
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11308-x

1 3

1135T: SOCIAL MULTIMEDIA PROCESSING

Real‑time low‑cost human skeleton detection

Eungyeol Song1 · Jinkyung Do1 · Sunjin Yu2 

Received: 17 January 2020 / Revised: 27 May 2021 / Accepted: 20 July 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The human skeleton or deep learning framework is useful for accurately recognizing
human behavior and analyzing that behavior across different situations. This work intro-
duces a low-cost human skeleton detection network for detecting human skeleton shapes
in real time. The proposed network is divided into two parts: pattern extraction and multi-
stage convolutional neural networks (CNNs). In the multi-stage CNN step, we use repeated
stages, including two branches for the estimation of the heatmap and the part affinity fields
(PAFs). In addition, the network consists of inverted bottleneck layers and separable con-
volutions to extract features efficiently. With test videos, our method achieved an average
video analysis speed of approximately 10.45 fps, which is significantly higher than the
value of 4.33 fps achieved by the OpenPose algorithm.

Keywords  Skeleton detection · CNNs · Human skeleton · Multi-stage CNN

1  Introduction

The recognition performance of human detection algorithms has recently been increased
because of improvements in artificial intelligence (AI) technology. As a result, more
research into human skeleton detection for the recognition of human actions has been
conducted.

Skeleton detection algorithms infer skeleton information from images of humans. A
variety of techniques have been developed to recognize skeleton shapes using in-depth
information involving, for example, 3D calculations and spatio-temporal information using

 *	 Sunjin Yu
	 sjyu@cwnu.ac.kr

	 Eungyeol Song
	 song@codevision.kr

	 Jinkyung Do
	 jkdo0923@gmail.com

1	 Research and development department, Codevision Inc 50, Yonsei-ro, Seodaemun‑gu, Seoul,
Republic of Korea

2	 Department of Culture Technology, Changwon National University, Changwon, South Korea

Published online: 9 August 2021

Multimedia Tools and Applications (2021) 80:34389–34402

http://orcid.org/0000-0001-9292-4099
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11308-x&domain=pdf

1 3

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) [1, 4, 13].
These methods require the x, y, and z coordinates of human positions, and therefore, they
need to be executed on powerful devices due to the high computational load [6, 10]. How-
ever, in this study, we detected human skeletons using 2D images with only x and y coordi-
nates, which significantly reduces the computational load [4].

Skeleton-based 2D human pose analysis using CNNs function by performing a localiza-
tion and estimation of keypoints that represent human-body joints. Previous research pre-
sents two different types of methods: top-down and bottom-up. The top-down method typi-
cally results in greater accuracy but also higher inference times than the bottom-up method.
The top-down method is composed of two steps: 1) detect a human region using a human
detector and 2) recognize a human skeleton in the detected region. HRNet is an example of
a top-down method that uses a high-resolution input image to achieve good performance
[18], demonstrating an average precision (AP) of approximately 75.5% for the COCO data-
set [14]. However, this method has a critical problem in that the inference time increases
with the number of people in the image. In contrast, bottom-up methods are performed
with a stable inference time regardless of the number of people but have comparatively
lower accuracy. OpenPose encodes the global context of an input image using a heatmap
and part affinity fields (PAFs) [3]. It is composed of a VGG-19 network and repeated CNN
stages to extract the heatmap and PAFs. It has achieved a mean average precision (mAP)
of approximately 60.6% but only requires an inference time of 0.005 s per image. Previ-
ous studies on skeleton detection have used repetition of deeper and more complex neural
networks to achieve more accurate performance. However, in this study, we prioritize the
networks with higher speed [17, 22].

Our proposed algorithm is divided into two parts: pattern extraction and multi-stage
CNNs. In the pattern extraction step, the network calculates a proper feature. Multi-stage
CNNs calculate an 18-dimensional heatmap and 36-dimensional PAFs.

The rest of this paper is organized as follows. Section 2 describes the reduced weight-
ing of research data (research on reducing the number of parameters and the latency of
skeleton detection has intensified recently, although much effort has been focused on
improving the performance in joint detection technology as well). Section 3 introduces
the algorithm proposed in this study. Section 4 describes the experimental environment
and dataset and presents the evaluation methods and results. Finally, Section 5 concludes
the paper.

2 � Related work

Several studies have been conducted on image-based deep learning to achieve increased
accuracy when solving detection, recognition, and classification problems. Yann LeCun’s
LeNet–5 first proposed the convolutional neural network and heralded the beginning of
deep learning. Later, AlexNet was presented at the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), to evaluate its classification performances on the ImageNet
dataset. AlexNet uses a 224 × 224–sized RGB 3 channel image as an input image and
has a memory–sharing structure at the middle of its network. This memory–sharing tech-
nique was designed to solve a memory shortage problem in the GPU’s VRAM. AlexNet
represented the idea that rectified linear units can be used to achieve rapid convergence
in image classification. Additionally, it introduced the overlapping pooling technique,
which renders the kernel size of pooling larger than that of the stride. AlexNet also

34390 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

demonstrated its abilities through the incorporation of other techniques, including data
augmentation using dropout and principal component analysis [11, 12, 15].

In 2014, the Oxford Visual Geometry Group introduced the VGG. Unlike other existing
AI technologies, the VGG proposed the use of a 3 × 3 convolution filter. This filter is made
up of three overlapping 3 × 3 convolutional layers, making it the equivalent of one 7 × 7 con-
vergence with respect to its receptive field. However, the filter uses a larger number of acti-
vation functions, which results in greater nonlinearity. Furthermore, the filter has the added
advantage of using fewer parameters than previous methods.

Around the same time, GoogLeNet (Inception) secured the first place at the 2014 ILS-
VRC. GoogLeNet is composed of twenty–two layers and has a long and complex struc-
ture. A main characteristic of GoogLeNet is its use of a block structure, referred to as an
Inception module. Other existing models connect each layer through a single convolution
and one pooling operation; however, the Inception module is characterized by its use of
concatenation, whereby four different operations are employed followed by combining the
feature map in the direction of the channel. Additionally, 1 × 1, 3 × 3, and 5 × 5 convolutions
are intermixed to express various receptive fields [11, 15, 17].

One effective object detection algorithm is the one proposed by Jun Chu, based on
multi-layer convolution feature fusion (MCFF) and online hard example mining (OHEM).
The MCFF is effective for extracting and detecting candidate regions of interest from an
image. Multi-layer data contain more complete information than single–layer data, mean-
ing the former is better suited to detect objects of different scales, and as a result, MCFF is
effective in object detection amongst various candidate regions [5].

Traditionally, studies on deep learning have developed networks based on recognition
rates. These would later create derivations that focused on various other factors such as
efficiency. Inception–v2, the follow-up technology of GoogLeNet, proposed different tech-
niques including factorizing the convergence filter, rethinking the auxiliary classifier, and
avoiding a representational bottleneck. There have since been more iterations of the Incep-
tion network, and currently, Inception-v4 consists of the following: a Stem Block, which
directly connects to the input; three Inception blocks (Inception-A, Inception-B, Incep-
tion–C); and two reduction blocks (Reduction-A, Reduction-B), which reduce the feature
map to half its size. Inception-v4 is the expanded version of Inception–v2 and Inception–v3
with an optimized and simplified architecture [20, 21]

Another method previous studies have used to obtain more sophisticated results is systems
being equipped with expensive GPUs. However, more recent studies have presented novel
techniques for creating lightweight AI architectures without such expensive GPUs. For exam-
ple, at the 2017 CVPR, Xception introduced the depthwise separable convolution to make
improvements upon the Inception structure. This method guides the model through a training
process that separately maps the cross–channel correlations and the spatial correlations of
images [20, 21].

The biggest contribution made toward creating a lightweight AI architecture is the
MobileNet study. The MobileNet architecture was the most important in that it employed
depthwise separable convolutions along with Xception. The difference between this study
and the previous pose estimation studies is its use of a novel architecture and the addition
of batch normalization and ReLU between the depthwise convolution and point convolu-
tion. Moreover, the Xception architecture employed depthwise separable convolutions to
obtain greater accuracy when compared with Inception, whereas the MobileNet architec-
ture used the same convolution to construct a lightweight structure that was operable on a
mobile device [8, 16].

34391Multimedia Tools and Applications (2021) 80:34389–34402

1 3

Subsequently, MobileNetv2 was released in 2018. Compared with its previous version,
MobileNetv2 has been upgraded with lower accuracy and fewer parameters and operations
in its convolution block. In addition, SqueezeNet was introduced to reduce its number of
parameters through extensive use of the squeeze and expand modules and the 1 × 1 convolu-
tion [9, 16].

3 � Proposed method

A human pose skeleton represents the orientation of a person in a graphical format. Essen-
tially, it is a set of coordinates that can be connected to describe the pose of the person.
Each coordinate in the skeleton is called a part, joint, or keypoint. A valid connection
between two parts is called a pair or limb.

The simplest approach to skeleton detection is the top–down approach, wherein you
use a person detector first, followed by estimating the parts and then calculating the pose
for each person. The alternate approach is the bottom–up approach, wherein you detect all
parts in the image (i.e., parts of every person) and then associate or group these parts as
belonging to distinct persons.

There are three models used for model compression: MobileNetV1 and MobileNetV2.
We used a separable convolution consisting of the inverted bottleneck layer used in Mobile-
NetV2 and the depthwise and pointwise convolution proposed in MobileNetV1 [8, 16].

Figure 1 displays the overall pipeline of the proposed algorithm. The algorithm is
divided into two steps: pattern extraction and multi–stage CNNs. The former is composed
of inverted bottleneck layers, and the latter is composed of two branches: Branch 1, which
calculates a heatmap for the image, and Branch 2, which calculates part affinity fields
(PAFs). The heatmap includes the positions of human key points, and the PAFs include the
association between pairs of keypoints. The process is conducted as follows:

1.	 The system takes the width and height of the image as input.
2.	 Ten inverted bottleneck layers are used to train features from the input image.
3.	 Using the output of step 2) as the input, the first stage of training is executed.
4.	 Repeat the stages composed of two branches. From the N th stages (where N ≤2), the

output of the (N–1)th stage is used as the input of the N th stage.

In the pattern extraction component, we used 10 inverted bottleneck layers. The
inverted bottleneck layer was introduced in the MobileNetV2 architecture, and it is
composed of three convolution layers with 1 × 1 and 3 × 3 kernels. As shown in Fig. 2a,
the dimension of the input image channel was increased by a constant ratio using the

Fig. 1   Architecture of our proposed method: (a) Pattern Extraction and (b) Multi–Stage CNNs. Feature
concatenates inverted bottleneck in pattern extraction and separable convolution in multi–stage CNNs

34392 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

1 × 1 kernel convolution layer. Then, we extracted features using the 3 × 3 kernel convo-
lution layer. Finally, we used the 1 × 1 kernel convolution layer to adequately match the
dimension of the output. From the network, we can use five intermediate outputs with
different sizes, which are calculated from two continuous inverted bottleneck layers.
The minimum size of the five intermediate outputs is 1/8 of the size of the input image.
By using the pattern extraction step, we can create a high–efficiency network that can
be used in restricted environments or environments with low computing power, such as
those using only CPU or mobile devices [16].

The multi–stage CNN step generates a heatmap and PAFs using multiple repeated
CNNs. One CNN stage is composed of two branches. Branch 1 produces an
18–dimensional heatmap, and Branch 2 produces 36–dimensional PAFs. Each branch
has three separable convolution layers and two convolution layers. The three sepa-
rable convolution layers are each composed of one 3 × 3 kernel and one 1 × 1 kernel,
and the two convolution layers are each composed of 1 × 1 kernels. The separable
convolution layers allow the system to operate with high efficiency by reducing the
computational load. The separable convolution layer uses 3 × 3 kernels for depthwise
operations and 1 × 1 kernels for pointwise operations, as shown in Fig. 2b. Addition-
ally, each branch uses the output of the previous stage as its input for refinement. For
Branch 1 and Branch 2, the convolution layers compute new outputs by refining the
previous outputs and calculating the loss of the new heatmaps and PAFs.

Fig. 2   Architecture of layers: (a) inverted bottleneck (b) separable convolution

34393Multimedia Tools and Applications (2021) 80:34389–34402

1 3

3.1 � Inverted bottleneck layer

The inverted bottleneck layer is used to reduce the depth and width of the architec-
ture while maintaining strong performance. It is composed of a channel expansion
operation and a channel reduction operation. The expansion operation creates features
through non–linear calculations. Kernels that are of 3 × 3 dimension are used to extract
feature maps and expand the channel dimension. The reduction operation, contrarily,
helps remove useless features by reducing the channel dimension. This operation is
required to maintain the overall training stream of the network for skeleton detection.
In addition, in our model, we used scale–invariant feature maps, which can replace a
residual network. These scale–invariant feature maps are necessary for detecting the
existence of skeleton keypoints. From the input image, it is necessary to find keypoints
of various skeletons. Therefore, we concatenated five outputs with different sizes for
training the various types of keypoints.

The size of the concatenated outputs was matched to the intermediate output 3 in
Fig. 2a: 1and 2 are resized to the size of 3 using max pooling, and 4 and 5 are resized
to the size of 3 using upsampling and bilinear interpolation. These five concatenated
outputs can replace a residual network, which results in a decrease in speed. By using
the scale–invariant architecture with the inverted bottleneck layers, we used only 48 to
256–dimensional feature maps rather than a deeper network. This has the benefit of a
less complicated operation, which thereby increases the speed in the training and test
processes [7, 19].

3.2 � Separable convolution

MobileNetV1 is composed of three kinds types of layers: convolution, depth-wise con-
volution, and pointwise convolution. A separable convolution is proposed for improv-
ing to improve the performance without increasing the depth and or width of the net-
work. The proposed architecture optimizes the trade–off between performance and
efficiency when compared to other networks, such as VGG[17], GoogLeNet[3], incep-
tion Inception modules [20], and ResNet [5]. The depthwise and pointwise convolution
layers makes sparse connected layers, which reduces the gradient vanishing problem
by extracting the optimal features. Through calculations , we can obtain highly corre-
lated features with dense calculations. The depthwise convolution with 1 × 1 filter ker-
nels are was used to control the dimension of the output feature maps, and the point-
wise convolution with 3 × 3 filter kernels are was used to extract feature maps. The
A comparison of between the number of operations between resulting from using a
convolution layer and dividing it into pointwise and depthwise convolutions can be
computed with expressed using Eq. 1. For this computation, we assume that the layer
has size m × m , an input channel of size n1 , and an output channel of size c1.

Because reducing the number of dimensions also reduces the computational load by
approximately a factor of two, this operation has the effect of improving performance
while maintaining a high convergence speed during the training procedure.

(1)m232n1c1 ∶ m212n1c1 + m232n1c
2
1

= 9n1 ∶ n1 + 9c1 (n1 > c1)

34394 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

3.3 � Loss computation

Equation 2 is an L2 loss function, which calculates the difference between the ground
truth yi and the predicted value fxi , and sum the squared values of the calculated differ-
ences. The network is trained to minimize the L2 loss.

3.4 � Network architecture

Tables 1 and 2 show the overall structure of the proposed network. For the pattern
extraction process, the deeper the network, the smaller the width and height of the
output, but the larger the dimension of the outputs. For the multi–stage CNN step, the
dimensions of the intermediate layers are different in Branch 1 and Branch 2. In Branch
1, the outputs of the three separable layers have 64, 64, and 128 dimensions, respec-
tively, and the outputs of the two continuous convolution layers decrease the 128 dimen-
sions to an adequate number of dimensions to match the number of heatmaps and PAFs.
Branch 1 generates the heatmap, which has 18 dimensions. In Branch 2, 36–dimensional
PAFs are generated. One CNN stage includes Branch 1 and Branch 2. The stages are
repeated six times, and each stage uses a concatenated feature map as input. The feature
map is composed of the output of the pattern extraction stage, which is composed of the
output of the previous stage’s Branch 1 and Branch 2. As shown in Table 2, the output
channel size (i.e., the size of the output) has different values depending on the stage.

(2)L =
∑n

i=1
(yi − f (xi))

2

Table. 1   The architecture of pattern section

name input
channel
size

Operator up_ratio Output channel size k_s stride

part0_1 3 Inverted bottleneck 1 24 3 1
part0_2 Inverted bottleneck 1 24 3 1
part1_1 24 Inverted bottleneck 6 48 3 2
part1_2 Inverted bottleneck 6 48 3 1
part2_1 48 Inverted bottleneck 6 64 3 2
part2_2 Inverted bottleneck 6 64 3 1
part3_1 64 Inverted bottleneck 6 128 3 2
part3_2 Inverted bottleneck 6 128 3 1
part4_1 128 Inverted bottleneck 6 256 3 2
part4_2 Inverted bottleneck 6 256 3 1

part_0_2.max_pool(4,4)
part_1_2.max_pool(2,2)

feat_concat Concatenation [w/8, h/8, 520] part_2_2
part_3_2.upsample(2)
part_4_2.upsample(4)

34395Multimedia Tools and Applications (2021) 80:34389–34402

1 3

4 � Experimental results

4.1 � Experimental environment

Our training was performed with an NVIDIA Quadro RTX 8000 on Windows 10 with
Python 3.7 and Tensorflow r1.14. The experiment was tested in a CPU–only environment.

4.2 � Datasets

We used the 2017 COCO keypoint dataset to train the network. The dataset is composed of
118,287 training images and 5,000 validation images. Figure 3a shows sample images of
the COCO dataset. As shown in Fig. 3b, the dataset includes 18 keypoints, which have 19
pairs. Each keypoint indicates a part of the human body (0: nose, 1: neck, 2: right shoulder,
3: right elbow, 4: right wrist, 5: left shoulder, 6: left elbow, 7: left wrist, 8: right hip, 9:

Table. 2   The architecture of
multi-stage CNNs

Stage Operator k_s Output channel size

Input {feat_concat}
0 Separable conv 3 128

Separable conv 3 128
Separable conv 3 128
Conv 1 512
Conv 1 19 (branch 1),

38 (branch 2)
Input {concatenated {feat_concat, branch 1, branch 2}}
1~5 Separable conv 3 64

Separable conv 3 64
Separable conv 3 64
Conv 1 128
Conv 1 19 (branch 1),

38 (branch 2)

Fig. 3   (a) Sample images from the COCO 2017 key point dataset. (b) Sample images from the dataset

34396 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

right knee, 10: right ankle, 11: left hip, 12: left knee, 13: left ankle, 14: right eye, 15: left
eye, 16: right ear, and 17: left ear) [3].

4.3 � Evaluation metrics

4.3.1 � Object keypoint similarity (OKS) based map

The Object Keypoint Similarity (OKS) metric uses the distance between a normalized
coordinate of a predicted value and a ground truth value. It calculates the average simi-
larity of visualized keypoints. The similarity is determined by a Gaussian distribution of
ground truth keypoints and predicted keypoints. According to the association of keypoints,
a smaller standard deviation signifies a more accurate result.

In Eq. 3, di is the Euclidian distance, ui is the visibility flag, ski is the standard deviation
of the keypoints, s is the scale of the keypoint region, and ki is the keypoint constant.

Figure 4a, b explain how to calculate the distance distribution using the standard deviation.
As shown in Figs. 4b and 5 each keypoint has different constants. If the distances between the

(3)
ks(𝜃̂

(p)

i
, 𝜃

(p)

i
) = e

−
‖𝜃̂(p)

i
−𝜃

(p)

i
‖2
2

2s2k2
i

OKS((𝜃̂
(p)

i
, 𝜃

(p)

i
) =

∑
i ks(𝜃̂

(p)

i
, 𝜃

(p)

i
) 𝛿(𝜐i > 0)

∑
i 𝛿(𝜐i > 0)

Fig. 4   (a) Keypoint similarity distribution that changes with the location of the predicted keypoint (left eye:
0.25, right hand: 0.75; the blue point is the ground truth, and the red and green points are the predicted val-
ues.) (b) Gaussian distribution with standard deviation s × k

i

34397Multimedia Tools and Applications (2021) 80:34389–34402

1 3

center of the green circle, ground truth(black circle), and the predicted value are small, the
value of OKS approaches 1.

4.3.2 � AP (Average Precision)

We used the average precision (AP) for the OKS value. With this metric, we use APN̂
(N=50), which means averaging the AP with OKS values larger than 0.5. The total AP is
then determined by the mean AP scores for 10 positions. In addition, we can define APM̂
as the AP for medium objects and APL̂ as the AP for large objects.

4.4 � Evaluation r esults

To analyze the runtime performance of our system, we used videos that contained one or
more people exercising. The speed was measured in the CPU environment during the eval-
uation to assess performance The original frame size of the videos was 2224×1080, and we
resized the frame to 224×192 to infer the skeleton information. Figure 6 shows the example
test outputs: Fig. 6a shows the input image, Fig. 6b displays the analyzed heatmap, Fig. 6c
shows the analyzed PAFs with the x–direction vector information, and Fig. 6d displays the
analyzed PAFs with the y–direction vector information. Each map indicates the keypoint
existence probability. We tested the algorithm on videos containing multiple situations and
compared the detection performance with those of state– of– the– art algorithms.

Fig. 5   Keypoint constants. k
i

34398 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

4.4.1 � Experiments on video

Figure 7 shows the visualized result of the proposed algorithm. Input for the test process
was mp4 videos. The videos of Fig. 7b–d were selected from the ActivityNet dataset. Each
video has labels regarding the specific situation taking place in the video, and we selected
videos that portrayed common behavior situations. Each video had different labels: Fig. 7b
is “Doing karate,” Fig. 7c is “Platform diving,” and Fig. 7d is “Long jump air and landing
drills.” To evaluate our system, we first used videos recorded in an indoor environment. For
example, Fig. 7a shows a person standing in one place and the associated skeleton drawing
output. Figure 7b shows a situation with multiple people indoors. There are six people in
the video, and the video takes place in a poorly lit environment. Figure 7c shows a person
diving into a pool. Despite the blurred frames, our algorithm was able to detect the person
and analyze their skeleton information. Finally, we used a video showing people jogging.

Fig. 6   Example test outputs for video frames: (a) input image, (b) heatmap, (c) PAFs – x– direction vector,
and (d) PAFs– y – direction vector

Fig. 7   Qualitative results on multiple videos: (a) video of one person, (b) video of multiple persons, (c)
video of bright environment, and (d) video of dynamic situation

34399Multimedia Tools and Applications (2021) 80:34389–34402

1 3

Figure 7d shows several people jogging forward at high speed. Even in this situation, our
algorithm showed stable performance [2].

4.4.2 � Comparison to state– of– the– art results on video speed

As shown in Fig. 8, we compared the speed of our algorithm to those of other state-of-the-
art bottom-up detection methods. All tests were executed in the CPU environment (i.e.,
without a dedicated GPU). We used the same videos for all algorithms, resized them to
measure frames per second (fps), and used the averaged fps value. The size of the videos
was normalized to a width of 224 and a height of 192. When we tested our algorithm with
the videos, we obtained an average of 10.45 fps, which was approximately 2.4 times higher
than the value for OpenPose. Next, testing with a 320×240 video, our algorithm achieved
6.11 fps, which was approximately 2.3 times higher than the value for OpenPose. Finally,
testing with a 640×640 video, our algorithm achieved 1.18 fps, which was approximately
2.1 times higher than the value for OpenPose. The results clearly indicate that the larger
the size of the input image, the slower the processing speed for each algorithm. However,
overall, our algorithm was more than twice as fast as OpenPose across all cases. Therefore,
our method demonstrated an improved result over prior methods with respect to process
time [14, 17, 21].

5 � Conclusion

Our proposed artificial intelligence skeleton detection network demonstrated an improved
processing speed in a CPU-only environment that does not use GPUs. One of the prob-
lems in skeleton detection is that the processing speed depends on the detection method.

Fig. 8   Speed comparison of different algorithms on the sample videos

34400 Multimedia Tools and Applications (2021) 80:34389–34402

1 3

Therefore, we proposed a bottom-up detection network that does not depend on different
model hierarchies and training architectures. The proposed method is divided into two
parts: pattern extraction and multi-stage CNNs. In the pattern extraction step, 10 inverted
bottleneck layers are used to extract feature maps. For this step, we concatenated the out-
puts with five different sizes generated in the intermediate layers and used them as the
input for the next step. The multi-stage CNN step extracts a heatmap (representing the
probability distribution of keypoint locations) and PAFs (vector information representing
the association of the keypoints). The output of our algorithm is an 18-dimensional heat-
map and 36-dimensional PAFs. We evaluated our dataset using the 2017 COCO keypoint
training set for training and videos from the ActivityNet dataset for testing. When we tested
the algorithm with a 224×192 video, our algorithm achieved 10.45 fps, which was 2.41
times higher than the value for OpenPose. Additionally, we tested the algorithm with vari-
ous videos, and those tests also demonstrated that our algorithm is faster than OpenPose
under identical conditions.

In future, because our algorithm has shown efficiency in a CPU-only environment, we
believe that it can be useful in the mobile environment as well. In mobile environments,
there are no GPUs or other high-speed devices, and therefore, implementing our approach
will contribute to accelerating real-time analysis performance.

Acknowledgements  This work was supported by the Technology Innovation Program (20006697, multi
sensor based artificial intelligence technology passenger recognition and air clean console for autonomous
design companion animal family centered) funded By the Ministry of Trade, Industry & Energy (MOTIE,
Korea).

References

	 1.	 Asadi-Aghbolaghi M, Kasaei S (2018) Supervised spatio-temporal kernel descriptor for human action
recognition from RGB-depth videos. Multimed Tools Appl 77(11):14115–14135

	 2.	 Caba Heilbron F et al (2015) “Activitynet: A large-scale video benchmark for human activity under-
standing.” Proc IEEE Conf Comput Vis Pattern Recognit

	 3.	 Cao Z et al (2017) “Realtime multi-person 2d pose estimation using part affinity fields.” Proc IEEE
Conf Comput Vis Pattern Recognit

	 4.	 Carrara F et al (2019) LSTM-based real-time action detection and prediction in human motion streams.
Multimed Tools Appl 78(19):27309–27331

	 5.	 Chu J, Guo Z, Leng L (2018) Object Detection Based on Multi-Layer Convolution Feature Fusion and
Online Hard Example Mining. IEEE Access 6:19959–19967. https://​doi.​org/​10.​1109/​ACCESS.​2018.​
28151​49

	 6.	 Donahue J et al (2015) “Long-term recurrent convolutional networks for visual recognition and
description.” Proc IEEE Conf Comput Vis Pattern Recognit

	 7.	 He K et al (2016) “Deep residual learning for image recognition.” Proc IEEE Conf Comput Vis
Pattern Recognit

	 8.	 Howard AG et al (2017) “MobileNets: Efficient convolutional neural networks for mobile vision applications.”
arXiv preprint arXiv:1704.04861

	 9.	 Iandola FN et al (2016) “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB
model size.” arXiv preprint arXiv:1602.07360

	10.	 Ji S et al (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern
Anal Mach Intell 35(1):221–231

	11.	 Krizhevsky A, Sutskever I, Hinton GE (2012) “Imagenet classification with deep convolutional neural
networks.” Adv Neural Inf Proces Syst

	12.	 LeCun Y et al (1998) “Gradient-based learning applied to document recognition.” Proc IEEE
86(11):2278–2324

	13.	 Li B et al (2018) 3D skeleton based action recognition by video-domain translation-scale invariant
mapping and multi-scale dilated CNN. Multimed Tools Appl 77(17):22901–22921

34401Multimedia Tools and Applications (2021) 80:34389–34402

https://doi.org/10.1109/ACCESS.2018.2815149
https://doi.org/10.1109/ACCESS.2018.2815149

1 3

	14.	 Lin TY et al (2014) “Microsoft coco: Common objects in context.” European conference on computer
vision. Springer, Cham

	15.	 Russakovsky O et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis
115(3):211–252

	16.	 Sandler M et al (2018) “MobileNetv2: Inverted residuals and linear bottlenecks.” Proc IEEE Conf
Comput Vis Pattern Recognit

	17.	 Simonyan K, Zisserman A (2014) “Very deep convolutional networks for large-scale image recognition.”
arXiv preprint arXiv:1409.1556

	18.	 Sun K et al (2019) “Deep high-resolution representation learning for human pose estimation.” Proc
IEEE Conf Comput Vis Pattern Recognit

	19.	 Szegedy C et al (2015) “Going deeper with convolutions.” Proc IEEE Conf Comput Vis Pattern
Recognit

	20.	 Szegedy C et al (2016) “Rethinking the inception architecture for computer vision.” Proc IEEE Conf
Comput Vis Pattern Recognit

	21.	 Szegedy C et al (2017) “Inception-v4, inception-resnet and the impact of residual connections on
learning.” Thirty-first AAAI conference on artificial intelligence

	22.	 Wei SE et al (2016) “Convolutional pose machines.” Proc IEEE Conf Comput Vis Pattern Recognit

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

34402 Multimedia Tools and Applications (2021) 80:34389–34402

	Real-time low-cost human skeleton detection
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Inverted bottleneck layer
	3.2 Separable convolution
	3.3 Loss computation
	3.4 Network architecture

	4 Experimental results
	4.1 Experimental environment
	4.2 Datasets
	4.3 Evaluation metrics
	4.3.1 Object keypoint similarity (OKS) based map
	4.3.2 AP (Average Precision)

	4.4 Evaluation r esults
	4.4.1 Experiments on video
	4.4.2 Comparison to state– of– the– art results on video speed

	5 Conclusion
	Acknowledgements
	References

