
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11418-6

1 3

A string matching based ultra‑low complexity lossless screen 
content coding technique

Yufen Yang1 · Tao Lin1 · Liping Zhao2,3 · Kailun Zhou1 · Shuhui Wang1

Received: 9 September 2020 / Revised: 3 August 2021 / Accepted: 10 August 2021 / 

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Screen contents have become a popular image type driven by the growing market for trans-
ferring display screen between devices, especially mobile devices. Due to the ultra-high 
quality display featured in most of nowadays mobile devices, lossless screen content cod-
ing (SCC) is usually required or preferred. Mobile devices also require ultra-low power 
consumption in all tasks including SCC. To address these issues, this paper proposes an 
ultra-low coding complexity technique based on string matching for high efficiency lossless 
SCC. The technique covers three major coding phases of fast searching, prediction, and 
entropy coding. Condensed hash table (CHT) based fast searching is proposed to speed-
up reference string searching process. Coplanar prediction (CP) and predictor-dependent 
residual (PDR) are presented to first efficiently predict an unmatchable pixel using mul-
tiple neighboring pixels and then further reduce the entropy of prediction residuals. To 
achieve a good trade-off between coding complexity and efficiency, 4-bit-aligned variable 
length code (4bVLC) and byte-aligned multi-variable-length-code (BMVLC) are proposed 
to code the prediction residuals and three string matching parameters, respectively. For 
184 screen content images commonly used, compared with X265 and PNG in the default 
configuration and lossless mode, the proposed technique achieves 35.67% less total com-
pressed bytes with only 0.96% encoding and 1.54% decoding runtime, and 10.04% less 
total compressed bytes with only 6.83% encoding and 24.32% decoding runtime, respec-
tively. The proposed technique also outperforms X265 and PNG in all other configurations. 
For twelve HEVC-SCC CTC images, compared with PNG in fast, default and slow con-
figurations and X265 in ultrafast and default configurations, the proposed technique shows 
significant advantage with both high coding efficiency and ultra-low coding complexity.

Keywords  Screen content coding · String matching · Prediction coding · Variable length 
code · Hash table

 *	 Liping Zhao 
	 zhaoliping_jian@126.com

 *	 Kailun Zhou 
	 kailun_zh@tongji.edu.cn

Extended author information available on the last page of the article

Published online: 19 October 2021

Multimedia Tools and Applications (2022) 81:2043–2063

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11418-6&domain=pdf


1 3

1  Introduction

With the rapid advances of edge computing, cloud computing, machine learning, and 
associated display technologies and driven by the growing market for transferring display 
screen between devices, especially mobile devices, screen contents transmitted or stored 
in the form of image and video have become an important and popular type of image and 
video. The Internet has entered the 5G era. Images and videos emerging in various Inter-
net applications are the main driver of bandwidth use, accounting for over 80 percent of 
consumer Internet traffic [3]. Real-time, low-delay transport of screen contents has become 
more and more popular in every aspect of daily life and work, such as wireless displays, 
second screen, screen sharing and collaboration, cloud computing, display stream com-
pression, screenshot transferring, etc. [18]. In these inter-device-oriented applications, a 
coded representation of screen contents is needed. Next generation video coding standards 
that have technical requirements for screen contents coding include Versatile Video Coding 
(VVC) [22, 26] and the third generation of AVS (AVS3) [17].

Because the human eye is more sensitive to artifacts occurring in synthetic parts of 
images, it is necessary to explore lossless compression for image and video [18]. In par-
ticular, since most of nowadays mobile devices feature ultra-high quality display, lossless 
screen content coding (SCC) is usually required or preferred in these devices for users 
to obtain no-compromise visual experiences. Recently, enhanced soft context formation 
(SCF) technique [23] is proposed for lossless SCC and outperforms other state-of-the-art 
schemes by up to 33% bitrate savings.

Furthermore, in the 5G, AI, and IoT era, mobile devices and edge devices are growing 
rapidly. These devices usually require ultra-low power consumption and long battery runt-
ime in all tasks including compute-intensive SCC. To address the issue, JPEG XS standard 
aims to design lossless low-latency and low-complexity lightweight image compression 
[20]. MPEG is also working on low complexity video coding enhancement [2]. It can be 
seen that low and ultra-low complexity has become a hot topic of image and video coding.

Compared with traditional camera-captured contents, screen contents have many unique 
characteristics such as sharp edges, arbitrary shapes at the transitions between foreground 
and background, computer-generated object, text, and line art of discontinuous-tone, many 
repeated identical patterns with a variety of shapes and sizes, large uniform areas, and 
limited number of colors in some regions. Hence, High Efficiency Video Coding (HEVC) 
standard has developed an SCC extension [19, 24, 33]. Intra Block Copy (IBC) [27, 34] 
is a dedicated HEVC-SCC tool to perform block matching within the same frame. Palette 
coding (PLT) [7] is another dedicated HEVC-SCC tool to code a CU with limited number 
of colors efficiently. Moreover, string matching (SM) [13, 14, 36–39, 41, 42] and other 
approaches [1, 30] are proposed to significantly improve coding efficiency for screen con-
tents. The idea of the SM coding mainly comes from dictionary coding, e.g. LZ77 [46], 
ZLIB [6], LZMA [9] and LZ4 [16]. The latest screen content coding activities based on 
SM include an offset rotation mapping algorithm based on string matching [12] and new 
string matching approaches [15, 40, 43] for alpha image coding. It should be noted that 
nowadays PNG compressed image file format [21] is the most popular lossless coding for-
mat widely used for a variety of Internet applications, screenshots and other computer gen-
erated images in most devices. ZLIB is one of the basic coding tools used in PNG.

HEVC-SCC (HM-16.6 + SCM-5.2) achieves 70.2% bitrate reduction in AI configura-
tion over H.264/AVC (JM-19.0) but has an encoding runtime ratio of 271% [11]. Com-
pared with HEVC (HM-16.20), VVC (VTM-6.1) achieves 24.2% bitrate reduction in 

2044 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

AI configuration but the runtimes ratio is as high as 2716% for encoding and 187% for 
decoding [4].

Obviously, although VVC and HEVC standards have made excellent progress to 
improve coding efficiency, and existing SCC tools e.g. IBC, PLT, and SM have been 
proven to be very effective, they also increase coding complexity too much to be used in 
devices with requirement of low power consumption and ultra-low coding complexity. 
Thus, there is an urgent need to develop ultra-low complexity and high efficiency tech-
niques for image and video coding, especially for SCC.

There are quite a few efforts to try reducing the coding complexity of HEVC-SCC. 
The encoding time for reduced-complexity Intra Block Copy (IntraBC) mode can be 
reduced by 17.07% on average compared with the conventional HEVC-SCC extension 
[27]. The encoding complexity of the hash-based block matching is 87% and 84% that 
of the HEVC range extension reference software HM12.1_Rext5.1 with intra and low-
delay configurations, respectively [45]. Compared with the hash-based block matching 
scheme in the HEVC-SCC test model (SCM)-6.0, the fast hash-based inter-block match-
ing scheme achieves 12% and 16% encoding time savings in random access (RA) and 
low-delay B coding structures [31]. Fast intra prediction method based on content prop-
erty analysis for HEVC-based SCC can save 44.92% encoding time on average [10]. 
Compared with HM16.8 + SCM7.0, X265 can save 98.88% encoding time in fast con-
figuration. Among them, X265 is the most popular and commercial-oriented relatively 
low complexity encoder implementation of HEVC-SCC. Compared with HEVC-SCC 
reference software, these efforts can achieve up to 98.88% coding complexity reduction, 
but is still far from enough for ultra-low complexity (additional 90% or more complex-
ity reduction with almost same or even higher coding efficiency) screen content coding.

This paper proposes a string matching based ultra-low complexity and high efficiency 
lossless coding technique for screen contents. The technique covers three major coding 
phases, i.e. fast searching for optimal reference strings that match current strings being 
coded, prediction of unmatchable pixels to get prediction residuals, and entropy coding 
of string matching parameters and prediction residuals.

To find repeated identical patterns in an input image, condensed hash table (CHT) 
based fast reference string searching is proposed to speed-up the process of finding 
matching strings and unmatchable strings in the input image. To efficiently utilize 
the correlation between an unmatchable pixel and its neighboring pixels, coplanar 
prediction (CP) is proposed to obtain a predictor and predictor-dependent residual 
(PDR) is proposed to further reduce the entropy of prediction residuals. To achieve a 
good trade-off between complexity and efficiency, 4-bit-aligned variable length code 
(4bVLC) is proposed to code the prediction residuals of PDR and byte-aligned multi-
variable-length-code (BMVLC) is proposed to pack at most three VLCs of string 
matching parameters into one byte. Both 4bVLC and BMVLC have the advantages of 
low complexity and high throughput by avoiding bit-by-bit operations and bitstream 
access.

The major contributions of this paper are as follows.

1)	 An ultra-low complexity and high efficiency coding framework for lossless screen con-
tent coding.

2)	 CHT based fast string matching search.
3)	 CP and PDR for prediction and residual coding.
4)	 4bVLC and BMVLC for entropy coding.

2045Multimedia Tools and Applications (2022) 81:2043–2063



1 3

For a set of 184 screen content test images commonly used to evaluate the performance 
of SCC tools, compared with PNG and X265 [8] (HEVC), experimental results show that 
the proposed technique has the advantages of both ultra-low coding complexity and high 
coding efficiency.

The rest of the paper is structured as follows. Section  2 provides Related work. 
Section  3 presents the details of the technique proposed. Experimental results are 
given in Section 4 while conclusions and future work are drawn in Section 5.

2 � Related work

PNG is a lossless data compression algorithm derived from LZ77 [46]. PNG includes two 
stages of filtering in differential coding and compression. The filtering process is to trans-
form the original data into a group of data with the smallest sum of absolute difference by 
difference method. The compression process means to compress the filtered pixels using 
the DEFLATE algorithm [5] (that is, Huffman coding is used for the compressed result of 
the LZ77 algorithm).

In X265, Lossless operation is theoretically simple. Rate control, by definition, is disa-
bled and the encoder disables all quality metrics since they would only waste CPU cycles. 
Instead, X265 reports only a compression factor at the end of the encode.

A low-complexity lossless screen content coding scheme using the dictionary coding 
was proposed in [32]. The technique uses 1D-string matching and selects the horizontal 
scan mode and vertical scan mode adaptively based on the conventional rate-distortion cost 
measurement. The technique leverages 2D image features such as directional texture pat-
tern and high correlation of neighboring blocks, and constrains the dictionary size within 
largest coding unit (LCU) and line from its left or upper neighbors.

United coding (UC) method for lossless screen content coding was proposed in [28]. 
UC unites intraframe hybrid coder and several lossless coding tools. In UC, several typical 
lossless coding tools such as dictionary-entropy coder, run-length encoding (RLE), port-
able network graphics (PNG) filters, and hextile coding are included.

A Pseudo-2D-matching (P2M) coder based enhancement to HEVC for screen con-
tents was proposed in [29]. The P2M uses three matching modes including (1) vertically 
scanned string matching; (2) horizontally scanned 2D-shape-preserved matching; and (3) 
vertically scanned 2D-shape-preserved matching to select the optimal mode by minimizing 
rate-distortion.

A lossless compression algorithm based on string matching with high performance and 
low complexity was proposed in [14]. The main new ideas are using pixel instead of byte 
as the basic unit for 1D string searching and matching, adopting joint optimal coding of 
three parameters of literal length, match length and offset mapping for three parameters. 
According to the statistical characteristics of the encoding parameter offset, an offset rota-
tion mapping algorithm was proposed in [12].

A flexible and uniform 2D string matching technique named universal string matching 
(USM) for general screen content coding (SCC) was proposed in [44]. USM includes three 
modes: general string (GS) mode, constrained string 1 (CS1) mode, and constrained string 
2 (CS2) mode. When using USM to code a CU, one of the three string constraint modes 
is selected to code the CU based on its characteristics and each of the three USM coding 
modes plays an indispensable role.

2046 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

The methods of [29, 32, 44] are all based on HEVC, and the method of [28] is based on 
H.264. Since both H.264 and HEVC were developed to improve coding efficiency at the 
cost of tremendous increase of coding complexity, none of these methods has low coding 
complexity.

The low coding complexity 1D string matching coding schemes of [14] and [12] use 
picture level raster scanning to convert a 2D picture into a 1D string. Picture level raster 
scanning has the problem that two strings with short 2D distance may be converted into 
two strings with long 1D distance. For example, 2D distance of 1 with horizontal distance 
of 0 and vertical distance of 1 is converted into 1D (linear) distance of picture width. Usu-
ally, the longer the distance between a current string and its reference string is, the more 
bits are spent to code the distance. Therefore, picture level raster scanning usually has low 
coding efficiency. To overcome the problem, this paper uses LCU level raster scanning to 
effectively reduce 1D distance. For example, 1D distance of picture width (e.g. 4096 for a 
4 K picture) in the previous example is reduced to 1D distance of LCU width (e.g. 64).

3 � An ultra‑low complexity and high efficiency technique for lossless 
screen content coding

3.1 � Framework of proposed technique

Figure 1 illustrates the framework of the proposed technique. Firstly, the input image of 
W × H pixels is partitioned into M × N LCUs, where the size of each LCU is 64 × 64 pix-
els, and M = W/64, N = H/64. Secondly, the image is scanned LCU by LCU in horizontal 
raster-scan order of LCU, and inside each LCU, the pixels are horizontally raster-scanned. 
Each pixel has three components (Y, U, V) or (R, G, B). Each component is also called a 
sample. A condensed hash table (CHT) based fast string searching is applied to the 1D 
input string to obtain both matching strings and unmatchable strings. Each matching string 
preceded by a (null or real) unmatchable string is represented by a 3-tuple (uml, ml, offset) 
and a string of unmatchable samples {UMi}, 1 ≤ i ≤ uml × 3, if uml > 0. If uml = 0, then the 
unmatchable string is null. The 3-tuples are coded by byte-aligned multi-variable-length-
code (BMVLC). Coplanar prediction (CP) is used to get predictors of unmatchable sam-
ples. Then predictor-dependent residual (PDR) is calculated as prediction residuals of the 
unmatchable samples. PDR is coded by 4-bit-aligned variable length code (4bVLC) or 
fixed-length code. For an image, if 4bVLC spends more bits than fixed-length code, then 
PDR of the entire image is coded by fixed-length code.

LCU by LCU, the 2D input image 

is scanned into a 1D input string

input 2D screen content image

CHT based  
fast string 
searching

unmatchable samples: 

UM1,UM2, ,UMm

3-tuples: 

{uml1,ml1,offset1},

{uml2,ml2,offset2},

,

{umlk,mlk,offsetk}

PDR 4bVLC

BMVLC
written into the bitstream

adaptive predictive coding

P={P1,P2,

,Pn}

P3-tuple P3-tuple P3-tuple

string matching coding 

parameters

CP

The structure of output bitstream

LCU0

LCUM

LCU0

LCUM

LCUMxN-1

LCUM-1

LCU2M-1

LCUN-1

Fig. 1   An ultra-low complexity lossless coding framework for screen content coding

2047Multimedia Tools and Applications (2022) 81:2043–2063



1 3

3.2 � Condensed hash table based fast string searching

The role of hash table is to quickly find the location (address) of the starting pixel of a 
potential reference string in a predetermined one-dimensional (1D) searching window by 
table-look-up. The 1D searching window is actually a 1D array storing pixels that have 
been coded before the pixel currently being coded and can be used as reference pixels. 
Each pixel in the 1D array has an address. The hash table is organized into multiple hash 
chains. Each chain links all addresses of pixels with the same hash values together to pro-
vide a set of pixel addresses for starting pixels of potential reference string search. When 
coding a current pixel, a 15-bit hash_value of the pixel is calculated by hash_value = {
[(Y <  < 16) + (U <  < 8) + V] × 2654435761U)} >  > 17, where Y, U, and V are three 8-bit 
components of a pixel, and the hash chain with the hash_value is selected for hash search-
ing, which goes through the selected hash chain one node (address) by one node to start 
potential reference string searching one by one. Obviously, the more nodes a hash chain 
has, the more compute-intensive a hash searching is. A conventional hash chain includes 
all nodes of the same hash value and may have thousands of nodes and even more, result-
ing in high coding complexity. If some “insignificant” nodes can be “skipped” when build-
ing up a hash chain, then the hash searching complexity can be reduced without sacrificing 
the coding efficiency. A node is added to a hash chain whenever a corresponding current 
pixel has been coded as either a pixel of a matching string or as an unmatchable pixel. It 
turns out that nodes corresponding to pixels in the middle of a matching string are "insig-
nificant". Based on the finding, a condensed hash chain is built up by adding only the nodes 
corresponding to unmatched pixels and the first two and last two pixels of any matching 
string to the hash table.

An example of a conventional hash chain vs. a condensed hash chain is illustrated in 
Fig.  2. In the example, the 15-bit hash value of the hash chain is 22330. The first node 
(address) of the hash chain is 140, which is stored in the hash-head of the hash table. 
Therefore, the hash chain starts from node 140. Figure  2a shows the conventional hash 
chain with 50 nodes linked by blue arrows. The first node 140 is followed by nodes 139 to 
110 (30 nodes), 95, 70, 69, 24 to 9 (16 nodes). Figure 2b shows the condensed hash chain 
with 11 nodes linked by red arrows. The first node 140 is followed by nodes 139, 111, 110, 
95, 70, 69, 24, 23, 10, 9. The number of nodes is reduced from 50 to 11.

It should be noted that N nodes on a hash chain mean that there are up to N potential 
reference strings to be searched. The searching process starts from the first node on the 

hash-headhash_value
hash-body

0

1

……

22329

22330

……

32766

R(255)

G(227)

B(187)

hash_value(22330)

0

0

0

……

140

……

……

hash table

 pixel to be 
encoded 

0 9… 10 23 24 … 69 70 …

95 110… 139… 140 …

(a) conventional hash chain

(b) condensed hash chain

0 9… 10 23 24 … 69 70 …

95 110…

searching node numbers=50

searching node numbers=1132767 0

111

139 140 …111

…

12 nodes

27 nodes
39 "insignificant" nodes

Fig. 2   Condensed hash table based string searching

2048 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

hash chain with the same hash value as the current pixel, and finally the longest refer-
ence string is selected as the optimal reference string. As shown in Fig. 3, the proposed 
condensed hash table based fast string searching has the following steps.

(1)	 Search for special “above” position reference string with offset equal to 64. The offset 
equal to 64 has the highest percentage among all offset values. If the “above” matching 
reference string exists, then terminate the current string searching process and go to 
step (3), otherwise, go to step (2).

(2)	 Perform hash searching. The hash value of the current pixel being coded is calculated 
and used to go through the hash chain nodes in the CHT one by one until the final node 
is reached. No matter if a matching reference string is found or not, go to step (3).

(3)	 Add nodes to CHT. If a matching reference string is found in steps (1) or (2), then the 
nodes corresponding to the first two and last two (F2L2 in Fig. 3) pixels of the current 
string are added to CHT, otherwise, the node corresponding to the unmatchable pixel is 
added to CHT. If the last pixel of the image has been reached, then the string searching 
process is terminated, otherwise, go to step (1) to code the next pixel.

Experiments show that compared with conventional hash table, CHT can reduce total 
encoding runtime by about 20% without loss of coding efficiency.

Fig. 3   CHT based fast string 
searching

Search for special 

“above” position

input 1D string pixels

Perform hash 

searching

Find matching 

reference string?

no

yes

yes

no

matching reference stringunmatchable pixels

condensed 

hash table

add UM 

pixels to 

CHT

add F2L2 

pixels to 

CHT

C
H

T based fast string searching

output unmatchable pixels and  3-tuples

Find matching 

reference string?

2049Multimedia Tools and Applications (2022) 81:2043–2063



1 3

3.3 � Coplanar prediction and predictor‑dependent residual

To the best of our knowledge, existing dictionary coding, SM coding, and palette coding 
techniques for lossless SCC perform entropy coding on raw unmatchable pixels directly 
without prediction. However, we observed that quite a few unmatchable pixels are anti-ali-
ased boundaries or edges of solid color regions rendered by 2D computer graphics opera-
tion or shaded color areas rendered by 3D computer graphics operation. These rendering 
operations usually use linear interpolation model to generate pixels from neighboring pix-
els. Therefore, such an unmatchable pixel usually can be well predicted from its neighbor-
ing pixels using a coplanar model, i.e. assuming the unmatchable pixel and three pixels 
properly selected from its neighboring pixels satisfy the condition of four coplanar points.

To evaluate the effectiveness of prediction on unmatchable pixels, we calculated the 
entropies H(UM), H(RO), and H(RP) of the 8-bit raw unmatchable pixel samples UM, the 
ordinary subtraction based prediction residuals RO resulting from coplanar prediction (CP, 
described in Section 3.3.1), and the predictor-dependent residuals (PDR, described in Sec-
tion 3.3.2) RP, respectively.

The entropy of a data set D is calculated as follows.

1) Let the value range S of d ∈ D be S = {S1, S2, …, Sn}.
2) Compute the frequency F(Sk) of d being equal to Sk for k = 1 to n.
3) Compute the percentage P(Sk) of F (Sk) over ND:

where ND is the number of total elements in D.
4) The entropy H(D) of the data set D is calculated by

For each of the 184 screen content test images (see Section 4 for details) coded by the 
proposed technique, the entropies H(UM), H(RO), and H(RP) are plotted in Fig. 4a, where 
the black, blue and red curves are H(UM), H(RO), and H(RP), respectively. For about 

(1)P
(

Sk
)

=
F
(

Sk
)

ND

,

(2)H(D) = −

n
∑

k=1

P
(

Sk
)

log2 P
(

Sk
)

.

H(UM )

H(RO )

H(RP )

0
1
2
3
4
5
6
7
8
9

1 15 29 43 57 71 85 99 113127141 155169183
184 screen content test images

En
tr

op
y

0%

2%

4%

6%

8%

10%

12%

1 15 29 43 57 71 85 99 113 127 141 155 169 183
184 screen content test images

En
tr

op
y 

re
du

ct
io

n 
ra

tio

maximum: 9.12%
average: 2.32%
minimum: 0% (H(RO )-H(RP ))/H(RP )

(a)              (b)

Fig. 4   Entropy curves related to unmatchable pixels of 184 test images: a H(UM), H(RO), H(RP); b 
[H(RO) − H(RP)]/H(RP)

2050 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

80% of the screen content test images, H(RP) is smaller than H(UM) by 0 ~ 6 as shown in 
Fig. 4a, i.e. PDR reduces the bits spent to code an unmatchable sample (a sample is a pixel 
component such as R or G or B or Y or U or V or alpha) by 0 ~ 6 bits from the entropy 
point of view. Moreover, to evaluate the advantage of H(RP) over H(RO), for the 184 test 
images, Fig. 4b plots the percentages of [H(RO) − H(RP)]/H(RP), which show that H(RP) 
is always smaller than H(RO) with maximum entropy reduction ratio of 9.12% and average 
entropy reduction ratio of 2.32%.

It can be seen that CP and PDR can significantly improve the coding efficiency for 
unmatchable pixels.

3.3.1 � Coplanar prediction

In CP, each sample with value Z and coordinates (x, y) is considered as a 3D point (x, y, Z). 
The 3D plane defined by three non-collinear points Q0 = (0, 0, 0), Q1 = (x1, y1, Z1), Q2 = (x2, 
y2, Z2) in the 3D space is given by the plane equation (y1Z2 − y2Z1)x + (Z1x2 − Z2x1)
y + (x1y2 − x2y1)Z = 0. Therefore, for a coplanar point (x, y, Z) of the plane, Z is given by

In coplanar prediction, the predictor P of an unmatchable sample X at coordinates (x, y) 
is given by P = Z + Z0, where Z is calculated from three neighboring points (samples) Q0, 
Q1, Q2 by (3) and Z0 is to compensate the preadjustment of Q0 from (0, 0, Q0) to (0, 0, 0) 
for simplifying the plane equation and (3).

Given a current sample X to be predicted, its direct neighboring samples are its left 
sample, top-left sample and above sample denoted by L, B, A, respectively. CP uses the 
most relevant trio (L, B, A) of neighboring samples properly selected from all neighboring 
samples to calculate the predictor P of X.

Let B have coordinates (0, 0), then A, L, X have coordinates (1, 0), (0, 1), (1, 1), respec-
tively. Let Q0, Q1, Q2 be (0, 0, 0), (1, 0, A–B), (0, 1, L–B), respectively, then Z0 = B and 
the coplanar predictor Pcp of X is given by Z + B =  − [− (A − B) − (L − B)] + B = A + L − B, 
where Z is calculated using (3). This paper uses Pcp with clipping as the predictor P of X by

where bitdepth is the bit depth of samples and usually is 8–12.

3.3.2 � Predictor‑dependent residual (PDR)

Consolidating the value range of a data set may increase the percentage of certain values to 
be taken, and thus reduces the entropy of the data set. The proposed PDR is a way to con-
solidate the value range of prediction residuals.

For any sample X and its predictor P with value range (expressed as an interval in math) 
[− I, J), i.e. − I ≤ X, P < J, the ordinary subtraction based prediction residual R = X − P has 
the value range of (− K, K) with a size (i.e. length of the interval) of 2K, where K = I + J. 
However, because the value of P is known, the true value range of R is actually (− I–P, 
J–P), which is P dependent and has the size of I + J = K. Taking the advantage of the feature 
and noting − I–P ≤ 0 < J–P, PDR divides the value range (− I–P, J–P) into two subranges 
(− I–P, 0) and (0, J − P), and shifts the first subrange (− I–P, 0) to the right by adding K 
to obtain (− I–P + K, K) = (J–P, K). The second subrange (0, J–P) and the shifted first 

(3)Z = −
[(

y1Z2−y2Z1

)

x +
(

Z1x2−Z2x1
)

y
]

∕
(

x1y2−x2y1
)

.

(4)P = clip(0, 2bitdepth−1, Pcp)

2051Multimedia Tools and Applications (2022) 81:2043–2063



1 3

subrange (J–P, K) are then recombined to obtain the final PDR value range (0, K). In this 
way, PDR consolidates the original value range of (− K, K) into new value range of (0, K) 
with only half size.

In this paper, I = 0 and J = 2bitdepth, so K = 2bitdepth. Therefore, for an unmatchable sample 
UM and its predictor P (Pcp described in Section 3.3.1), the predictor-dependent residual 
RP is calculated by

PDR has a wrap-around effect, e.g. UM − P =  − 1, − 2, − 3, − 4, − 5,… becomes 255, 
254, 253, 252, 251,…, respectively for bitdepth = 8, which makes the subsequent entropy 
coding of RP complicated. Thus, the following wrap-around correction mapping is pro-
posed to correct the problem and mR is the final mapped predictor-dependent residual:

After the mapping, the highly occurring values UM − P = 0, − 1, 1, − 2, 2, − 3, 3, − 4, 
4, − 5, 5,… become sequential mR = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,…, respectively, which are 
suitable for entropy coding.

3.4 � 4bVLC and BMVLC

Existing entropy coding schemes such as CABAC used in HEVC require bit-by-bit opera-
tions and bitstream access which are compute-intensive and have low throughput while 
fixed-length-code has very low coding efficiency. Hence, to provides a good trade-off 
between coding efficiency and coding complexity, 4bVLC consisting of only 4-bit, 8-bit, 
12-bit, and 16-bit codes is used to code the predictor-dependent residuals and BMVLC 
that packs at most three VLCs into one byte is used to code three string matching param-
eters including uml, ml, and offset, which denote the length of an unmatchable string, the 
length of a matching string, and the offset between a current string and its reference string, 
respectively.

To design a high efficiency BMVLC, we studied the value distribution of uml, ml, and 
offset and found:

(1)	 The percentage of uml = 0 and ml = 1 is 41.4%,
(2)	 The percentage of uml = 0 and ml > 1 is 44.0%,
(3)	 The percentage of uml > 0 and ml = 1 is 9.0%,
(4)	 The percentage of uml > 0 and ml > 1 is 5.6%.

Based on these findings, a high efficiency BMVLC is designed to code 3-tuple (uml, ml, 
offset) as to be described in Section 3.4.2.

3.4.1 � 4bVLC for PDR

As listed in Table 1, 4bVLC uses 4-bit, 8-bit, 12-bit, and 16-bit code to code mR (described 
in Section 3.3.2) in the four integer value ranges [0, 11], [12, 67], [68, 179], and [180, 255], 
respectively. Specifically, 4-bit-code equal to 0uuu (uuu = 000 ~ 111) specifies mR = 0 ~ 7. 

(5)RP =

{

UM − P + 2bitdepth UM < P

UM − P UM ≥ P
.

(6)mR =

{

RP × 2 0 ≤ RP ≤ 2bitdepth−1 − 1
(

2bitdepth − RP
)

× 2 − 1 2bitdepth−1 ≤ RP ≤ 2bitdepth − 1
.

2052 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

4-bit-code equal to 10uu (uu = 00 ~ 11) specifies mR = 8 ~ 11. 8-bit-code equal to 11oo 
uuuu (oo uuuu = 00 0000 ~ 10 1111) specifies mR = 12 ~ 59. 8-bit-code equal to 1111 
0uuu (uuu = 000 ~ 111) specifies mR = 60 ~ 67. 12-bit-code equal to 1111 1uuu uuuu (uuu 
uuuu = 000 0000 ~ 110 1111) specifies mR = 68 ~ 179. 16-bit-code equal to 1111 1111 uuuu 
uuuu (uuuu uuuu = 0000 0000 ~ 0100 1011) specifies mR = 180 ~ 255.

4bVLC uses only 4-bit operations without any bit-by-bit operations and has ultra-low 
coding complexity with very high throughput. On the other hand, typically, more than 80% 
of mR is coded by 4-bit code. Therefore, 4bVLC provides a good trade-off between ultra-
low coding complexity and high coding efficiency.

3.4.2 � BMVLC for 3‑tuples

BMVLC packs three subcodes, i.e. uml-code, ml-code, and offset-code into one or more 
whole bytes to code uml, ml, offset together, where uml ≥ 0, offset ≥ 1, ml ≥ 1 always hold.

BMVLC for a 3-tuple (uml, ml, offset) always starts with an uml-ml-code. As shown in 
Table 2, in the first byte, uml-ml-code uses 2 ~ 8 variable bits, ml-code and offset-code use 
the rest 0 ~ 6 variable bits. uml-ml-code equal to 00 or 01110 or 010 or 01111111 speci-
fies uml = 0 and ml = 1. uml-ml-code equal to 10000 or 0110 or 10001 or 10001111 speci-
fies uml = 0 and ml = 2. uml-ml-code equal to 100100 or 10010110 or 01111 or 1001010 
or 10010111 specifies uml = 0 and ml = 3. uml-ml-code equal to 100110 or 10011110 or 
1001110 or 10011111 specifies uml = 0 and ml = 4. uml-ml-code equal to 10100 specifies 
uml = 0 and ml = 5. uml-ml-code equal to 10101 specifies uml = 0 and ml = 6. uml-ml-code 
equal to 11000 specifies uml = 0 and ml = 7. uml-ml-code equal to 11001 specifies uml = 0 
and ml = 8. uml-ml-code equal to 10110 or 10111 specifies uml = 0 and ml ≥ 9, and addi-
tional bits are needed to specify the value of ml. uml-ml-code equal to 1101 and 1110 
specifies uml = 1 and 2, respectively and ml ≥ 1, and additional bits are needed to specify 
the value of ml. uml-ml-code equal to 1111 specifies uml ≥ 3 and ml ≥ 1, and additional 
bits are needed to specify the value of uml and ml. More details are given in Table 2.

BMVLC uses at least 2-bit operations and mostly byte operations without bit-by-bit 
operations and has ultra-low coding complexity with very high throughput. On the other 
hand, as mentioned in Section 3.4, more than 85% of 3-tuples have uml = 0 and most of 
them are actually coded by one byte code. Therefore, BMVLC also provides a good trade-
off between ultra-low coding complexity and high coding efficiency.

Table 1   4bVLC for mR coding

Note 1-A u or o denotes a bit to code mR
Note 2-Excluding 1111

1st
4-bit1

2nd
4-bit1

3rd
4-bit1

4th
4-bit1

mR

0uuu – – – 0 ~ 7
10uu – – – 8 ~ 11
11oo2 uuuu – – 12 ~ 59
1111 0uuu – – 60 ~ 67
1111 1uuu2 uuuu – 68 ~ 179
1111 1111 uuuu uuuu 180 ~ 255

2053Multimedia Tools and Applications (2022) 81:2043–2063



1 3

3.4.3 � Bitstream structure

Figure 5 shows the bitstream structure of the proposed technique. In Fig. 5, LSB and 
MSB are the abbreviation for least significant bit and most significant bit, respectively. 
The bitstream consists of two parts: header and body. The header uses four bytes to code 
the picture width, the picture height, and the flag specifying the coding method of PDR. 
If the flag is 1, 4bVLC is used, otherwise, fixed-length code is used. The body uses 

Table 2   BMVLC for 3-tuple coding

Note 1-An m or o denotes a bit to code ml or offset, respectively
Note 2-Excluding 10001111
Note 3-Excluding 01111111
Note 4-uml = 3 + 255 × (i − 1) ~ 3 + 255 × i − 1
Note 5-ml = 7 + 255 ~ 65,541 for j = 2 or 65,542 + 255 × (j − 3) ~ 65,542 + 255 × (j − 2) − 1 for j ≥ 3
Note 6-ml = 1 ~ 6 for k = 0 or 7 ~ 6 + 255 for k = 1 or 7 + 255 ~ 7 + 65,534 for k = 2 or 65,535 + 7 + 255 × (k − 
3) ~ 65,535 + 7 + 255 × (k − 2) − 1 for k ≥ 3

1st byte1  + byte
(uml)

 + byte
(ml)

 + byte
(offset)

uml ml offset

00oooooo 0 0 0 0 1 64, 1 ~ 63
01110ooo 0 0 0 0 1 128, 65 ~ 71
010ooooo 0 0 1 0 1 72 ~ 72 + 25+8 − 1
01111111 0 0 2 0 1 72 + 25+8 ~ 65,535
10000ooo 0 0 0 0 2 64, 1 ~ 7
0110oooo 0 0 0 0 2 8 ~ 23
10001ooo2 0 0 1 0 2 24 ~ 24 + 7 × 28 − 1
10001111 0 0 2 0 2 24 + 7 × 28 ~ 65,535
100100oo 0 0 0 0 3 64, 1 ~ 3
10010110 0 0 0 0 3 4
01111ooo3 0 0 0 0 3 5 ~ 11
1001010o 0 0 1 0 3 12 ~ 12 + 21+8 − 1
10010111 0 0 2 0 3 12 + 21+8 ~ 65,535
100110oo 0 0 0 0 4 64, 1 ~ 3
10011110 0 0 0 0 4 4
1001110o 0 0 1 0 4 5 ~ 5 + 21+8 − 1
10011111 0 0 2 0 4 5 + 21+8 ~ 65,535
10100ooo 0 0 0/1/2 0 5 the same as ml = 4
10101ooo 0 0 0/1/2 0 6 the same as ml = 4
11000ooo 0 0 0/1/2 0 7 the same as ml = 4
11001ooo 0 0 0/1/2 0 8 the same as ml = 4
10110ooo 0 1 0/1/2 0 9 ~ 6 + 255 the same as ml = 4
10111ooo 0 j ≥ 2 0/1/2 0 ml5 the same as ml = 4
1101mmmo 0 k ≥ 0 1/2 1 ml6 1 ~ 256/257 ~ 65,535
1110mmmo 0 k ≥ 0 1/2 2 ml6 1 ~ 256/257 ~ 65,535
1111mmmo i ≥ 1 k ≥ 0 1/2 uml4 ml6 1 ~ 256/257 ~ 65,535

2054 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

BMVLC to code 3-tuples one by one. Each 3-tuple with uml greater than 0 is followed 
by 4bVLC or fixed-length code for PDR.

4 � Experiments

4.1 � Description of screen content test images

To evaluate the effectiveness of screen content coding methods, this paper uses twelve 
HEVC-SCC 8-bit common test condition (CTC) images used by JCT-VC [35] in the stand-
ard development and shown in Table 3 and 184 typical and commonly used [23] screen 
content images covering various application scenarios. PPM format of the 184 images can 
be downloaded via [25]. PPM format is converted to 8-bit RGB format, which is then con-
verted to 8-bit YUV format using ITU-R Rec. BT. 709.

All formats of the 184 test images are available on https://​github.​com/​SccVl​si/​Hyper-​
screen-​Conte​nt/​tree/​master/​screen%​20con​tent%​20test%​20ima​ges.

Nine examples of the 196 images including twelve HEVC-SCC CTC images and 184 
test images commonly used are shown in Fig. 6.

4.2 � Experiment settings

The experiments evaluate and compare the lossless coding efficiency, the encoding runt-
ime, the decoding runtime of the following three CODECs:

7-bit LSB of height

flag

8-bit LSB of height

8-bit MSB of width

8-bit LSB of width

header

xxxx xxxx xxxx xxxx xxxx xxxx xx xxxxxxx

3-tuple (+PDR)
3-tuple (uml=0)

3-tuple (+PDR)
PDR (uml>0)

3-tuple (uml>0)

body

>=2 bytes >=1 bytes >=1 byte

Fig. 5   Bitstream structure

Table 3   Twelve HEVC-SCC 
CTC images used in the 
experiment

Category Resolution Sequence name

Text & Graphics with Motion 1920 × 1080 sc_flyingGraphics
Text & Graphics with Motion sc_desktop
Text & Graphics with Motion sc_console
Text & Graphics with Motion ChineseEditing
Text & Graphics with Motion 1280 × 720 sc_web_browsing
Text & Graphics with Motion sc_map
Text & Graphics with Motion sc_programming
Text & Graphics with Motion sc_SlideShow
Animation 1280 × 720 sc_robot
Mixed content 2560 × 1440 Basketball_Screen
Mixed content 2560 × 1440 MissionControlClip2
Mixed content 1920 × 1080 MissionControlClip3

2055Multimedia Tools and Applications (2022) 81:2043–2063

https://github.com/SccVlsi/Hyper-screen-Content/tree/master/screen%20content%20test%20images
https://github.com/SccVlsi/Hyper-screen-Content/tree/master/screen%20content%20test%20images


1 3

(1)	 PNG, one of the most widely used file formats nowadays for compressed image in RGB 
format, especially in a variety of mobile Internet applications (available on http://​www.​
libpng.​org/​pub/​png/​libpng.​html). The coding configuration options of PNG include 
level and strategy. The values of level range from -1 to 9 for ultrafast to slow. The 
values of strategy range from 0 to 4 for Z_DEFAULT_STRATEGY (normal data), 
Z_FILTERED (data generated by filter), Z_HUFFMAN_ONLY (mandatory Huffman 
coding), Z_RLE (mandatory run-length coding), Z_FIXED (forbidden to use Dynamic 
Huffman coding), respectively. The value of strategy used in this paper is 0.

(2)	 X265, one of the highest coding efficiency CODECs usually in YUV format, a com-
mercial-oriented relatively low complexity encoder implementation of the latest video 
coding standard HEVC (available on https://​bitbu​cket.​org/​multi​corew​are/​X265/​downl​
oads/), where the decoding time is measured by HM reference software decoder (avail-
able on https://​hevc.​hhi.​fraun​hofer.​de/​svn/​svn_​HEVCS​oftwa​re/​tags/) because X265 
has only encoder. The coding configuration options of X265 include preset and loss-
less. The values of preset range from 0 to 9 for ultrafast to placebo. X265 can achieve 
lossless coding by using the –lossless option. It should be noted that although X265 
is not based on the state-of-art techniques such as VVC and AVS3, it is still the most 
appropriate CODEC for comparisons of both ultra-low complexity and high efficiency 
since the state-of-art techniques are not developed to reduce coding complexity at all 

Fig. 6   Nine examples of the 196 images in downsized version

2056 Multimedia Tools and Applications (2022) 81:2043–2063

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
https://bitbucket.org/multicoreware/X265/downloads/
https://bitbucket.org/multicoreware/X265/downloads/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/


1 3

and usually increase coding complexity by much more than 10 times with less than 
30% coding efficiency improvement.

(3)	 The proposed fast 1D string matching (F1DSM) coding technique with ultra-low com-
plexity and high efficiency.

All experimental results are evaluated in a Windows 7 × 64 system with Intel (R) Core 
(TM) i5-2430 M CPU (2.79 GHz).

The lossless coding efficiency comparison between a tested CODEC and an anchor 
CODEC for a single image is measured by the compressed bit ratio (CBR) of the two 
CODECs defined as follows:

where comp_bits_tested and comp_bits_anchor denote the compressed bits of the image 
coded by the tested CODEC and the anchor CODEC, respectively.

The overall lossless coding efficiency comparison between a tested CODEC and an anchor 
CODEC for 12 HEVC-SCC CTC images [35] or 184 test images commonly used [23] is 
measured by the total compressed bit ratio (TCBR) of the two CODECs defined as follows:

where comp_bits_testedi and comp_bits_anchori denote the compressed bits of the image 
i coded by the tested CODEC and the anchor CODEC, respectively and N = 12 or 184. To 
evaluate the encoder and decoder complexity, encoding and decoding software runtimes 
are also measured and the ratio of the tested CODEC runtime over the anchor CODEC 
runtime is calculated to compare the complexity of the two CODECs. The encoding runt-
ime ratio, the decoding runtime ratio, and the encoding plus decoding runtime ratio are 
denoted by EnTime, DeTime, and EnTime + DeTime, respectively. A microsecond is used 
as the timing unit. Although the recorded times are only approximate, as they were meas-
ured using batch file, the data allows a sufficient comparison of the complexity of the dif-
ferent CODECs.

The compression ratio of an image i is defined as

where com_bytes denote the compressed bytes of the image i coded by one of three 
CODECs.

The average compression ratio of 12 HEVC-SCC CTC images [35] or 184 test images 
commonly used [23] is defined as

(7)CBR =
comp_bits_tested

comp_bits_anchor
,

(8)TCBR =

N
∑

i=1

comp_bits_testedi

N
∑

i=1

comp_bits_anchori

,

(9)CRi =
W × H × 3

com_bytes
,

(10)
avgCR =

N
∑

i=1

CRi

N
, where N = 12 or 184.

2057Multimedia Tools and Applications (2022) 81:2043–2063



1 3

The level or preset configuration parameters for the three CODECs are listed in 
Table 4. The parameters are used to select different tradeoff between coding efficiency 
and encoding complexity. Larger level or preset number means higher encoding com-
plexity and higher coding efficiency.

4.3 � Experimental results

For the 12 HEVC-SCC CTC images [35] and 184 screen content test images commonly 
used [23], the overall comparison between F1DSM (level 4, tested) and other CODECs 
(PNG or X265 as anchor) is shown in Tables 5, 6, respectively. And the average com-
pression ratio of CODECs is shown in Fig. 7.

For nine typical screen content test images shown in Fig. 6, Table 7 lists the coding 
efficiency and the coding complexity comparison between F1DSM (level4) and PNG 
(default).

The experimental results can be summarized as follows.

(1)	 For the 12 HEVC-SCC CTC images and 184 screen content test images, the experi-
mental results show that F1DSM has the advantage of both high coding efficiency and 
ultra-low coding complexity.

a)	 For the 184 screen content test images, as shown in Table 5, compared with PNG, 
the encoding time of F1DSM is 2.57% ~ 21.04% and the decoding time of F1DSM 
is 24.32% ~ 27.25%, while the ratio of the total compressed bits is 78.97% ~ 91.88%. 
In particular, compared with PNG in default and slow configurations, not only the 
encoding time of F1DFM is just 6.83% and 2.57%, i.e. 93.17% and 97.43% reduc-
tion, respectively, but also F1DSM achieves coding efficiency gain of 10.04% and 
8.12%, respectively.

Table 4   Configurations for three 
CODECs

CODEC name configuration parameter

F1DSM Level 4
PNG Fast (level 1), default (level 6), slow (level 9)
X265 Ultrafast (preset 0), default (preset 5)

Table 5   Comparison between F1DSM and PNG for 12 HEVC-SCC CTC images and 184 test images 
(RGB)

Test images 12 HEVC-SCC CTC images 184 Test images

F1DSM vs. PNG PNG (fast) PNG (default) PNG (slow) PNG (fast) PNG (default) PNG (slow)

TCBR (%) 85.46 95.17 96.70 78.97 89.96 91.88
EnTime (%) 27.10 13.49 1.90 21.04 6.83 2.57
DeTime (%) 33.53 32.41 33.10 27.25 24.32 25.18
EnTime + DeTime(%) 28.57 16.00 2.54 22.46 8.53 3.42

2058 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

b)	 For the 184 screen content test images, as shown in Table 6, compared with X265 in 
default configuration, not only the encoding time and the decoding time of F1DSM 
is just 0.96% and 1.54% of X265, i.e. 99.04% and 98.46% reduction, but also 
F1DSM achieves coding efficiency gain of 35.67% over X265. Compared with 
X265 in fastest configuration, not only the encoding time and the decoding time 
of F1DSM is just 2.39% and 1.93%, i.e. 97.61% and 98.07% reduction, but also 
F1DSM achieves coding efficiency gain of 51.46% over X265.

c)	 For the 12 HEVC-SCC CTC images, as shown in Table 5, compared with PNG, the 
encoding time of F1DSM is 1.90% ~ 27.10% and the decoding time of F1DSM is 
24.41% ~ 33.53%, while the ratio of the total compressed bits is 85.46% ~ 96.70%. In 
particular, compared with PNG in slow configurations, not only the encoding time 
of F1DFM is just 1.90%, i.e. 98.10% reduction, but also F1DSM achieves coding 
efficiency gain of 3.30%.

d)	 For the 12 HEVC-SCC CTC images, as shown in Table 6, compared with X265 in 
default configuration, not only the encoding time and the decoding time of F1DSM 
is just 1.41% and 2.14% of X265, i.e. 98.59% and 97.86% reduction, but also 
F1DSM achieves coding efficiency gain of 21.05% over X265. Compared with 
X265 in fastest configuration, not only the encoding time and the decoding time 
of F1DSM is just 3.50% and 2.99%, i.e. 96.50% and 97.01% reduction, but also 
F1DSM achieves coding efficiency gain of 39.13% over X265.

e)	 As shown in Fig. 7, compared with PNG in fast, default and slow configurations 
and X265 in ultrafast and default configurations, the average compression ratio of 
F1DSM is the highest.

(2)	 In F1DSM, all of CP, PDR, 4bVLC, and BMVLC contribute to improving the coding effi-
ciency. As a result, F1DSM shows significant advantage over PNG and X265 with both high 
coding efficiency and ultra-low coding complexity. Actually, as evaluated by the experimental 

Table 6   Comparison between F1DSM and X265 for 12 HEVC-SCC CTC images and 184 test Images 
(YUV)

Test images 12 HEVC-SCC CTC images 184 test images

F1DSM vs. X265 X265 (ultrafast) X265 (default) X265 (ultrafast) X265 (default)

TCBR (%) 60.87 78.95 48.54 64.33
EnTime (%) 3.50 1.41 2.39 0.96
DeTime (%) 2.99 2.14 1.93 1.54
EnTime + DeTime(%) 3.34 1.55 2.24 1.08

29.32

17.44
22.77 23.75

11.14 10.21 10.468.45

0

10

20

30

40

F1DSM PNG(fast) PNG(default) PNG(slow)

(a) avgCR of F1DSM and PNG for RGB images

av
g
C

R

184 Test Images

12 CTC Images
31.20

10.75
15.63

12.08

4.89 6.54

0

10

20

30

40

F1DSM X265(ultrafast) X265(default)

(b) avgCR of F1DSM and X265 for YUV images

av
g
C

R

184 Test Images

12 CTC Images

Fig. 7   The average compression ratio of CODECs

2059Multimedia Tools and Applications (2022) 81:2043–2063



1 3

results, in comparison with PNG and X265, the proposed technique can achieve 90% or much 
more reduction of coding complexity with even higher coding efficiency.

(3)	 For nine typical screen content images shown in Table 7, the overall coding efficiency 
of F1DSM (level4) is higher than PNG (default), while the encoding and decoding 
complexity is much lower than PNG. TCBR of F1DSM (level4) over PNG (default) is 
89.52%, resulting in a big compressed bit saving of 10.48%. Moreover, the encoding 
time ratio of F1DSM (level4) over PNG (default) is only 12.39%, resulting in a very 
large encoding time reduction of 87.61%. Meanwhile, the decoding time of F1DSM is 
also significantly less than PNG by 63.90%.

(4)	 F1DSM can improve the coding efficiency of many different types of screen content, as 
illustrated in Fig. 6, quite significantly. F1DSM is very efficient for coding at least three 
types of common screen content. The first one is the content with some uniform areas. 
The second one is the content with sharp edges and arbitrary shapes at the transitions 
between foreground and background. The third one is various discrete-tone contents. 
F1DSM is also quite suitable for software implementations of screen content coding.

5 � Conclusion and future work

This paper proposes an ultra-low complexity and high efficiency technique based on string 
matching for lossless screen content coding. The technique includes five main parts to 
cover three major coding phases. Condensed hash table (CHT) is proposed for fast ref-
erence string searching. Both coplanar prediction (CP) and predictor-dependent residual 
(PDR) are proposed for prediction of unmatchable pixels. 4-bit-aligned VLC (4bVLC) and 
byte-aligned multi-VLC (BMVLC) are proposed for entropy coding.

Experimental results show that the proposed technique significantly outperforms exist-
ing lossless coding techniques such as currently most popular PNG and the latest coding 
standard HEVC based X265. Not only the coding complexity of the proposed technique is 
considerably lower than the existing techniques, but also the proposed technique has higher 
coding efficiency than the existing techniques for most typical screen content images.

Table 7   Comparison of F1DSM vs. PNG for nine screen content images

Nine typical tested screen content images F1DSM (leve4) vs. PNG(default)

Image name in Fig. 5 resolution CBR (%) EnTime (%) DeTime (%)

sudoku_408 × 408 408 × 408 73.52 7.76 18.36
ChinaSpeed_1024 × 768 1024 × 768 102.72 10.73 49.93
ScienceRaps_944 × 784 944 × 784 103.23 9.69 48.14
WOBIB_416 × 416 416 × 416 95.75 10.26 25.60
WEBB_1280 × 720 1280 × 720 95.56 12.31 26.14
cim01_672 × 680 672 × 680 103.34 14.52 36.77
ScienceDaily_984 × 952 984 × 952 93.23 12.91 28.33
map_1280 × 720 1280 × 720 66.49 14.77 34.27
cim15_840 × 624 840 × 624 98.63 16.67 34.04
TCBR(%) 89.52 12.39 36.10

2060 Multimedia Tools and Applications (2022) 81:2043–2063



1 3

Future work includes: (1) Improving CP by using more trios (modes), context-based 
mode selection, and combining other prediction methods with CP; (2) Improving entropy 
coding efficiency further by context-adaptive or dynamic BMVLC, 4bVLC, 2bVLC, etc.; 
(3) Improving string matching efficiency by low complexity 2D-shape string matching; (4) 
Exploring other low coding complexity tools such as transform and quantization and har-
monizing them with string matching for low complexity lossless and lossy screen content 
coding; (5) Optimizing low complexity string matching coding techniques for other types 
of hyper-screen content such as image segmentation maps widely used in many AI applica-
tions, e.g. auto-driving and object tracking.

Acknowledgements  This work is supported by the Natural Science Foundation of Zhejiang Province (Grant 
No. LY19F020015), the National Science Foundation of China (Grant No. 61871289), the Public Service 
Technology Application Research Project of Shaoxing city (Grant No. 2018C10015), the Natural Science 
Foundation of Shanghai (Grant Nos. 18ZR1440600, 19ZR1461100).

References

	 1.	 Abdoli M, Henry F, Brault P et al (2018) Short-distance intra prediction of screen content in versatile 
video coding (VVC). IEEE Signal Process Lett 25(11):1690–1694

	 2.	 Baroncini V, Ferrara S, Ye Y (2018) Call for Proposals for Low Complexity Video Coding Enhance-
ments. ISO/IEC JTC1/SC29/WG11, N17944

	 3.	 Beyond HEVC: Versatile Video Coding project starts strongly in Joint Video Experts Team [Online]. 
http://​news.​itu.​int/​versa​tile-​video-​coding-​proje​ct-​starts-​stron​gly/. Accessed 3 Sep 2020

	 4.	 Bossen F, Li X, Suehring K (2019) AHG report: Test model software development (AHG3). JVET 
Doc JVET-P0003

	 5.	 Deutsch P (1996) DEFLATE Compressed Data Format Specification version 1.3 [Online], http://​www.​
ietf.​org/​rfc/​rfc19​51.​txt. Accessed 30 Jul 2021

	 6.	 Deutsch PL, Gailly JL (1996) ZLIB Compressed Data Format Specification version 3.3. RFC 1950
	 7.	 Guo LW, Pu W, Zou F et al (2014) Color palette for screen content coding. IEEE International Confer-

ence on Image Processing (ICIP), pp. 5556–5560
	 8.	 Guo L, Cock JD, Aaron A (2018) Compression Performance Comparison of x264, X265, libvpx and 

aomenc for On-Demand Adaptive Streaming Applications. IEEE Picture Coding Symposium, pp. 
26–30

	 9.	 Lan CL, Xu JZ, Zeng WJ et al (2015) Compound image compression using lossless and lossy LZMA 
in HEVC. IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6

	10.	 Lei JJ, Li DY, Pan ZM et al (2017) Fast intra prediction based on content property analysis for low 
complexity HEVC-based screen content coding. IEEE Trans Broadcast 63(1):48–58

	11.	 Li B, Xu J, Sullivan GJ (2015) Comparison of Compression Performance of HEVC Screen Content 
Coding Extensions Test Model 5 with AVC High 4:4:4 Predictive profile. JCTVC Doc JCTVC-V0033

	12.	 Lin T, Yang YF (2019) Offset rotation mapping algorithm based on string matching for screen content 
coding. J Jishou Univ 40(3):28–32

	13.	 Lin T, Zhang PJ, Wang SH et al (2013) Mixed chroma sampling-rate high efficiency video coding for 
full-chroma screen content. IEEE Trans Circuits Syst Video Technol 23(1):173–185

	14.	 Lin T, Cai WT, Chen XY et al (2017) Lossless compression algorithm based on string matching with 
high performance and low complexity for screen content coding. J Electron Inf Technol 39(2):351–359

	15.	 Lin T, Zhang DY, Zhao LP (2019) An improved entropy coding algorithm in string matching based on 
alpha image coding. J Jishou Univ 40(1):57–60

	16.	 Liu WQ, Mei FQ, Wang CH et al (2018) Data compression device based on modified LZ4 algorithm. 
IEEE Trans Consum Electron 64(1):110–117

	17.	 Luo F, Ma S (2017) The demand V1.0 for the new generation of AVS video coding technology. AVS 
N2495

	18.	 Peng WH, Walls FG, Cohen RA, Xu JZ, Ostermann J, MacInnis A, Lin T (2016) Overview of screen 
content video coding technologies, standards, and beyond. IEEE J Emerg Sel Topics Circuits Syst 
6(4):393–408

	19.	 Requirements for Future Extensions of HEVC in Coding Screen Content, ISO/IEC JTC1/SC29/WG11, 
N14174, 2014

2061Multimedia Tools and Applications (2022) 81:2043–2063

http://news.itu.int/versatile-video-coding-project-starts-strongly/
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt


1 3

	20.	 Richter T, Keinert J, Descampe A et al (2018) Entropy Coding and Entropy Coding Improvements of 
JPEG XS. 2018 Data Compression Conference, pp. 87–96

	21.	 Schalnat GE, Dilger A, Truta C (2020) Libpng [Online]. http://​www.​libpng.​org/​pub/​png/​libpng.​html. 
Accessed 4 Sep 2020

	22.	 Segall A, Baroncini V, Boyce J et al (2017) Joint Call for Proposals on Video Compression with Capa-
bility beyond HEVC. JVET Doc JVET-H1002

	23.	 Strutz T, Möller P (2020) Screen content compression based on enhanced soft context formation. IEEE 
Trans Multimed 22(5):1126–1138

	24.	 Sullivan GJ, Boyce JM, Chen Y et  al (2013) Standardized extensions of high efficiency video 
coding(HEVC). IEEE J Sel Topics Signal Process 7(6):1001–1016

	25.	 Strutz T (2020) Enhanced soft context formation [Online]. http://​www1.​hft-​leipz​ig.​de/​strutz/​Papers/​
SCFen​hanced-​resou​rces/. Accessed 2 Sep 2020

	26.	 Sullivan G, Boyce J, Wiegand T (2017) Requirement for Future Video Coding(FVC). VCEG Doc 
VCEG-BD03

	27.	 Tsang SH, Chan YL, Kuang W et al (2019) Reduced-complexity intra block copy (IntraBC) mode with 
early CU splitting and pruning for HEVC screen content coding. IEEE Trans Multimed 21(2):269–283

	28.	 Wang SH, Lin T (2014) United coding method for compound image compression. Multimed Tools 
Appl 71(3):1263–1282

	29.	 Wang SH, Lin T, Zhou KL et al (2015) Pseudo-2D-matching based enhancement to high efficiency 
video coding for screen contents. Multimed Tools Appl 74(18):7753–7771

	30.	 Wang SQ, Zhang XF, Liu XM et al (2017) Utility-driven adaptive preprocessing for screen content 
video compression. IEEE Trans Multimed 19(3):660–667

	31.	 Xiao W, Shi GM, Li B et al (2018) Fast hash-based inter-block matching for screen content coding. 
IEEE Trans Circuits Syst Video Technol 28(5):1169–1182

	32.	 Xu M, Ma Z, Wang W, Wang X and Yu H (2014) Low-complexity dictionary based lossless screen 
content coding. 2014 IEEE International Conference on Image Processing (ICIP), pp. 3200–3203

	33.	 Xu JZ, Joshi R, Cohen RA (2015) Overview of the emerging HEVC screen content coding extension. 
IEEE Trans Circuits Syst Video Technol 26(1):50–62

	34.	 Xu XZ, Liu S, Chuang TD et al (2016) Intra block copy in HEVC screen content coding extensions. 
IEEE J Emerg Sel Topics Circuits Syst 6(4):409–419

	35.	 Yu HP, Cohen R, Rapaka K et al (2015) Common Test Conditions for Screen Content Coding. JCT-VC 
doc JCTVC-U1015

	36.	 Zhao LP, Lin T, Zhou KL et al (2016) Pseudo 2D string matching technique for high efficiency screen 
content coding. IEEE Trans Multimed 18(3):339–350

	37.	 Zhao LP, Lin T, Zhou KL et al (2017) An efficient ISC offset parameter coding algorithm in screen 
content coding. Chin J Comput 40(5):1218–1228

	38.	 Zhao LP, Zhou KL, Guo J et al (2018) A universal string matching approach to screen content coding. 
IEEE Trans Multimed 20(4):796–809

	39.	 Zhao LP, Zhou KL, Guo J et al (2018) Pixel string matching for full-chroma screen and mixed content 
coding in AVS2. Chin J Comput 41(11):2482–2495

	40.	 Zhao LP, Lin T, Zhou KL (2018) A byte-size multi-variable-length-code based string matching algo-
rithm for alpha image coding. Telecommun Sci 34(11):96–104

	41.	 Zhao LP, Zhou KL, Lin T et al (2019) A Universal string prediction approach and its application in 
AVS2 mixed content coding. Chin J Comput 42(9):2100–2113

	42.	 Zhao LP, Lin T, Guo J et al (2019) Universal string prediction-based inter coding algorithm optimiza-
tion in AVS2 mixed content coding. Chin J Comput 42(10):2190–2202

	43.	 Zhao LP, Lin T, Zhang DY et al (2020) An ultra-low complexity and high efficiency approach for loss-
less alpha channel coding. Trans Multimedia 22(3):786–794

	44.	 Zhou KL, Zhao LP, Lin T (2018) A flexible and uniform string matching technique for general screen 
content coding. Multimed Tools Appl 77:23751–23775

	45.	 Zhu WJ, Ding WP, Xu JZ et al (2015) Hash-based block matching for screen content coding. IEEE 
Trans Multimed 17(7):935–944

	46.	 Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 
23(3):337–343

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

2062 Multimedia Tools and Applications (2022) 81:2043–2063

http://www.libpng.org/pub/png/libpng.html
http://www1.hft-leipzig.de/strutz/Papers/SCFenhanced-resources/
http://www1.hft-leipzig.de/strutz/Papers/SCFenhanced-resources/


1 3

Authors and Affiliations

Yufen Yang1 · Tao Lin1 · Liping Zhao2,3 · Kailun Zhou1 · Shuhui Wang1

1	 VLSI Lab, College of Electronics and Information Engineering, Tongji University, 
Shanghai 200092, China

2	 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China
3	 Information Technology R&D Innovation Center of Peking University, Shaoxing 312000, China

2063Multimedia Tools and Applications (2022) 81:2043–2063


	A string matching based ultra-low complexity lossless screen content coding technique
	Abstract
	1 Introduction
	2 Related work
	3 An ultra-low complexity and high efficiency technique for lossless screen content coding
	3.1 Framework of proposed technique
	3.2 Condensed hash table based fast string searching
	3.3 Coplanar prediction and predictor-dependent residual
	3.3.1 Coplanar prediction
	3.3.2 Predictor-dependent residual (PDR)

	3.4 4bVLC and BMVLC
	3.4.1 4bVLC for PDR
	3.4.2 BMVLC for 3-tuples
	3.4.3 Bitstream structure


	4 Experiments
	4.1 Description of screen content test images
	4.2 Experiment settings
	4.3 Experimental results

	5 Conclusion and future work
	Acknowledgements 
	References


