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Abstract
Various Human Activities are classified through time-series data generated by the sensors 
of wearable devices. Many real-time scenarios such as Healthcare Surveillance, Smart Cit-
ies and Intelligent surveillance etc. are based upon Human Activity Recognition. Despite 
the popularity of local features-based approaches and machine learning approaches, it fails 
to capture adequate temporal information. In this paper, the deep convolutional neural 
model has been proposed by combining external features, i.e. orientation invariant (||v||) 
and consecutive point trajectory information (||Δv||) with tri-axis data of the accelerometer. 
The proposed external features based approach experimented on three different deep learn-
ing architecture, namely Long-Short Term Memory (LSTM), Convolutional Neural Net-
works (CNN) and Convolution Long-Short Term Memory (ConvLSTM). Accuracy of the 
algorithms radically improve with the additional input feature ||v || and ||Δv || along with tri-
axis data of accelerometer. The results show that the performance of all three LSTM, CNN 
and ConvLSTM models is better to compare with the state of art methods on WISDOM 
dataset and Activity dataset also the performance of ConvLSTM is 98.41% for WISDOM 
dataset and 98.04 for activity dataset, which is higher than that of CNN and LSTM model 
used in this paper.

Keywords Convolutional neural network · Wearable device Sensor · Human activity 
recognition · Deep learning · Time-series data

1 Introduction

Representation of human activity can be categories through body motion and gesture [3], 
and determine the predict states of action. Time series data created by different sensors 
of wearable gadgets are capable to give data about the movement as well as posture [2]. 
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Majorly frequency-based features and Statistical features are used to identify the activities 
from time-series data. Statistical features offer less computational time and complexity as 
compare to the frequency-based feature [6]. Data received from the accelerometer is in the 
form of tri-axis (x, y, z) and effective for recognition of activity. The accelerometer can be 
easily integrated with wearable devices and mobile devices. Tri-axis data of accelerometer 
is capable to capture the human action in the time domain. Healthcare is one of the major 
sectors, utilizing sensor data. Many of the healthcare based applications are using the wear-
able sensors data for prescribing the health recommendation [11]. The present generation 
of handy mobile devices like a fitness band, smartphone, smartwatches includes a verity 
of sensors like accelerometer, gyroscope, magnetometer, etc. and capable of analyzing 
human activity and behavior analysis. The time series is segmented using a sliding win-
dow of a fixed length and split each time series into equal segments. The task of action/ 
activity recognition involves the identification of activity from time-series data, which acts 
for a certain duration by a human. In early days’ handcraft features and machine learning 
approaches were used for recognition of activity but deep learning-based approaches are in 
the great demand among the researchers. Deep learning-based approaches automatically 
learn the required feature representation directly from the data. Other than high accuracy 
and decent generalization, deep learning models trained in an end-to-end fashion [15].

Major challenges to identify activity from sensor data is to differentiate the simi-
lar activities like walking and jogging, up-stairs and down-stairs. The traditional 
approach extracted the features and fed into the classifier but accuracy compromise 
if these features missed the representation. This is a tedious and laborious task that 
employs a practical method that is not guaranteed to be optimal thus deep learning 
based approach for tri-axis data of the accelerometer is talk over in this paper. Using 
deep learning approach featuring engineering process can be avoided. Model itself cor-
relate the features and combine them. Three different deep learning algorithms, namely 
CNN, LSTM and ConvLSTM are discussed in this paper, which combine orientation 
invariant and consecutive point trajectory information as additional input along with 
the tri-axis data of accelerometer. Accuracy of the algorithms radically improve with 
these additional features. CNN is very powerful without memory which is required 
while processing the sequential data like time series so LSTM is better option in this 
case where it keep past input [33].

The rest of this paper is organized as follows: Sect. 2 present the motivation behind, 
in Sect. 3, we briefly review the literature based on time series data. Section 4, describe 
accelerometer data. Section  5, describe the proposed model. Experiment and result 
analysis discuss in Sect. 6 and finally, we conclude in Sect. 7.

2  Motivation

Activity recognition using sensor data is a high demanding research area because of 
its wide utility. We all are aware of the case of Asha Sahani in Mumbai whose Skelton 
was found in her flat. Many of such areas like healthcare system, monitoring the old 
people, monitoring the daily activities, sensor based mechanism is very useful however 
identification of activity would be a greater challenge for the automated system. An 
efficient mechanism with accurate result is the need of an hour.
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3  Previous work

The task of activity recognition involves the identification of activity from time-series 
data that act for a certain duration. Deep learning approaches attract the researchers 
and many deep learning architectures have been proposed to exploit the time series 
data. Lee et  al. [14] proposed a one-dimensional convolutional neural network in 
which they calculate the magnitude of the tri-axis data of accelerometer captured by 
their research team. They recorded three activities walking, running, and still. Shoaib 
et al. [25] proposed a fourth-dimension i.e. magnitude of tri-axis (x, y, z) data. They 
proved this four-dimension data as an input and used various classifiers to classify the 
data. Robert et  al. [29] proposed a Multi-layer perceptron solution implemented on 
a mobile phone. They extracted five features from the data and input to a multilayer 
perceptron. Cesar et al. [28] proposed a hierarchical neural classifier for activity clas-
sification. They extracted the time-domain feature from the tri-axis data. Transferring 
knowledge among the models having different probability distributions was proposed 
by Abdullah et  al. [9]. Random forest, decision tree, and transfer boost algorithms 
were used for the evaluation. Alvina et al. [1] built an application to trace the physi-
cal activates of the user. They collect dataset by their own and implemented the clas-
sifier in mobile applications. A convolution neural network-based approach was pro-
posed by Charissa et al. [22]. They experimented on various combinations of feature 
map and the number of convolution layers. Jinyong [18] proposed a transfer learning 
model based on the convolution network. He trained the model on the WISDM dataset 
and utilize this learning to classify the activities of the UCI HAR dataset. Wenchao  
et al. [8] proposed an idea of transform to time series data into an activity image of 
time–frequency-spectral. They apply a convolution neural network to learn features 
and classify the activities. Wanmin et al. [32] combine accelerometer and gyroscope 
data to extract features and classify activities. Charissa [23] used the accelerometer 
and gyroscope tri-axial sensor data to perform 6-axes, 1D convolution for construct-
ing a convolution neural network. A hybrid feature selection method was proposed by 
Wang et al. [31]. This method combined the traditional feature selection method filter  
and wrapper. The experimental results showed balances between recognition efficiency  
and accuracy. Yuwen et al. [4] proposed LSTM based feature extraction from the tri-
axis data of accelerometer.

4  Accelerometer data

For this research work, we are using the accelerometer dataset used in [13] and the 
WISDM dataset [12]. In both the dataset, data was collected through an accelerometer. 
The accelerometer is used to measure the acceleration of an object. It is measured in 
meter per second square and sampling frequency in Hz. Typical accelerometers are 
made up of two or three axis-vector components. Most smartphones typically make use 
of three-axis models. These devices are very sensitive intended to measure even tiny 
variations in acceleration. The accelerometer in the wearable device delivers the XYZ 
coordinate values, which is then used to identify the situation and the acceleration of 
the device. The XYZ coordinate indicates the direction and position of the device at 
which acceleration occurred (Fig. 1).
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5  Proposed methodology

Three different convolutions deep learning network model are proposed. These models use 
five dimensions, x, y, z, orientation invariant feature and consecutive point trajectory infor-
mation as input. The result shows all three models work well as compare to the state of art 
methods. Data received from the accelerometer is delivered to the XYZ coordinate values. 
Tri-axis data is preprocessed and extract the additional external feature vector. Detail dis-
cussion about feature extraction is given below is Sect. 5.1.

5.1  Feature extraction

The Accelerometer data provides the XYZ coordinate values, which are used to measure 
the position and the acceleration of the device [5]. We add two more dimensions in this 
three-dimension data i.e. orientation invariant feature of the sensor and the consecutive 
point trajectory information between the two sensor positions. Orientation invariant feature 
minimizes the effect of change in orientation [25]. The motion between two consecutive 
points trajectory can be identify through displacement vector (Fig. 2), it maps the transla-
tion between two consecutive movements and boosts the learning process.

The orientation invariant feature can be achieved through the magnitude of the vector. 
The magnitude of a vector (||v||) is the length of the line segment that defines it. Magnitude 
can be obtained by:

consecutive point trajectory information can be determined by the displacement vector. 
The displacement vector describes the motion in the space. To establish a coordinate sys-
tem and a convention for the axes, the coordinates x, y, and z to locate a particle at point P 

(1)��v�� =
√
x2 + y2 + z2

Fig. 1  Tri axis of accelerometer 
[5]

Fig. 2  Displacement vector
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(x, y, z) in three dimensions. If the particle is moving, the variables x, y, and z are func-
tions of time (t), therefore.

The position vector from the origin to the point B is �����⃗v(t) . In the unit vector notation �����⃗v(t) 
will be-

With definition of the position of a particle in three-dimensional space, we the three-
dimensional displacement can formulate. Figure shows a particle at time  t1 located at posi-
tion A with position vector  �⃗v 1 →  (t1). At a later time  t2, the particle is located at B with 
position vector  �⃗v 2 →  (t2).

The displacement vector Δv is found by

The magnitude of the displacement can be calculated as

So now the input data is of five-dimension x, y, z, magnitude, and the magnitude of the 
displacement vector between two consecutive sensor values (Figs. 3 and 4).

Window size (frame size) plays an important role sometimes not choosing the cor-
rect window size may give a penalty and reduce the accuracy of the data. Dataset [13] is 
captured with the frequency rate 10 Hz and WISDM dataset captured with a frequency 

x = x(t), y = y(t), z = z(t)

(2)�����⃗v(t) = x(t)�i + y(t)�j + z(t)

(3)����⃗Δv = �⃗v
(
t1
)
− �⃗v

(
t2
)

(4)||Δv|| =
√

(x − x(t))2 + (y − y(t))2 + (z − z(t))2

Fig. 3  Signal representation of dataset [13] with addition features magnitude and displacement vector
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rate of 20 Hz, therefore we choose window size of 4 s during the experiment and same 
for the WISDM dataset [12] as well, also we choose overlapping of one fourth the size 
of the window.

5.2  CNN model

In this Convolution deep learning model, the data received from the accelerometer are 
first divided into time-series segments which are the same size as the window frame. 
The size of the window frame we selected was 4 s. A hop size with 25% overlapping 
was considered for the experiment. Initially, the tri-axis data of accelerometer is pre-
processed and finds the value of magnitude ||v || and the Consecutive point trajectory 
information ||Δv||. Now the whole five-dimensional data provide as an input to the con-
volution neural network. A batch of segments, each segment sized 1 × 20, was stored in 
a 5D tensor. These segments are divided into 80% training data and 20% testing data. 
With these training data, the deep model is trained with a learning rate of 0.001. The 
trained model was tested with the 20% test data in each epoch. A checkpoint was created 
in which the model was saved if the performance improved with each epoch in the vali-
dation loss. The CNN model contains a total of five convolutional layers with dropout 
layers for regularization with a probability constant of 0.2 and a dense layer.

Each convolution layer of model X is trained in a similar way and the individual unit 
is shown as Fig. 5. In the lth layer’s training there is an input  x[l−1] with channel  cl-1, i.e. 
 cl-1 feature maps in 2-D arrays of xl−1

1
 ………….. xl−1

cl−1
 . The representation of  mth feature 

map is [10]

Fig. 4  Signal representation of WISDOM dataset with addition features magnitude and displacement vector
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where m = 1, 2,….cl, w[l]

im
 denote the  mth kernel, bi

m
 represent the bias of lth layer and * rep-

resent 2-D convolution operation.
Among the nonlinear activation function ReLU activation function is used in the model 

to transform output data [17] and softmax for the classification of the activity class. At the 
end of the training, we had the latest optimized model that shows high performance in the 
dataset, which is then used for testing against the testing data.

5.3  LSTM model

The initial phase of data preprocessing is same as we did in the CNN model. A batch of 
segments, each segment was stored in a 5D tensor. These segments are divided into 80% 
training data and 20% testing data. With these training data, the deep model is trained with 
a learning rate of 0.001. The trained model was tested with the 20% test data in each epoch.

The LSTM memory is also known as “gated” cell, where the word gate means the abil-
ity to make the decision of avoiding or maintaining the memory information. Important 
features from the input are preserved by an LSTM model over a long period of time. An 
LSTM has three of these gates, to protect and control the cell state [7].

A deep network was built by stacking multiple layers of LSTM memory units with 2 
fully connected layers (Fig. 6). Sparse categorical crossentropy is applied to measure the 
loss. The major formulation used in LSTM obtained from [7] are mention in Eq. 6.

(5)Z[l]
m

=

cl−1∑

i=1

Xl−1
i

∗ w
[l]

im
+ bi

m

ft = �
(
wf ∗

[
ht−1,Xt

]
+ bf

)

It = �(wI ∗
[
ht−1,Xt

]
+ bI)

Ct = tanh(WC ∗
[
ht−1,Xt

]
+ bC)

Fig. 5  Architecture CNN model
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where ft, It,Ot are forget, new cell and output gates.  Xt is input and  ht is hidden unit.

5.4  ConvLSTM model

The tri-axis data of accelerometer is preprocessed and finds the value of magnitude ||v || and 
the magnitude of displacement vector ||Δv||. Now the whole five-dimensional data provide as 
an input to the convolution neural network. A batch of segments, each segment was stored in 
a 5D tensor. ConvLSTM model was first introduced by Satya et al. [26]. The above picture 
shown in Fig. 7 describes how a general ConvLSTM model work. The CovnLSTM has nice 
properties for activity recognition as convolution operator may handle local spatial features 
the LSTM part manage temporal correlation in the sensor data. As discuss in the Sect. 5.3, 
An LSTM has three of these gates, to protect and control the cell state. The model consists 

Ct = ft ∗ Ct−1 + It ∗ Ct

Ot = �(wO ∗
[
ht−1,Xt

]
+ bO)

ht = Ot ∗ tanh(Ct)

Fig. 6  Architecture LSTM model

Fig. 7  Architecture ConvLSTM model
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three convolution layer and the output of third convolution layer flatten and input to the 
LSTM (Fig. 7). Timedistribution function is used to manage the dimensions of the input layer.

5.5  Dataset

We test our model in two datasets. The first dataset is used in [13] and the author makes it 
publically available (Fig. 8). The dataset was collected from two volunteers who performed 
activities using a smartwatch attached to the wrist of their dominant hand for four weeks. 
This data was captured with a sampling rate of 10  Hz. The dataset contains activities 
majorly at three locations office, kitchen, and outdoor. It consists of 11 different activates 
like office work, reading, writing, cooking, walking, running, etc. Another dataset used 
for the experiment is the WISDOM [12] dataset, which is publically available and can be 
download from http:// www. cis. fordh am. edu/ wisdm/. WISDM dataset contains the tri-axis 
accelerometer data along with the information of time and user performed  (Fig. 9). The 
dataset contains a total of 1,098,207 examples with six classes named walking, jogging, 
upstairs, downstairs, sitting, and standing. WISDM dataset is highly imbalance therefore 

Fig. 8  Activity Dataset [13] Activity type and location information

Fig. 9  WISDOM dataset Activity type
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during the preprocessing we balanced the dataset. WISDM dataset was captured with a 
sample rate of 20 Hz.

6  Experiment and result analysis

This section discussed the result of the proposed model. We use two datasets to com-
pared with the-state-of-art methods for human activity recognition: activity dataset [13] 
and WISDM dataset [12]. We also compare our method with state of art methods [4, 
9, 12, 13, 28, 29]. The proposed model is trained and tested on these two datasets for 
activity recognition. Adding features orientation invariant and consecutive point trajec-
tory information as additional input along with the tri-axis data of accelerometer pro-
vide strong support to the proposed approach compare to the other methods.

Tables  1 and  2 shown the efficiency of proposed models on activity dataset. Pro-
posed model 5D-CNN achieve 93.04% accuracy on activity dataset, LSTM model 
achieve 94.63% accuracy, LSTM without information of the location achieve 96.38% 
and 5D-ConvLSTM model with location achieve.

98.04% validation accuracy. Figures 10, 11, 12 and 13 show the accuracy graph and 
confusion matrix of the CNN, LSTM, ConvLSTM and ConvLSTM with location model 
respectively.

Table 2  Result of activity dataset Method Activity Dataset 
[13] (Accuracy %)

CNN 93.04
LSTM 94.63
CNN LSTM 96.38
CNN LSTM (With location) 98.04

Fig. 10  Accuracy chart and Confusion matrix of 5D- CNN Model for Activity Dataset
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All four models are tests with different hyperparameters like number of epochs, 
number of hidden layers, learning rate, loss function, optimizer, activation function etc. 
Although we keep learning rate and loss function function fixed for all models. Sparse 
categorical crossentropy loss function is used for for all models and keep learning rate 
0.001.Various possible combinations of epoch, hidden layers and optimizer analyze dur-
ing the experiment.

Table  3  represents the comparison of proposed models with the approach used in 
[13]. we find that accuracy is improved using our proposed model and believed that it 
can be further improved by using more fusion strategy. Table 3 shows that CNN model 
is ~ 3% better as compared to [13] and LSTM is ~ 4% better whereas ConvLSTM model 
batter ~ 6% from the state of art method. We also analyze ConvLSTM model with add-
ing additional input location and found that proposed ConvLSTM model is ~ 3% batter 
with location input.

Fig. 11  Accuracy chart and Confusion matrix of LSTM Model for Activity Dataset

Fig. 12  Accuracy chart and Confusion matrix of ConvLSTM Model for Activity Dataset
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By analyzing the confusion matrices shown in Figs.  10,  11,  12 and 13, a remark-
able performance can be observed in recognition of every activity. Confusion matrices 
of ConvLSTM model show that walking and writing achieved 100% accuracy whereas 
while adding the location as input than eating, walking and taking transport achieve 
100% accuracy.

Various parameters are tuned for achieving the optimum result. Five convolution 
layer are used in the CNN model with a learning rate of 0.001 and using Adam opti-
mizer. Whereas the various possible combination of the layers, epoch and optimizer 
experimented and optimum result received with 40 epochs,128 layers in LSTM and 
Adam optimizer, whereas 3 convolution layer and 128 LSTM layer are applied for the 
ConvLSTM model. The Similar combination uses while adding location input.

Tables  4 and  5 shown the evaluation of proposed approach using CNN, LSTM and 
ConvLSTM model on the WISDM dataset. CNN model achieves 96.52%, LSTM model 
achieve 97.00% accuracy and.

ConvLSTM model achieved 98.41% accuracy on the WISDM dataset. Figures 14, 15 
and 16 show the accuracy graph of all three models for training and testing data under vari-
ous epochs as well as confusion matrix.

By analyzing the confusion matrices shown in Figs. 14, 15 and 16, a remarkable perfor-
mance can be observed in the recognition of every activity. Confusion matrices show that 
standing is classified with 100% accuracy by all three models, all three models discrimi-
nate walking and running with grate accuracy. Models are a bit confused with upstairs and 

Fig. 13  Accuracy chart and Confusion matrix of ConvLSTM Model for Activity Dataset with location input

Table 3  Comparison of proposed 
approach with the state of art 
method

Bold entries are proposed models

Method Activity Dataset (Accuracy %)

Kwon MC et al. [13] 90.00 (without location input)
CNN 93.04 (without location input)
LSTM 94.63 (without location input)
Conv LSTM 96.38 (without location input)
Kwon MC et al. [13] 95.00 (with location input)
Conv LSTM 98.04 (with location input)
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downstairs. Table 5 shows individual activity recognition accuracy achieved by model-1 
and model-2.

Table 6 compare the result of proposed models with the state of art methods. we find 
that accuracy is improved using our proposed approach. CNN model is ~ 2% better as com-
pared to [30] and ~ 4% from [24] and LSTM model is ~ 3% better then [30] and ~ 4% then 
[24] whereas ConvLSTM model achieved highest accuracy among the all three proposed 
models and ~ 4% better as compared to [30].

Table 7 represent two types of errors: a false positive or a false negative. A false positive 
indicates the false alarm or a type I error and misclassification represent as false negative 
a type II error. Various performance metrics can be calculated through a confusion matrix.

The metric commonly used are accuracy, precision recall and F-score [21]. Precision 
indicate the proportion of positive identification was actually correct whereas the recall is 

Table 4  Activity recognition accuracy over the WISDM dataset

Activity Downstairs Jogging Sitting Standing Upstairs Walking

CNN 92% 98% 97% 100% 93% 99%
LSTM 92% 99% 98% 100% 95% 98%
ConvLSTN 96% 99% 99% 100% 95% 100%

Table 5  Result on WISDM 
Dataset

Method WISDM Dataset 
[12] (Accuracy 
%)

CNN 96.52
LSTM 97.00
ConvLSTM 98.41

Fig. 14  Accuracy chart and Confusion matrix of 5D- CNN Model for WISDOM Dataset
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the ratio of correctly detected positive instances to the total number of positive instances. 
In proposed model we can think of this as representing the correct classification of the 
activities (Tables 8 and 9).

The F- Score is used to measure the test accuracy and balance the use of precision 
and recall and can be calculate via harmonic mean of precision and recall. Mathematical 

Fig. 15  Accuracy chart and Confusion matrix of LSTM Model for WISDOM dataset

Fig. 16  Accuracy chart and Confusion matrix of ConvLSTM Model
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formulation of precision, recall and F- score and MCC are represented by Eqs. 4,5,6 and 
7 respectively [16, 27].

where MCC—> Matthews correlation coefficient
TP—> True positive instances
FP- > False Positive instances
TN- > True Negative Instances

(6)Precision =
TP

(TP + FP)

(7)Recall =
TP

(TP + FN)

(8)F − Score =
2 X Precision X Recall

(Precision + Recall)
× 100

(9)MCC =
TP X TN − FP X FN

√
[TP + FP][TP + FN][TN + FP][TN + FN]

Table 6  Comparison of proposed 
approach with the state of art 
method used WISDM dataset

Bold entries are proposed models

Method WISDM Data-
set (Accuracy 
%)

Jennifer R et al. [12] 91.7
Schalk et al. [20] 94
Kishor et al.[30] 94.61
Sarbagya et al. [24] 92.22
Yuwen et al. [4] 92.1
Konstantinos et al. [19] 94.18
CNN model 96.52
LSTM Model 97.00
ConvLSTM Model 98.41

Table 7  Structure of confusion 
matrix

Confusion Matrix Predicted Value

Negative Positive

Actual Value Negative True Negative False Positive
Positive False Negative True

Positive
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7  Conclusion

This article presented the recognition of human activity from accelerometer data. In this 
work, two additional features, orientation invariant and consecutive point trajectory infor-
mation are added along with the tri-axis data. Three deep learning architectures CNN, 
LSTM and ConvLSTM were used for experiment and tested on two different datasets 
one used in [13] and another one is publically available dataset i.e. WISDM dataset and 
achieved remarkable results. Also, compared the proposed models with the result of the 
state of art methods [4, 12, 19, 20, 24, 30] tested on mentioned datasets and found that the 
proposed models perform well compared to other methods. Results specified that the pro-
posed network can distinguish similar actions with different velocity. In future some more 
external features can be combined along with tri-axis data and test more complex activity.
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