) = 1

2Δ × round

��qi(j, k)�
2Δ

�
−

Δ

2
, if w2(i) = 0

(30)B̂i = H−𝛼QiH
−𝛽 , i = 0, 1, 2, ..., (N2∕64) − 1
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4.2 � Watermark extraction scheme

The watermark extraction procedure is used to validate the copyright of the color water‑
marked image. The watermark can be easily extracted from the watermarked image by 
knowing the security information { Q0,0,Q1,0,Q0,1 , Key1, Key2}, which is obtained from 
Intellectual Property Rights database (IPR).

Let f̂  be the watermarked color image whose copyright we want to check by extract‑
ing the integrated watermark. The watermark extraction procedure is described as 
follows:

(1)	 In order to precisely extract the digital watermark, we first adopt the strategy presented 
in [14] to estimate the rotation angle and scale factor of the watermarked color image, 
using the three coefficients Q0,0,Q1,0,Q0,1 of the original image and the three corre‑
sponding coefficients of the watermarked image f̂  . Then, we correct the watermarked 
image by transforming it to its original geometric form according to the estimated 
rotation angle and scaling factor. Note that for the change of the length–width ratio, 
the watermarked color image was pre-sized to a square size before the estimation of 
the geometric transformation parameters.

	   Finally, the corrected watermarked image is divided into blocks 
B̂i(i = 0, 1, 2, ..., (N2∕64) − 1) of 8 × 8 pixels.

(2)	 For each block of the watermarked image, the QCFrHMs are calculated using the 
security key Key1:

	   Where Q̂i  is  the QCFrHMs matr ix of  the watermarked block 
B̂i(i = 0, 1, 2, ..., (N2∕64) − 1) , α and β are fractional orders obtained from the secu‑
rity key Key1.

(3)	 The scrambled watermark is extracted from a set of selected QCFrHM coefficients 
using the following relationship [33]:

where Q̂i = {q̂i(j, k), 0 ≤ j, k < 8}  is the QCFrHMs matrix of the block 
B̂i(i = 0, 1, 2, ..., (N2∕64) − 1) , Key2 are the positions of the selected QCFrHM coef‑
ficients and Ŵ2 = {ŵ2(i), 0 ≤ i < L2 − 1}  is the vector of the extracted scrambled 
watermark.

	   Finally, the vector Ŵ2  is reorganized into a two-dimensional matrix Ŵ1 of size L × L 
pixels.

(4)	 The extracted watermark can be obtained by descrambling Ŵ1 to Ŵ  using the inverse 
Arnold transform.

Note that, for an color image of sizeN × N , the total number of bits that can be inte‑
grated is N × N∕64 . Therefore, Therefore, the watermark size should checked the condi‑
tionL × L ≤ N × N∕64.

(31)Q̂i = H𝛼B̂iH
𝛽 , i = 0, 1, 2, ..., (N2∕64) − 1

(32)ŵ2(i) =

⎧
⎪⎪⎨⎪⎪⎩

1 if �q̂i(Key2)� − 2Δ × round

��q̂i(Key2)�
2Δ

�
> 0

0 if �q̂i(Key2)� − 2Δ × round

��q̂i(Key2)�
2Δ

�
≤ 0
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5 � Simulation results

In this section, experimental results are provided to validate the theoretical framework 
developed in the previous sections. QCFrHMs are evaluated and compared in the con‑
text of color image watermarking. In the first test, we study the imperceptibility of the 
proposed watermarking scheme. Then, we test the robustness of the proposed scheme 
against various common image processing attacks and against geometric distortions. 
Next, we study the effect of fractional order variation of QCFrHMs on imperceptibil‑
ity and robustness of the proposed watermarking scheme. Finally, we perform a test 
that shows the advantage of QCFrHMs on the security of the proposed watermarking 
scheme. To conduct these experiments, we use 8 popular color images and 5 binary 
watermarks. The 8 images (Fig. 1) are color images of size 256 × 256 × 24 bits extracted 
from the USC-SIPI image database [28], while the 5 watermarks (Fig.  2) are binary 
images of size 64 × 64 bits extracted from the MPEG-7 CE-shape-1 database [26]. The 
polynomial parameters a and b are fixed at the value a = b = 5 according to [4].

An objective assessment is carried out using the following criteria:
The Peak Signal to Noise Ratio (PSNR) is used to measure the difference between 

the original color image f  and the watermarked one f̂  [33]:

Fig. 1   The host color images used in experiments: a “Peppers”, b “Barbara”, c “House”, d “Splash”, e 
“Lena”, f “Airplane”, g “Mandrill” and h “Sailboat and lake”

Fig. 2   The binary watermarks 
used in experiments: a “Bat”, b 
“Deer”, c “Cup”, d “Lizzard” 
and e “Guitar”
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where N × N is the size of the color images.
A high PSNR value means less error between the original image and the watermarked 

one, this translates to a high imperceptibility.
The Bit Error Rate (BER, 0 ≤ BER ≤ 1 ) is used to measure the similarity between the 

original watermark W and the extracted watermark Ŵ [33]:

where L × L is the size of the watermark.
A lower value for BER means less error between the original watermark and the 

extracted one, which translates to a high robustness against attacks.
The experiments were conducted in a Matlab R2018a environment on a PC with a 

2.4 GHz Intel Core i3 processor and 6 GB RAM.
In the first test, we study the imperceptibility of the proposed watermarking scheme. 

The test is carried out on the 8 color images (Fig. 1). Each of the 5 watermarks (Fig. 2) 
has been integrated into the 8 color images by applying the watermark integration proce‑
dure presented in subsect. 4.1 to form 40 (8 × 5) watermarked color images. The fractional 
orders (�, �) of the QCFrHMs are chosen at the value �, � = 0.3 . The watermarks are inte‑
grated with a quantification step Δ (integration force) ranging from 5 to 60 with a step of 
5. Figure 3 shows the average PSNR values obtained from the 40 watermarked images as 
a function of the quantification step Δ. In addition, experimental results are compared to 
watermarking schemes based on QCFrHMs with the choices �, � = 0.4 , �, � = 0.9 , and 
�, � = 1 . We recall that the choice �, � = 1 leads to the classical Hahn moments (QCHMs). 
Figure 4 shows a set of watermarked images with different quantization steps Δ.

Figure  3 shows that average PSNRs decrease as the quantification step Δ increases, 
which means that the small values Δ lead to watermarked images of high quality close to 
the original images (high imperceptibility), while high values Δ lead to low quality water‑
marked images. This is clearly shown in Fig. 4. It is also shown that for the same quan‑
tification step, the proposed watermarking scheme with fractional orders �, � = 0.3 gives 
the best results in terms of imperceptibility, where the average PSNRs are higher than the 
average PSNRs of the fractional orders �, � = 0.4 and �, � = 0.9 . While the scheme based 
on classical QCHMs (QCFrHMs with �, � = 1 ) gives the lowest PSNRs. Therefore, we can 
conclude that the appropriate choice of fractional orders, improves the imperceptibility of 
the watermarking scheme.

Generally, a high value of the quantization step Δ improves the robustness of the water‑
marking scheme. Therefore, the choice of the Δ value must be ensured a compromise 
between imperceptibility and robustness. To guarantee an acceptable quality of water‑
marked images, the quantization step Δ is chosen to maintain an acceptable PSNR of 
approximately 40 dB. It should be noted that for the PSNR = 40 dB, the difference between 
the watermarked images and the original images is not detectable by the human eye. In the 
rest of the paper, we will use, Δ = 50 for the proposed QCFrHMs with the fractional orders 
�, � = 0.3 and Δ = 35 for the classical QCHMs.

(33)PSNR(f , f̂ ) = 10 log10

⎛
⎜⎜⎜⎜⎝

2552 × N × N

N−1∑
x=1

N−1∑
y=1

�
f (x, y) − f̂ (x, y)

�2

⎞
⎟⎟⎟⎟⎠

(34)BER(W, Ŵ) =
1

L × L

L∑
i=1

L∑
j=1

|W(i, j) − Ŵ(i, j)|
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In the second test, we evaluate the robustness of the proposed watermarking scheme 
against various common image processing attacks and geometric distortions. We recall that 
the proposed watermarking scheme is based on the proposed QCFrHMs, and the perfor‑
mance of this scheme is directly related to the QCFrHMs performance.

Fig. 3   Average PSNR of the 40 watermarked images as a function of the quantization step Δ (i.e. the inte‑
gration force of the watermark)

Δ = 15 Δ = 30 Δ = 45 Δ = 60 

QCFrHMs 

with 
, 0.3� � �  

PSNR(dB) 89.8354 58.93593 48.93593 35.5475 Enlarge part 

QCFrHMs 

with 
, 1� � �  

     

PSNR(dB) 78.7358 45.9551 37.9478 26.1755 Enlarge part 

Fig. 4   Set of watermarked images of “Peppers” using the QCFrHMs-based scheme
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The fractional orders are �, � = 0.3 and the quantization step is set to the value Δ = 50. 
The 8 color images (Fig. 1), and the 5 watermarks (Fig. 2) are used in this test to gener‑
ate watermarked color images. The watermark “Bat” is integrated into each color image, 
thus creating 1 × 8 = 8 color watermarked. Then, the 8 color images thus watermarked are 
degraded by common image processing attacks and geometric distortions of Table 1. Next, 
we extract watermarks from the attacked watermarked images by applying the watermark 
extraction scheme (Subsect. 4.2), creating altogether 8 extracted watermarks of “Bat”. Fig‑
ure 5 shows a set of “Bat” watermarks, which are extracted from the attacked watermarked 
images of “Peppers”. With this approach, we obtain 8 extracted watermarks of “Deer”, 
“Cup”, “Lizzard” and “Guitar”, in order to obtain 40 extracted watermarks for each attack 
of Table  1. Then, we calculate the BER (Eq.  34) of each extracted watermark and we 
obtain 40 results. Finally, we calculate the average BER for each attack.

The similar procedure is performed using the proposed scheme based on QCFrHMs 
with fractional orders �, � = 0.4 and �, � = 0.9 and the proposed scheme based on classical 
QCHMs (QCFrHMs with �, � = 1).

For comparison purposes, this test is performed for the Quaternion Radial Tchebichef 
Moments (QRTMs) method reported in [30], as well as the watermarking using the Quater‑
nion Exponent Moments (QEMs) [34], Quaternion Radial Krawtchouk Moments(QRKMs) 
[10], Quaternion Radial Harmonic Fourier Moments (QRHFMs) [19], Quaternion 
Polar Harmonic Transform (QPHT) [42] and Quaternion Radial Substituted Chebyshev 
Moments (QRSCMs) [9]. The experimental results can be found in Fig. 6.

The results of Fig. 6 show that: (1) the watermarking scheme based on QCFrHMs with 
fractional orders �, � = 0.3 gives the best results in terms of robustness against common 
image processing attacks and against geometric distortions, because the average BERs are 
very low for different attacks of this test, which means that the extracted watermarks are 
recognizable and close to the original watermarks as shown by the examples in Fig. 5; (2) 
the choice of fractional orders directly influences on the proposed watermarking scheme 
robustness. Indeed, watermarking schemes with fractional orders �, � = 0.3 and �, � = 0.4 
are very robust. However, this is not the case for fractional orders �, � = 0.9 and �, � = 1 . 
This shows that the appropriate choice of fractional orders of QCFrHMs improves the 
performance of the proposed watermarking scheme in terms of robustness against com‑
mon image processing attacks and against geometric distortions; (3) the average BERs 
increase as the degradation of the watermarked image increases. Although some water‑
marked images are much degraded, the average BERs of QCFrHMs with fractional orders 

Table 1   Information of the 
applied attacks

Attacks Parameters

JPEG compression Compression quality: 70; 50; 30
Median filtering Kernel size: 3 × 3; 5 × 5; 7 × 7
Average filtering Kernel size: 3 × 3; 5 × 5; 7 × 7
Gaussian blur Standard derivation: 0.5; 1; 1.5
Salt & peppers noise Density: 0.01; 0.02; 0.03
Gaussian white noise Variance: 0.01; 0.02; 0.03
Cropping at top left corner Percentage: 5%; 15%; 25%
Rotation Rotation angle: 5°; 15°; 25°
Scaling Scaling factor: 0.7; 1.1; 1.5
Length–width ratio change Ratio: 0.5/1.25; 1.25/0.5; 0.75/1.5
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�, � = 0.3 are very low, which means that the extracted watermarks are very close to the 
original watermarks; (4) the proposed QCFrHMs with the fractional orders �, � = 0.3 and 
�, � = 0.4 work much better than the descriptors of QRTMs [30], QEMs [34], QRKMs 
[10], QRHFMs [19], QPHT and QRSCMs [9], for various image processing attacks and 
geometric distortions. The reason for this is that QCFrHMs are defined in the Cartesian 
system and the images as well, so no coordinate conversion is necessary, which reduces 
calculation complexity and improves numerical stability. In addition, suitable fractional 
orders increase the accuracy of these descriptors, which is important for the proposed 
scheme robustness.

In the third test, we study the effect of fractional order variation of QCFrHMs on the 
imperceptibility and the robustness of the proposed watermarking scheme. We recall that 
the proposed QCFrHMs can be considered as a general version of the classical QCHMs. 
The quantification step is set at Δ = 50 in this test.

Starting with the imperceptibility test, each of the 5 watermarks (Fig. 2) is integrated 
into the 8 color images (Fig.  1) by applying the watermark integration scheme (Sub‑
sect. 4.1) to form 40 (8 × 5) watermarked color images. QCFrHMs are implemented with 
fractional orders (�, �) ranging from �, � = 0.1 to �, � = 1 with a step of 0.1. Figure  7 
shows the average PSNRs obtained from the 40 watermarked images as a function of the 
fractional orders(�, �).

For the robustness test, the watermark extraction scheme (Subsect.  4.2) is applied to 
recover the watermarks from the 40 watermarked images. QCFrHMs are implemented 

JPEG compression (50) BER=0.0083 Median filter (7x7) BER= 0.0244 Average filter (7x7) BER=0.0205

Gaussian blur (1) BER= 0.0078 Salt & Peppers 
noise (0.02)

BER=0.0044 Gaussian White 
noise (0.02)

BER=0.0308

Cropping at top left

corner (25%)

BER=0.0566 Rotation (15°) BER=0.0068 Scaling (0.7) BER=0.0059

Length-width ratio 

(0.5/1.25)

BER=0.0112

Fig. 5   Set of watermarks “But” extracted from the watermarked images of “Peppers”
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with fractional orders ranging from �, � = 0.1 to �, � = 1 with a step of 0.1. Four com‑
bined attacks are used in this test, namely Attack 1: Salt & Peppers noise (0.02) + Median 
filtering (3 × 3) + Scaling (1.1); Attack 2: JPEG compression (30) + Cropping at top left 
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Fig. 6   The watermark extraction results for common image processing attacks and for geometric distortions
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corner (5%) + Average filtering (3 × 3); Attack 3: Gaussian White Noise (0.01) + Average 
filtering (5 × 5) + Rotation (15°) and  Attack 4: JPEG compression (50) + Gaussian blur 
(1.5) + Length–width ratio change (1.25/0.5) + Cropping at top left corner (15%). The main 
reason for using combined attacks in this test is that the watermarked image can easily 
undergo several attacks simultaneously in the transmission process. The average BERs are 
presented as a function of fractional orders �, � = 1 in Fig. 8.

Examining these results, Fig.  7 clearly shows that the average PSNRs with the frac‑
tional orders �, � = 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9 are superior to the average PSNRs of 
the fractional orders �, � = 1 , which means that QCFrHMs with these fractional orders 
considerably improve the imperceptibility of the proposed watermarking scheme. On 
the other hand, Fig.  8 shows that most of the fractional orders, in particular the orders 
�, � = 0.1, 0.2, 0.3, 0.4, 0.9 , improve the robustness of the proposed watermarking scheme 
with respect to combined attacks where the average BERs are lower than the average BERs 
of the fractional orders�, � = 1 . Figures 7 and 8 also show that the choice �, � = 0.3 gives 
the best results in terms of imperceptibility (high PSNR) and robustness (low BER), which 
explains the effectiveness of the proposed watermarking scheme with this choice in previ‑
ous tests. This test shows the advantages that can be obtained with the appropriate choice 
of fractional orders of QCFrHMs.

In the last test, we show the advantage of QCFrHMs on the security of the proposed 
watermarking scheme. As mentioned in Sect. 4, the fractional orders (Key1) used in the 

Fig. 7   Effect of fractional order variation of QCFrHMs on the imperceptibility of the proposed watermark‑
ing scheme
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watermark integration procedure are necessary for the correct extraction of the watermark 
from the watermarked image. In other words, if we do not know these fractional orders we 
cannot check the copyright of the watermarked image. To show this advantage, the color 
image “Peppers” and the watermark “But” are used to generate the watermarked image 
“Peppers” with fractional orders �, � = 0.3 . Then, we extract the watermark from the 
watermarked image “Peppers” with fractional orders ranging from �, � = 0.1 to �, � = 1 
with a step of 0.1. In the integration procedure and the watermark extraction procedure, the 
quantization step (Δ = 50) and the Key2 (positions of the modified QCFrHMs coefficients) 
are unchanged. With this approach, we repeat this test by integrating the watermark “But” 
in the color image “Peppers” with fractional orders �, � = 0.9 . The BERs of the extracted 
watermarks are shown as a function of fractional orders (�, �) in Fig. 9. Figure 10 shows 
the extracted watermarks with different fractional orders.

Figure 9 shows that the watermark can be extracted from the watermarked images only 
when the correct fractional orders are used. Indeed, BERs with correct fractional orders are 
equal to zero while BERs with wrong fractional orders are greater than 4.5, which means 
that extracted watermarks are recognizable and close to the original watermarks when the 
correct fractional orders are used. This is clearly shown in Fig. 10. This test illustrates the 
advantage of QCFrHMs on the security of the proposed watermarking scheme.

(a) (b)

(c) (d)

Fig. 8   Effect of fractional order variation of QCFrHMs on the robustness of the proposed watermarking 
scheme against combined attacks; a Attack 1, b Attack 2, c Attack 3 and d Attack 4 
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6 � Conclusion

In this paper, we have proposed a new type of quaternion moments, which are the Qua‑
ternion Cartesian Fractional Hahn Moments. The latter are defined from the quaternion 
theory and the new fractional Hahn polynomials, which makes it possible to generalize 
the classical quaternion Hahn moments for the case of fractional order equal to 1. Frac‑
tional Hahn polynomials are defined from the eigenvalue decomposition and spectral 
representation of the classical Hahn polynomials matrix. The proposed QCFrHMs are 
capable to process the color image in a compact and holistic way where each coefficient 
of the QCFrHMs simultaneously contains the color information of all three channels 
of the processed image. In addition, the additional fractional orders α and β (�, � ∈ ℝ) 
give a wide choice of QCFrHMs for all fields of application of the latter especially for 
the reconstruction, localization and detection of regions of interest. We have also pro‑
posed a new, robust and secure invisible watermarking scheme for color image protec‑
tion based on the proposed QCFrHMs. Simulation results showed the effectiveness of 
the proposed moments in terms of representation and watermarking of color images 
compared to classical Hahn moments and compared to other types of the radial and Car‑
tesian quaternion moments. The important results of the proposed fractional moments 
can be used for applications such as signal and 3D image watermarking.
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Fig. 9   The extracted watermark BERs according to fractional orders; a Watermark integration using frac‑
tional orders �, � = 0.3 and b Watermark integration using fractional orders �, � = 0.9

Watermark integration using fractional orders , 0.3� � � .
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Fig. 10   The columns from left to right show extracted watermarks using QCFrHMs with fractional orders 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1, respectively
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