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Abstract
Evolutionary algorithms have found enormous applications in solving real-world problems 
due to their stochastic nature. They have a set of control parameters, which are used to 
perform certain operations to induce randomness, scalar displacement etc. Various works 
have been done for tuning these parameters, as appropriate parameter tuning can enhance 
the performance of algorithm greatly. Inertia weights based parameter tuning is one of the 
widely used techniques for this purpose. In this paper, we have reviewed some of the iner-
tia weight strategies and applied them to Social Group Optimization (SGO) to study the 
changes in its performance and have performed a thorough analysis on the same. Following 
the analysis, the need of a more generalized inertia weight strategy was felt which could 
be used in parameter tuning for different variety of problems and hence Sigmoid adaptive 
inertia weight have been proposed. SGO with sigmoid-adaptive inertia weight (SGOSAIW) 
has been simulated on twenty-seven benchmark functions suite and further simulated on 
few mechanical and chemical engineering problems and compared to other similar algo-
rithms for performance analysis. In eight-benchmark function suite, SGOSAIW obtained 
better minima except one i.e. ‘Schwefel 2.26’ with respect to other algorithms investigated 
in this work. In nineteen-benchmark function suite, SGOSAIW obtained better minima 
except one i.e. ‘Noisy function’. Thus, the proposed algorithm yielded promising results 
which are well represented with suitable tables and graphs in the paper.
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1 Introduction

Real world problems are complex in nature which needs intelligent algorithms for solv-
ing those [8]. Evolutionary Algorithms (EAs) are a group of intelligent algorithms which 
are used to find optimal solutions for problems which require non deterministic polyno-
mial time to solve. Polynomial time solvable problems (P) are easy to solve and are easily 
verifiable for example addition, subtraction, multiplication etc. Non deterministic polyno-
mial time solvable problems (NP) are hard to solve. NP-complete problems are those NP 
problems which are although tough, but verifiable such as game of Sudoku. NP-hard prob-
lems are those NP problems which are hard to solve as well as hard to verify like finding 
the next best move in game of Chess. Hence EAs are suitable dealing with NP problems. 
Using randomly initialized candidate solutions and an appropriate fitness function are the 
two main important features of EAs, which enable them to find solutions to difficult prob-
lems, though the solution may not be the best one but getting a near optimal solution can 
be expected. Hence, EAs find huge application to several problem domains such as engi-
neering, life sciences, medicine etc.

According to No Free Lunch theorem, no evolutionary algorithm could be claimed to 
solve all types of optimization problems, and that has paved way for emergence of new 
evolutionary algorithms. These evolutionary algorithms achieve their goals by proper tun-
ing of algorithmic parameters such as different operators, control parameters, different 
number of phases etc. Tuning of control parameters play a vital role to make the algo-
rithm perform better for wide range of problems under investigation. In the literature, it is 
found that various works have been done to fine tune the control parameters. Many hybrid 
methods or adaptive methods have been suggested by researchers for different evolution-
ary algorithms. However, authors of this work feel that there must be viable inference, to 
be drawn, to ascertain the behavior of a particular algorithm whilst its control parameters 
are being modified. Why an algorithm gives better result for a particular problem? Why 
at a certain value of control parameter, an algorithm performs better? These are some of 
the basic questions which arise in mind of every reader and every researcher. Research-
ers should not only focus trying different possibilities of experimentation but also try to 
explain their perceptions and analysis about the same.

An evolutionary algorithm has two important parts – Exploration phase and Exploita-
tion phase. So, tuning of parameters should be done basing upon the position of param-
eter, whether it is present in the exploration or exploitation phase. Parameters of explora-
tion phase help the algorithm to make sharp convergence towards the optimum, whereas 
of exploitation phase, help algorithm to search the vicinity of the present solution space 
for optimal solution. Let’s take the example of PSO, which is a widely used evolutionary 
algorithm. It has three control parameters i.e. ‘w’, ‘c1’ and ‘c2’. The inertia weight ‘w’ [16] 
refers to exploration phase and the algorithm performs better for higher values of ‘w’ [38] 
or linear decreasing value of ‘w’ [17]. The reason lies behind the fundamental philosophy 
of PSO. It was inspired from flock of birds flying towards a certain goal. In PSO, every bird 
tries to follow the leader. So, for a particular bird, initial velocity is higher, but as it nears 
the destination, velocity gradually decreases. Hence, ‘Linear decreasing inertia weight 
based PSO’ [17] performed better than PSO and it was one of the most popular technique 
and has got numerous citations.

Social Group Optimization (SGO) [36, 49], proposed by Satapathy and Naik has per-
formed well in various optimization and real-world problems. The algorithm has an advan-
tage of having only one control parameter ‘C’, i.e. self-introspection parameter, which is 
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actually good, as dealing with too many control parameters increases the computational 
complexity. Moreover, SGO algorithm is based on a very simplified approach i.e. Ran-
dom walk based on the best candidate solution and the fitness value of a randomly cho-
sen candidate solution. No complex techniques are involved which makes it easier to be 
understood by the researchers of other fields and hence appropriate for easy applications. 
Complex techniques needs more complex logic to be implemented, but in SGO simple ran-
dom walk technique has been used in both the phases. SGO has successfully been applied 
to several domains. Rajnikanth and Satapathy [43] used SGO and fuzzy-tsallis entropy for 
segmentation of ischemic stroke lesion in brain MRI images. Dey et al. [11] used SGO for 
segmentation and evaluation of skin melanoma images. Praveen et al. [42] used SGO for 
task scheduling and resource allocation in cloud environment. SGO was also used for task 
scheduling and resource allocation by Dey et al. [12]. Naik et al. [37] used a modified SGO 
for short term hydro-thermal scheduling. Similarly, Fang et al. [19] used improved SGO for 
transformer fault diagnosis. Das et al. [9] used SGO for structural monitoring in the field of 
civil engineering.

While going through the state of the arts of the SGO, we find that no works based on 
application of inertia weight techniques could be found in the literature and this has been 
addressed in this paper. After analyzing the performance of some of the inertia weight 
strategies with SGO, we felt the need of a better inertia weight technique which can prop-
erly tune the parameter for variety of problems, and hence Sigmoid Adaptive Inertia 
Weight have been proposed and simulated with SGO (SGOSAIW) upon several benchmark 
functions and few engineering domain applications and results obtained were satisfactory. 
Highlights of the works carried out in this paper are -

• Simulated SGO with some of the inertia weight techniques and analyzed their behavior.
• Following the analysis, we felt the need of a better performing inertia weight strategy, 

which could be applicable to wide range of problems and hence proposed a new inertia 
weight technique known as Sigmoid-adaptive inertia weight

• Sigmoid adaptive inertia weight was implemented with SGO (SGOSAIW) and com-
pared to two well-known and recently proposed, adaptive evolutionary algorithms i.e. 
ATLBO [51] and ASF-BA [48]

• SGOSAIW has also been applied to variety of engineering design problems such as 
Three bar truss problem, Cantilever beam problem, Process design and synthesis prob-
lems and has been compared to some recent state of the arts techniques.

Rest of the paper have been organized as - Review of some related works have been 
provided in Sect. 2 followed by application of inertia weight strategies to SGO in Sect. 3. 
The description of proposed SGOSAIW have been provided in Sect. 4 followed by simula-
tion and results in Sect. 5. Section 6 highlights the Conclusion and future aspects of the 
research work.

2  Related works

Several evolutionary algorithms have emerged based on mathematical derivations or 
inspired from nature, and various inertia weight strategies have been applied for param-
eter tuning for increasing the algorithm efficiency and efficacy. This section gives a com-
prehensive view of such kind of inertia weight strategies in various algorithms. Liu et al. 
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[31] have proposed a Modified PSO having a chaotic based non-linear inertia weight and 
found significant improvement in the performance. Pawan and Prakash [41] investigated a 
range of inertia weight for PSO and proposed IWPSO with some effective modifications, 
which enhanced its performance. Shukla et al. [51] proposed an Adaptive TLBO and found 
increased convergence rate in the algorithm. Yue and Zhang [55] proposed a modified 
hybrid bat algorithm and got better results while using it for multilevel image segmenta-
tion. Rauf et al. [48] proposed ASF-Bat algorithm and also found promising results. Kiani 
et  al. [29] proposed a Chaotic inertia weight PSO and found better results in estimating 
solar cell parameters. Huang et  al. [25] used time varying inertia weight based PSO for 
task scheduling in cloud and obtained better results. Chen et  al. [6] used adaptive iner-
tia weights to propose an Improved pigeon-inspired optimization and observed improve-
ment in performance. Singh et al. [50] used inertia constant strategy on Mean grey-wolf 
optimizer found enhanced performance in the algorithm. Orouskhani et al. [40] proposed 
an average inertia weighted cat swarm optimization and found better results. Olivas et al. 
[39] proposed an ACO with dynamic parameter adaptation and witnessed improved per-
formance. Hu et al. [24] proposed Improved whale optimization based on inertia weights 
and observed that performance of the algorithm improved greatly. Rani et al.[44] proposed 
Modified cuckoo search algorithm with weighted sum for optimization of linear antenna 
array synthesis. Chou and Ngo [7] proposed inertia weight based Modified firefly algo-
rithm for multidimensional optimization in structural design and achieved improved perfor-
mance. In the literature, it is found that PSO has been extensively studied with varieties of 
inertia weights. Harrison et al. [22], Rathore and Sharma [47], Bansal et al. [2], Imran et al. 
[26] and Chauhan et al. [3] have reviewed several such works on inertia weight based PSO, 
which can be referred to and can be used for improving other optimization algorithms.

Though there are several other parameters which affect the optimality of the algorithm, 
but in this paper we have focused on algorithmic dependent parameter only like ‘C’ in 
SGO, ‘w’ in PSO etc. When an EA have more algorithmic dependent parameters, we have 
to also perform the correlation analysis among the parameters which will help us in know-
ing their mutual behavior when there value changes. More parameters mean more com-
plexity in parameter tuning. There are other parameters such as number of population, 
number of function evaluation, number of iterations etc. which are basic to every EA and 
hence not algorithm dependent. Table 1 provides the information about some of the EAs 
along with their algorithm dependent variables.

Also several optimization algorithms have found their applications in solving some of 
the constrained optimization problems such as engineering design problems and a few 
such engineering optimization problems are considered in our work to implement our pro-
posed algorithm. Mirjalili et al. [35] used Salp Swarm algorithm to solve various engineer-
ing design problems and got better result. Similarly, Dhiman and Kaur [13] used Spotted 
hyena optimizer for the same and observed improvement in the performance. Chen et al. 
[4], proposed a balanced Whale optimization algorithm using levy flight and chaotic local 
search to solve constrained optimization problems and the results obtained were promising. 
Azqandi et al. [1] used an enhanced time evolutionary optimization and de Paula Garcia 
et al. [10] used Genetic algorithm along with a rank based technique to solve constrained 
engineering design problems the performance was found better than some of the state of 
the arts techniques. Overall idea is that, few algorithms will perform better than the others 
in some cases where as others will perform better in some different cases. So, there has 
always been a scope of improvement and experimentation by using several combinations 
of techniques and hence in this paper, we have tried to improve the performance of the con-
ventional SGO using some inertia weight strategy.
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After reviewing the literature thoroughly, we come to a conclusion that inertia weight 
techniques are doing fairly good and it motivated us to explore the same with Social group 
optimization (SGO) and later the proposed SGO with sigmoid-adaptive inertia weight 
(SGOSAIW) has been simulated upon numerical benchmark functions and engineering 
design problems to verify the effectiveness of the proposed approach.

3  Application of different inertia weight strategies to SGO

In this section, the basic SGO is presented and followed by that, seven varieties of inertia 
weight parameter tuning techniques are discussed and those are simulated for few bench-
mark functions to verify their effectiveness in solving optimization problems.

3.1  SGO algorithm

SGO is inspired from social behavior of individuals in a group. It has two phases. They are 
‘Improving phase’ and ‘Acquiring phase’. Improving phase is the exploration phase of the 
algorithm and acquiring phase is the exploitation phase of the algorithm, whose equations 
are described in Eqs. (1), (2) and (3), respectively, where ‘Pij’ is the ‘ith’ person having ‘j’ 
number of traits, ‘gbest’ is the best person in the whole group, ‘f(Pi)’ is the fitness of ‘ith’ 
person and ‘rand’ is any random number generated in the range of (0,1).

In improving phase, a person interacts with the best person and tries to improve himself, 
as shown in Eq. (1), but percentage of improvement depends on ‘rand’. It indicates that, as 
no person is same, so their rate of improvement will also be not same. But, an individual 
improvement not only depends on the good impact of best person, but also on how much 
he is introspecting himself, which is represented by ‘c’ in Eq. (1),. In SGO algorithm, it 
was considered to be ‘0.2’, which is a constant.

(1)Xij = c ∗ Pij + rand ∗ (gbest(j) − Pij)

Table 1  List of Control Parameters of some Evolutionary Algorithms

Evolutionary Algorithms Algorithm dependent parameter(s)

Teaching Learning Based Optimization (TLBO) [45] Tf – Teaching Factor
Bat Algorithm (BA) [53] α- Pulse loudness

β- Pulse rate
Pigeon Inspired Optimization (PIO) [15] F- Rate of velocity change
Grey Wolf Optimization (GWO) [34] A and C– Exploration and Exploitation parameters
Ant Colony Optimization (ACO) [14] τ- Pheromone vaporization factor
Cuckoo Search Algorithm (CSA) [21] Pa – Switching probability
Artificial Bee Colony (ABC) [27] PN - Number of bees to number of food sources ratio
Firefly Algorithm (FA) [54] α- Step size factor

γ- Absorption coefficient
Whale Optimization Algorithm (WOA) [33] a- distance control parameter

b- logarithmic spiral constant
Social Group Optimization (SGO) [49] C - Self Introspection parameter
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If f ( Pi ) < f ( Pr)

else

As, all individuals cannot have same rate of self-introspection, so in Sect. 3.2, we have 
tried to vary the self-introspection parameter according to various inertia weight functions. 
In acquiring phase, every individual interact with a random person of the group and tries 
to learn from them, as given in Eqs. (2) and (3). More clear description can be found in the 
base paper of SGO [36].

3.2  SGO with inertia weight strategies

In this section, some of the basic inertia weights adjustment strategies have been discussed 
along with their respective equations. These techniques were applied to vary the value of 
‘C’ i.e. self-Introspection parameter of SGO and their performance was compared to the 
original SGO algorithm, where the value of ‘C’ is a constant i.e. 0.2. To study the effect, 
convergence graphs of SGO versus SGO with adjusted inertia weights, have been provided, 
after simulating those on Ackley and Griewank benchmark functions to find their optimal 
value, with Dimension 50. Ackley is a complex function, where the EAs find it harder to 
find the global optimum and mostly gets trapped in local optimum. Griewank is a sim-
ple function, where EAs easily converge to the global optimum. Taking both the variety 
of functions helped us in analyzing the performance of the algorithms with better clarity. 
The inertia weight strategies which performed better than SGO were simulated with other 
benchmark functions and their result has been provided in Sect.  5.1. Table  2 shows the 
values of the basic parameters used for simulation of SGO and SGO with various iner-
tia weight strategies. In the description, ‘I’ represents the current iteration number, ‘Imax’ 
represents the value of maximum number of Iterations, ‘C(I)’ represents the value of ‘C’ at 
iteration ‘I’, ‘Cmin’ is the minimum value of ‘C’ and ‘Cmax’ is the maximum value of ‘C’. 
Summary of the performance of these inertia weight strategies when implemented with 
SGO, has been provided in Table 3.

3.2.1  Linear decreasing inertia weight

Eberhart and Shi [17] proposed a linearly decreasing inertia weight technique, defined 
in Eq. (4), which was one of the most cited and popular technique, as it converged faster 

(2)Xij = Pi,j + rand1 ∗
(

Pi,j − Pr,j

)

+ rand2 ∗ ( gbest(j) − Pi,j)

(3)Xij = Pi,j + rand1 ∗
(

Pr,j − Pi,j

)

+ rand2 ∗ ( gbest(j) − Pi,j)

Table 2  Values of the basic 
parameters

Parameter Name Parameter Value

Population 50
Iteration(I) 50
Cmin 0.1
Cmax 0.9
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than the original PSO. Figure 1a, b shows the convergence graphs of applying the same to 
vary the values of ‘C’ in SGO and it clearly shows that SGO with linear decreasing inertia 
weight does not perform better. Though, it obtains the optimal result finally in both the 
cases, but convergence is too poor with respect to SGO. Figure 1c shows, how value of 
‘C’ changes for SGO with linear decreasing inertia weight and for SGO it is constant. It 
clearly shows that, having greater ‘C’ value in the beginning, is making the convergence 
graph, convex in nature. Hence, greater ‘w’ value was suitable for PSO because ‘w’ sig-
nifies weight associated to inertia of the birds and initially speed of the birds should be 
greater and it should gradually decrease as they near the goal, but greater ‘C’ value may 
not be suitable for SGO because, ‘C’ signifies learning rate and initially learning rate of a 
person is less and as knowledge increases, learning rate also increases gradually.

3.2.2  Linear increasing inertia weight

Zheng et al. [56] proposed a Linear increasing inertia weight, whose equation is defined in 
Eq. (5). From the experimentation, it was found that PSO performed better for weight value 
ranging among 0.4 to 0.9. Hence in Eq. (5), weight increases from 0.4 onwards. But for 
SGO, 0.1 has been used as minimum. So, ‘0.4’ was replaced with ‘0.1’ in the simulation. 

(4)C(I) =
Im ax − I

Imax
(Cmax − Cmin) + Cmin

(a)

(c)

(b)

Fig. 1  (a) SGO versus SGO with linear decreasing inertia weight for Ackley (b) SGO versus SGO with 
linear decreasing inertia weight for Griewank (c) value of ‘C’ for SGO versus SGO with linear decreasing 
inertia weight 
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Figure 2 shows the comparative performance of SGO and SGO with linear increasing iner-
tia weight. It is very clear from the graphs that, SGO with linear increasing inertia weight 
converges better, but in Ackley function, it could not reach the minimum [refer to Fig. 2a]. 
In both the functions, convergence graph is either linear or concave in nature, which is 
desirable and from Fig. 2c, it can be deduced that lower ‘C’ value in the initial iterations, 
gives better result. But, as the ‘C’ value increases, gradually, it may not be suitable for 
reaching the optimum and hence it gets trapped in local minima for functions like Ackley, 
whereas for functions like Griewank, it performs better in convergence as well as in reach-
ing the optimum. To study more about the performance of SGO with linear increasing 
inertia weight (SGOLIIW), it was simulated with other benchmark functions and results 
are given in the Sect. 4.

3.2.3  Sigmoid increasing and decreasing inertia weight

Sigmoid increasing inertia weight and Sigmoid decreasing inertia weight were proposed 
by Malik et al. [32] for adjusting the weights in PSO and experimentally they found that, 
Sigmoid increasing inertia weight performed better. Eqs. (6) and (7) defines Sigmoid 

(5)C(I) = 0.5 ×
I

Imax
+ 0.4

(a)

(c)

(b)

Fig. 2  (a) SGO versus SGO with linear increasing inertia weight for Ackley (b) SGO versus SGO with 
linear increasing inertia weight for Griewank (c) value of ‘C’ for SGO versus SGO with linear increasing 
inertia weight
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decreasing inertia weight and Sigmoid increasing inertia weight respectively. They con-
sidered the value of ‘w’ to be ranging between 0.4 to 0.9 and n = 0.25, 0.5 and 0.75. We 
have considered the value of n=0.25. Value of ‘u’ is calculated as u = 10log (Im ax−2) , which 
is used to adjust sharpness of the functions. Figure 3a, b shows convergence graph of SGO 
versus SGO with sigmoid decreasing inertia weight for Ackley and Griewank function, 
respectively and Fig.  3c, d shows convergence graph of SGO versus SGO with sigmoid 
increasing inertia weight for Ackley and Griewank function, respectively. For Ackley 

(a) (b)

(c) (d)

(e) (f)

Fig. 3  (a) SGO versus SGO with sigmoid decreasing inertia weight for Ackley (b) SGO versus SGO with 
sigmoid decreasing inertia weight for Griewank (c) SGO versus SGO with sigmoid increasing inertia 
weight for Ackley (d) SGO versus SGO with sigmoid increasing inertia weight for Griewank (e) value of 
‘C’ for SGO versus SGO with sigmoid decreasing inertia weight (f) value of ‘C’ for SGO versus SGO with 
sigmoid increasing inertia weight
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function, though SGO with sigmoid decreasing inertia weight reaches optimal solution 
faster but for Griewank function, its convergence as well as reaching the optimum, is poor.

Moreover, in Ackley, SGO’s convergence was better for initial number of iterations. 
Observing Fig. 3e, it may be deduced that for initial iterations, as value of ‘C’ is greater, 
so performance was poor, but after some iterations, when value of ‘C’ lowered down, per-
formance improved. Whereas, SGO with sigmoid increasing inertia weight (SGOSIIW) 
performs quite well in both Ackley and Griewank function, which can be observed from 
Fig. 3c, d and converges much faster than SGO. In Fig. 3f, it can be observed that lower 
‘C’ value in initial iterations, may be the reason for faster convergence and higher ‘C’ value 
after some iterations, may have helped in reaching the optimal solution faster. Hence, it was 
applied to other benchmark functions, so that, it’s overall performance could be observed 
and their results have been provided in the Sect. 5.1.

3.2.4  Oscillating inertia weight

Kentzoglanakis and Poole [28] proposed an oscillating inertia weight strategy for PSO, 
which gave better result for some of the function. Its definition is given in Eq. (8).

For implementing in SGO, the value of ‘k’ was chosen to be 7, as in the specified paper. 
The value of ‘T’ and ‘I’ are given in Eq. (9). Figure 4 shows the convergence graph of SGO 
versus SGO with oscillating inertia weight for Ackley and Griewank, and it is observed 
that SGO performed better than this variant. From Fig. 3c, it may be deduced that, alternat-
ing higher and lower values of ‘C’ may not be suitable for SGO algorithm.

3.2.5  Chaotic inertia weight

Feng et  al. [20] proposed two chaotic strategies to adjust the inertia weight in PSO. They 
aggregated two popular techniques i.e. Liner decreasing inertia weight and Random inertia 
weight, with the logistic maps and proposed Chaotic decreasing inertia weight and Chaotic 
random inertia weight, whose equations are defined in Eqs. (10) and (11) respectively, where 
z is a random number in the interval of (0,1) and its logistic mapping is defined in Eq. (12). 
Figure 6a, b shows the convergence graph of SGO versus SGO with chaotic decreasing inertia 
weight and it can be inferred that SGO performs better. From Fig. 6g, it can be inferred that 
reason is same as in the case of Linear decreasing inertia weight [Fig. 2a, b]. Figure 6c, d 
shows the convergence graph of SGO versus SGO with chaotic random inertia weight and 
it can be observed that SGO performs well in this case too. From Fig. 6h, it can be observed 
that ‘C’ values produced are random and always greater than 0.5, hence chaotic maps may not 
be suitable for SGO. Feng et al. aggregated Logistic maps to linear decreasing inertia weight 

(6)C(I) =
Cmax − Cmin

1 + eu(I−n×Imax)

(7)C(I) =
Cmax − Cmin

1 + e−u(I−n×Imax)

(8)C(I) =
Cmin + Cmax

2
+

Cmax − Cmin

2
cos(

2�I

T
)

(9)T = (2 × I)∕(3 = 2k) and I = 3 ∗ Imax∕4
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to enhance its performance, as it performed well for PSO [17]. But from the Fig. 1, it can be 
clearly deduced that, linear decreasing inertia weight did not perform well for SGO, rather 
linear increasing inertia weight performed better (Fig. 2). This gave way to the curiosity of 
finding out the performance of aggregated logistic maps and linear increasing inertia weight 
(Eq. (5)) for adjusting ‘C’ of SGO. We defined Chaotic increasing inertia weight, given in 
Eq. (13), by simply multiplying ‘z’ to the Eq. (5) and convergence graph of SGO versus SGO 
with chaotic increasing inertia weight is shown in Fig. 6e, f. From the graphs it can be inferred 
that, results are very much similar to Linear increasing inertia weight and ‘C’ values shown in 
Fig. 6i also depicts the same. So, it may be deduced that, chaotic maps do not affect the con-
vergence of SGO significantly.

(10)C(I) =
Im ax − I

Imax
(Cmax − Cmin) + Cmin × z

(11)C(I) = 0.5 × rand + 0.5 × z

(12)z = 4 × z × (1 − z)

(a)

(c)

(b)

Fig. 4  (a) SGO versus SGO with oscillating inertia weight for Ackley (b) SGO versus SGO with oscillating 
inertia weight for Griewank (c) value of ‘C’ for SGO versus SGO with oscillating inertia weight
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3.2.6  Adaptive inertia weight

Nickabadi et al. [38] proposed a weight adjustment strategy for PSO, which could adapt 
according to the success rate of swarms in each iteration. Success for a minimization prob-
lem, is defined by ‘ S ’ in Eq. (14), where ‘ pbest ’ signifies the local best of each particle 
‘i’.

(13)C(I) = 0.5 ×
I

Imax
+ 0.2 × z
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Success rate is defined by ‘R’ in Eq. (15), where ‘N’ is the number of particles. Success 
rate signifies the percentage of population, that gained betterment to their previous itera-
tion. Basing on the success rate, weight would adapt itself, whose definition is given in Eq. 
(16). Figure 7a, b shows the convergence graph of SGO versus SGO with adaptive inertia 
weight, but it can be clearly deduced that SGO performance is better. The reason could be 

(14)S(I) =

{

1, fit(pbest(I) < fit(pbest(I − 1)

0, fit(pbest(I) < fit(pbest(I − 1)

(15)
S(I) =

n
∑

i−1

S(i)

n

(16)C(I) = (Cmax − Cmin)R(I) + Cmin

Fig. 5  (a) SGO versus SGO with chaotic decreasing inertia weight for Ackley (b) SGO versus SGO with 
chaotic decreasing inertia weight for Griewank (c) SGO versus SGO with chaotic random inertia weight for 
Ackley (d) SGO versus SGO with chaotic random inertia weight for Griewank (e) SGO versus SGO with 
chaotic increasing inertia weight for Ackley (f) SGO versus SGO with chaotic increasing inertia weight for 
Griewank (g) value of ‘C’ for SGO versus SGO with chaotic decreasing inertia weight (h) value of ‘C’ for 
SGO versus SGO with chaotic random inertia weight (i) value of ‘C’ for SGO versus SGO with chaotic 
increasing inertia weight
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the linear function used in Eq. (16), was suitable for PSO, but may not be suitable for SGO, 
which is clearly shown in Fig. 7e, where value of ‘C’ always remained higher. To make 
it suitable for SGO, we modified the linear function as given in Eq. (17) and the results 
obtained were better than SGO, which is shown in Fig. 7c, d. The reason may be inferred 
from Fig. 7f, where ‘C’ values remain always at minimum. From, Fig. 7e, f, it can also 
be inferred that, Eqs. (17) and (18) failed to generate adaptive ‘C’ values for SGO, as the 

Fig. 6  (a) SGO versus SGO with adaptive inertia weight for Ackley (b) SGO versus SGO with adaptive 
inertia weight for Griewank (c) SGO versus SGO with modified adaptive inertia weight for Ackley (d) SGO 
versus SGO with modified adaptive inertia weight for Griewank (e) value of ‘C’ for SGO versus SGO with 
adaptive inertia weight (f) value of ‘C’ for SGO versus SGO with modified adaptive inertia weight
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values generated, may be outside the permitted range and due to normalization, generated 
values remain constant.

3.2.7  Adaptive chaotic inertia weight

Chen et al. [5], used another adaptive inertia weight to adjust the weight and used logis-
tic maps to introduce chaotic sequence into iterations in Particle swarm optimization for 
antenna synthesis. Its definition is given in Eq. (18), where value of ‘k’ is given in Eq. 
(19) and value of ‘ƌx’ is given in Eq. (20), which is evaluated for every population ‘i’. ‘D’ 
specifies the number of dimensions and ‘Gbest’ specifies global best for iteration ‘I’.

(17)C(I) = Cmax − (Cmax − Cmin)R(I)

(18)C(I) = k ×
Cmax − Cmin

max{�X(i)}
�X(i) + Cmin

(19)k =
Imax − 1

Imax

Fig. 7  (a) SGO versus SGO with adaptive chaotic inertia weight for Ackley (b) SGO versus SGO with 
adaptive chaotic inertia weight for Griewank (c) value of ‘C’ for SGO versus SGO with adaptive chaotic 
inertia weight



3037Multimedia Tools and Applications (2024) 83:3021–3055 

1 3

Authors have used logistic maps to alter the optimal solution in each iteration and 
replace it with one of the population. Figure  8a, b shows SGO versus SGO with adap-
tive chaotic inertia weight for Ackley and Griewank function respectively, from which it 
can be deduced that SGO with adaptive chaotic inertia weight performs better. Figure 8c 
shows adaptive ‘C’ values generated with each iterations and it can be inferred that Eq. 
(18) could successfully generate adaptive values for SGO. For the experimentation pur-
pose, we removed the chaotic maps and simulated only adaptive inertia weight with SGO 
and it was found that, without chaotic maps also performance was same. It is the adaptive 
function which has significant effect on the algorithm. To study more about the perfor-
mance of SGO with adaptive chaotic inertia weight (SGOACIW), it was simulated with 
other benchmark functions whose results are given in Sect. 5.1.

4  Sigmoid‑adaptive inertia weight strategy and its effect on SGO

In Sect. 3.2, we have presented the simulation graphs of only two benchmark functions i.e. 
Ackley and Griewank, to simply segregate those inertia weight strategies, which performed 
better for SGO. In Sect. 5.1, the simulation results of all the better performing algorithms 

(20)�X(i) =

√

√

√

√

D
∑

d−1

Xid − Gbestd
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has been shown, from which a very peculiar behavior can be noticed. For some algorithms, 
SGO with sigmoid increasing inertia weight (SGOSIIW) converges much faster whereas 
for some problems SGO with adaptive chaotic inertia weight (SGOACIW) performs bet-
ter. To know the reason, we analyzed the nature of the functions and found that, for simple 
functions such as Sphere, Griewank etc., which are uni-modal and separable, SGOSIIW 
converged faster, though all the algorithms reached the minima, and for complex functions 
such as Rosenbrock and Schwefel, which are multimodal and non-separable, all algorithms 
got trapped in local minima, but SGOACIW gave more optimum value. Our proposed tech-
nique i.e. Sigmoid-adaptive inertia weight, carries properties of both Sigmoid increasing 
inertia weight (refer to Sect. 3.2.3) and Adaptive inertia weight (refer to Sect. 3.2.7), whose 
equation is given in Eq. (21), where value of ‘k’ is given in Eq. (19), value of ‘ƌx’ is given 
in Eq. (20) and value of ‘n’ has been considered as 0.25. Sigmoid adaptive inertia weight 
has been applied to SGO (SGOSAIW), to vary the values of ‘C’ and study the effects on 
the performance of the algorithm. We are not using chaotic maps (as used in Sect. 3.2.7), 
as we found that, it is not that much effective for SGO. SGOSAIW, along with other SGO 
variants discussed in Sect. 3.2, were simulated upon two simple functions Sphere and Grie-
wank as well as two complex functions Rosenbrock and Schwefe l2.26. Their comparative 
convergence graph and the generation of ‘C’ value for every iteration, has been shown in 

Fig. 8  Convergence graph of SGO, SGOLIIW, SGOSIIW, SGOACIW and SGOSAIW for (a) Sphere (c) 
Griewank (e) Rosebrock (g) Schwefel 2.26 and values of ‘c’ of SGO and SGOSAIW for (b) Sphere (d) 
Griewank (f) Rosebrock (h) Schwefel 2.26
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Fig. 8. From Fig. 8a, c, e and g, it can be observed that SGOSAIW performs well for sim-
ple functions like Sphere and Griewank as well as for complex functions like Rosenbrock 
and Schwefel2.26. Thus, this inertia weight technique seems suitable for variety of real 
word problems. From Fig. 8b, d and f, it can be inferred that, for simple functions, values 
of ‘C’ need not have to adapt much, hence curve is smooth, but for complex functions more 
adaptations are required, so the corresponding graph is uneven.

Table 3 provides the summary of the performance of the discussed inertia weight strate-
gies when simulated with SGO, on some of the numerical benchmark functions with the 
inferences drawn from each simulation.

5  Simulation and results

5.1  Performance evaluation using benchmark functions

All the simulations were carried out in Matlab 2016a on the system having Intel Core i7 
2.67 GHz processor and 8 GB RAM. To know the comparative performance of SGOSAIW 
to other algorithms, SGOACIW, was compared to Adaptive inertia weight based teaching-
learning-based optimization (ATLBO) proposed by Shukla et al. [51] and Adaptive iner-
tia weight Bat algorithm with Sugeno-function fuzzy search (ASF-BA), proposed by Rauf 
et al. [48]. Shukla et al. have used an eight benchmark functions suite, given in Table 4, to 
compare ATLBO with GA, various variants of PSO, various variants of ABC, DE, TLBO 
and Rank Inertia Weight TLBO. Similarly, Rauf et  al. have used a nineteen benchmark 
function suite, given in Table 6, to compare the performance of ASF-BA against BA and 
PSO.

In Sect.  4, SGOSAIW was simulated on only four benchmark functions. To get a 
clearer picture, it was simulated upon the eight benchmark function suite [51] and nine-
teen benchmark function suite [48], along with other inertia weights based SGO discussed 
in Sect. 3.2. Table 5 provides the simulation results of the algorithms, upon eight bench-
mark function suite and its convergence graph is shown in Fig. 9. From Fig. 9a, c, e and g, 
it can be observed that, SGOSIIW performs better than SGOACIW, because it has better 
convergence capability, but, in Fig. 9b, d, f and h, SGOACIW performs better than SGO-
SIIW, because it is capable of finding more optimal solution by adaptive approach. Both 
of the scenarios are different and demands different approach to find an optimal solution. 
By observing the convergence graphs and the obtained results, it can be clearly deduced 
that SGOSAIW performs as better as SGOSIIW and SGOACIW in all the cases. It means, 
SGOSAIW excels in convergence ability as well as in finding optimal solution using adap-
tive approach, and hence could be used for variety of problems.

Table 6 provides the comparative performance of PSO, ABC, DE, TLBO, RaIWTLBO, 
ATLBO and SGOSAIW. For fair evaluation, SGOSAIW was simulated using same basic 
input parameters as mentioned in [51] for eight benchmark mark function suite i.e. num-
ber of population was taken as 20, dimension was set to 30 and iterations was set to 1000. 
From Table 6, it can be observed that, SGOSAIW performed better than the other algo-
rithms, for all the cases except F2, where ATLBO performed better.

(21)C(I) = k ×
Cmax − Cmin

1 + e(min{�x}−n×max{�x})
× �x(i)
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SGOSAIW along with other SGO variants discussed in Sect. 3.2, were also simulated 
upon nineteen benchmark function suite, used by Rauf et  al, which is given in Table  7. 
Result of the simulation is provided in Table 8 and convergence graphs of all the func-
tions are shown in Fig. 10. A similar observation can be made from these functions too as 
it was in Fig. 9. From Fig. 10a−s, it can be observed that SGOSIIW performs much better 
than SGO, SGOLIIW and SGOACIW. Even in some cases, as shown in Fig. 10c, i, SGO 
performs better than SGOLIIW and SGOACIW. It means one technique may show differ-
ent behavior for different types of problems. But, SGOACIW also performs better in some 
cases too, as shown in Fig. 10f, k and q, where reaching minima is difficult, as functions 
are quite complex. But in all the cases, SGOSAIW, performs better, irrespective of the 
nature of the function and same can be deduced from Table 8 also. So, it again proves that 
SGOSAIW can perform better in varied conditions and is suitable for application to differ-
ent types of problem.

Table 9 provides the comparative performance of PSO, BA, ASF-BA and SGOSAIW. 
The values are taken from [48] and for fair evaluation SGOSAIW was simulated with 
same parameters as mentioned by Rauf et al. Number of population and number of itera-
tions was set to 50 and 5000 respectively and dimension was set to 50 and each process 
was repeated for 100 times. The algorithms were run for 30 times and their mean and 
standard deviation were considered as the final results. From Table 9, it can be observed 
that, SGOACIW provides better result for all function except G17, where ASF-BA per-
forms better.

Overall performance of SGOSAIW was found to be better than other algorithms in 
simulation of both the benchmark functions suite. In many cases zero or nearer to zero 

Table 4  Eight benchmark function suite used for performance analysis of ATLBO and SGOSAIW

Function
Name

Function Equation min Input range

Sphere
(F1) F(x) =

D
∑

i−1

x(i)2

  

0 [-100,100]

Rosenbrock
(F2) F(x) =

D
∑

i=1

�

100
�

x(i)2 − x(i) + 1
�2

+ (1 − x(i)2
�

  

0 [-30,30]

Griewank
(F3) F(x) =

1

4000

D
∑

i=1

x(i)2 −
∏D

i=1
cos

�

x(i)
√

i

�

+ 1
  

0 [-600,600]

Weierstrass
(F4) F(x) =

D
∑

i=1

�

Imax
∑

k=0

�

a
kcos

�

2�bk(x(i) + 0.5)
��

�

− D

D
∑

i=1

�

Imax
∑

k=0

�

a
kcos

�

2�bk0.5
��

�

  

a = 0.3, b = 3, kmax = 20

0 [-0.5,0.5]

Rastrigin
(F5) F(x) =

D
∑

i=1

�

x(i)2 − 10cos(2�x(i)) + 10
�

  

0 [-5.12.5.12]

Ackley
(F6) F(x) = 20 + e − 20exp

�

−0.2
D
∑

i=1

x(i)2∕D

�

− exp

�

D
∑

i=1

cos(2�x(i))∕n

�

  

0 [-32,32]

NCRastrigin
(F7) F(x) =

D
∑

i=1

�

y2
i
− 10 cos

�

2�yi
�

+ 10
�

 and 
yi = {

x(i), |x(i)| < 0.5

round(2x(i)∕2, |x(i)| ≥ 0.5)
}
  

0 [-5.12,5.12]

Schwefel2.26
(F8) F(x) = 418.9829d −

n
∑

i=1

xisin

�

�

�

�

xi
�

�

�

  

0 [-500,500]
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standard deviation has been obtained which shows that the proposed algorithm has good 
stability i.e. same results are obtained in most of the runs. From the analysis, it is very 
clear that, irrespective of any inertia weight adjustment technique, SGO performs better 
with lower ‘C’ value or gradually increasing ‘C’ value. The reason may be found from 
the basic principle of SGO which is based on social behavior of individuals and how 
they put impact on each other or we can say how their traits change by interacting among 
themselves, which is already discussed in Sect. 3.1. Self-introspection parameter ‘C’ sig-
nifies the amount of self-introspection a person does to know his inner traits, to judge 
himself, so that he can improve. Learning cannot happen, if an individual don’t testify 
himself, to realize his own merits and demerits. So, lower ‘C’ value or gradually increas-
ing ‘C’ value indicates that, at the beginning of the process, a person’s self-introspection 
percentage is very less, but gradually it increases as a person improves himself. Thus, at 
later stage of the process, a person improves himself as well as his ability to judge him-
self also increases.

Sigmoid adaptive inertia weight means, the value increases in sigmoidal nature as well 
as it takes into account, its own previous value, current value and the best value achieved 
so far, and changes adaptively. It signifies, not all the problems can be treated same. So for 
different types of problems, problem solving approach must be different. Thus, a person, 
along with gradually increasing his self-introspection, should also change himself accord-
ing to the surrounding conditions or adapt himself, and then only optimal solution can be 
ensured, in most of the situations.

For the functions, on which SGOSAIW, did not perform well, it can be deduced that, 
tuning the parameters, may perform well for some type of problems, but not all. An 
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evolutionary algorithm has many more aspects, on which developmental works can be 
done such as population initialization, operator hybridization etc., which can improve the 
performance of the algorithm. In SGOSAIW, we have not taken any such aspects into the 
consideration, which can apparently be treated as a limitation of the algorithm.

For validation purpose, number of population, number of iterations and dimension 
of the benchmark functions was kept same. Simulating SGOSAIW by varying these 
parameters will help in analyzing impact of these algorithm independent parameters 
on the proposed methodology. Table  10 shows the mean best values got by simula-
tion of SGOSAIW with varied parameter values for Sphere, Griewank, Rosenbrock 
and Schwefel 2.26 numerical benchmark functions, whose comparative performance 
analysis is given in Sect.  4. Simulation has been carried out for dimension –20 and 
50, for population size –20, 50 and 100 and for number of iterations –50 and 100. It is 
observed that, for simple functions such as Sphere and Griewank, the optimal value is 
reached with a few numbers of population and iterations. For complex functions such 
as Rosenbrock and Schwefel 2.26, optimality is directly proportional to the increas-
ing number of population and iterations, but this condition holds true up to a certain 
value of fitness function. After a certain point no change in the function value will 
happen irrespective of population size and number of iterations. So, it can be inferred 
that algorithm independent parameters like population size and number iterations helps 
in convergence but for reaching the optimal solution, algorithm dependent parameters 
and algorithmic operations play a major role.

Fig. 9  Convergence graph of SGO, SGOLIIW, SGOSIIW, SGOACIW and SGOSAIW for (a) F1 (b) F2 (c) 
F3 (d) F4 (e) F5 (f) F6 (g) F7 (h) F8
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Comparing ‘C’ of SGO to ‘w’ of PSO, it can be said that ‘w’ is one of the parameter 
in PSO which added weight to the initial velocity whereas ‘C’ is the self- introspection 
parameter in SGO which impacts its improving phase. Both are not same, but change in 
both parameters affect the performance of the respective algorithms. Inertia weight tech-
niques are parameter tuning or parameter changing techniques according to a specific func-
tion. That’s why it can be observed that, while one technique works for ‘w’ in PSO, it 
fails for ‘C’ in SGO. It is completely algorithm dependent. As the nature of algorithms is 
different, so they behave differently and hence it requires extensive analysis to draw some 
conclusions.

5.2  Performance evaluation using engineering design problems

In this section, we simulated SGO and SGOSAIW on some of the engineering design 
problems because these problems integrate constraints satisfiability along with search-
ing the optimal result. Most of the real world problems can be mapped to these Con-
strained Optimization (CO) problems. In most of the papers, they use several design 
problems such as mechanical design problems, but from the single domain only. In this 

Table 8  Performance analysis of SGO, SGOLIIW, SGOSIIW, SGOACIW and SGOSAIW with nineteen 
benchmark functions suite given in Table 7

Functions SGO
(Mean,SD)

SGOLIIW
(Mean,SD)

SGOSIIW
(Mean,SD)

SGOACIW
(Mean,SD)

SGOSAIW
(Mean,SD)

G1 0,0 0,0 0,0 0,0 0,0
G2 0,0 0,0 0,0 0,0 0,0
G3 0,0 1.1653E-248, 7.43E-12 0,0 2.1771e-242,

6.53E-12
0,0

G4 0,0 0,0 0,0 0,0 0,0
G5 0,0 0,0 0,0 0,0 0,0
G6 2.28E-16,

6.44E-19
2.07E-16, 5.74E-19 1.58E-16, 5.21E-19 1.4878E-16,

5.13E-19
1.0353E-16,
4.12E-19

G7 0,0 0,0 0,0 0,0 0,0
G8 0,0 0,0 0,0 0,0 0,0
G9 0,0 2.8763E-247,

5.82E-18
0,0 1.4398E-239,

2.33E-20
0,0

G10 0,0 0,0 0,0 0,0 0,0
G11 0.9798

2.78E-15
0.9889,
3.21E-15

0.9853,
3.04E-15

0.9470,
2.54E-17

0.6667,
6.48E-20

G12 0,0 0,0 0,0 0,0 0,0
G13 0,0 0,0 0,0 0,0 0,0
G14 0,0 0,0 0,0 0,0 0,0
G15 0,0 0,0 0,0 0,0 0,0
G16 0,0 0,0 0,0 0,0 0,0
G17 17.2823,

2.76E-14
16.4012,
2.36E-14

17.0706.
2.52E-14

16.7371,
2.41E-14

15.9599,
1.03E-15

G18 0,0 0,0 0,0 0,0 0,0
G19 0,0 0,0 0,0 0,0 0,0
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section, we have used Three bar truss problem [46] and Cantilever beam problem [46] 
from mechanical engineering domain and two Process synthesis and design problems 
[30] from chemical engineering domain, whose problem formulation and description 
has been provided in Appendix. Every problem domain has its unique constraints, thus 
using wide variety of problem domains helps in studying the nature of the algorithms 
better. All the four problems considered here are minimization problems. Three bar 
truss problem has two variables to optimize constrained to three conditions. Cantile-
ver beam problem has five variables to optimize constrained to one condition. Process 
synthesis problem has two variables to optimize constrained to two conditions and 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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Process synthesis and design problem has three variables to optimize constrained to 
two conditions. Results obtained for Three bar truss and Cantilever beam have been 
compared to SAMP Rao algorithms [46] and results obtained for the two Process syn-
thesis design problems have been compared to Improved Unified Differential Algo-
rithms (IUDE) [52], ἐ - constraint Matrix adaptation gradient approximation evolution 
strategy(ἐ-MAgES) [23] and improved LSHADE with ἐ- constraint (iLSHADE ἐ) [18], 
whose results are taken from Kumar et  al. [30]. Population size was considered to be 
500 and run for 5000 iterations. Each algorithm was simulated for 50 individual runs 
and the best value and standard deviation obtained have been considered as the result. 
Comparative performance analysis for the engineering design problems have been given 
in Tables 11 and 12, from which it can be observed that SGOSAIW gives satisfactory 
results. In Table 11, it can be observed that, for Three bar truss problem and Cantile-
ver beam problem, proposed method was able to find the optimal value but with better 

(m) (n) (o)

(p) (q) (r)

(s)

Fig. 10  Convergence graph of SGO, SGOLIIW, SGOSIIW, SGOACIW and SGOSAIW for (a) G1 (b) G2 
(c) G3 (d) G4 (e) G5 (f) G6 (g) G7 (h) G8 (i) G9 (j) G10 (k) G11 (l) G12 (m) G13 (n) G14 (o) G15 (p) 
G16 (q) G17 (r) G18 (s) G19
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standard deviation value. In Table  12, for both the problems though SGOSAIW per-
forms better than SGO, but not better than the other algorithms. The reason is, some 
large scale optimization problems require inclusion of extra parameters as in [23, 52] 
and [18] to get the most optimal value. As in the proposed methodology no such param-
eters have been included, so it lacks in reaching the optimum.

Table 9  Performance analysis of PSO, BA, ASF-BA and SGOACIW on nineteen benchmark functions 
suite given in Table 7

Functions PSO BA ASF-BA SGOSAIW

G1 4.68E-28, 2.52E-27 1.51E-15, 5.55E-16 0,0 0,0
G2 3.67E+01,1.98E+02 1.77E-05, 3.50E-06 0,0 0,0
G3 4.23E-02, 2.26E-01 6.08E+01, 5.39E+00 0,0 0,0
G4 1.00E+05, 2.91E-11 1.20E+04, 8.30E+03 0,0 0,0
G5 3.74E+00, 2.01E+01 1.54E+06, 1.67E+06 0,0 0,0
G6 2.72E+00, 8.88E-16 3.56E+00, 3.74E-01 4.44E-16,3.93E-16 1.0353E-16, 5.12E-19
G7 3.77E-144, 2.03E-143 1.16E-03, 3.35E-04 0,0 0,0
G8 1.84E+02, 9.88E+02 8.85E-05, 1.75E-05 0,0 0,0
G9 4.23E-02, 2.26E-01 1.44E+63, 7.15E+63 0,0 0,0
G10 9.66E-02, 2.55E-01 2.20E+01, 2.50E+00 0,0 0,0
G11 1.05E+00, 2.07E+00 3.25E+06, 8.40E+05 9.09E-01, 1.08E-01 6.667E-01, 6.48E-20
G12 3.74E-08, 2.02E-07 7.82E+04, 2.70E+05 0,0 0,0
G13 8.74E-01, 4.71E+00, 1.28E-07, 2.19E-08 0,0 0,0
G14 9.83E-143, 5.29E-142 3.89E+02, 1.61E+03 0,0 0,0
G15 -2.41E+05, 2.09E+04 3.37E+02, 4.63E+01 0,0 0,0
G16 2.25E-40, 1.21E-39 1.47E+09, 6.73E+08 0,0 0,0
G17 7.21E-01, 3.86E+00 4.33E-01, 1.24E-01 7.89E-05, 1.52E-04 15.9599, 1.03E-15
G18 1.62E-04, 8.71E-04 9.84E+00,2.27E+01 0,0 0,0
G19 2.34E-07, 1.26E-06 3.19E+05, 9.74E+04 1.37E-23, 7.14E-23 0,0

Table 10  Mean best values of SGOSAIW with different values of Dimensions, Iterations and Population 
size for Sphere, Griewank, Rosenbrock and Schwefel 2.26 numerical benchmark functions

Functions Dimensions Iterations-50
Pop-20,50,100

Iterations-100
Pop-20,50,100

Sphere 20 0 0 0 0 0 0
50 0 0 0 0 0 0

Griewank 20 0 0 0 0 0 0
50 0 0 0 0 0 0

Rosenbrock 20 3.8E-01 3.7E-01 3.5E-01 3.6E-01 3.4E-01 3.2E-01
50 4.9E-01 4.7E-01 4.4E-01 4.7E-01 4.3E-01 4.1E-01

Schwefel 2.26 20 0.08 0.09 0.085 0.065 0.045 0.03
50 0.06 0.05 0.05 0.04 0.033 0.02
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6  Conclusion

Sigmoid adaptive inertia weight based SGO was tested with several benchmark func-
tions and it was found performing better than other algorithms, for most of the func-
tions, but not all such as ‘Noisy’ benchmark function and ‘Schwefel 2.26’ benchmark 
function. Mainly, the proposed inertia weight strategy was found suitably adapting to 
most of the problems, irrespective of their complexities, unlike other inertia weight 
strategies. Though parameter tuning can affect the performance of an evolutionary algo-
rithm greatly, but there are other aspects as well, which affects the performance too. In 
this paper, we have only focused on parameter tuning using different inertia weights. 
Modifying other aspects and analyzing their effects on the performance of the algo-
rithm, may be taken as one of the future works. Moreover, application of inertia weight 
strategies have been clearly explained with detailed analysis and insights, which are 
very easy to follow and can be helpful to the researchers who are new to this field. A 
thorough analysis on changing behavior of algorithms, on application of different inertia 
weight strategies, was done and reasonable explanations were provided. Proposed iner-
tia weight strategy can be applied to several recent evolutionary algorithms for adapta-
tion to various real-world problems and new paradigms may be explored.

For engineering design problems of mechanical engineering domain and chemical 
engineering domain, performance of SGOSAIW was satisfactory, but here also a scope 
of improvement could be found. SGOSAIW is a generalized algorithm and it has not 
been designed specifically for constrained optimization problems. So, a specialized ver-
sion could also be designed with SGOSAIW for dealing especially with complex con-
strained optimization problems.

Table 11  Performance analysis of SAMPRao algorithms, SGO and SGOACIW on Three bar truss and Can-
tilever beam problem

Problem SAMPRao1
(Best)

SAMPRao2
(Best)

SAMPRao3
(Best)

SGO
(Best, SD)

SGOSAIW(Best, SD)

Three bar
truss

263.896 263.896 263.896 263.67E+00,
1.6753E-06

263.45E+00,
2.8725E-08

Cantilever
Beam

1.339957 1.339957 1.339957 1.339E+00,
4.56E-12

1.339E+00,
6.78E-14

Table 12  Performance analysis of IUDE, ϵ MAgES, iLSHADEϵ, SGO and SGOACIW on Process synthe-
sis design problems

Problem IUDE
(Best,SD)

ϵMAgES
(Best,SD)

iLSHADEϵ
(Best,SD)

SGO
(Best,SD)

SGOSAIW
(Best,SD)

Process Synthesis 2.00E+00,
6.41E-17

2.00E+00,
1.52E-01

2.00E+00,
00E+00

2.00E+00,
2.54E-01

2.00E+00,
1.86E-01

Process Synthesis 
and Design

2.56E+00, 
1.36E-15

2.56E+00, 
2.70E-01

2.56E+00, 1.46E-07 2.6246E+00,
2.22E-02

2.5834E+00,
1.73E-02
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Appendix

Problem‑1 Three Bar Truss

Minimize: f(x, y) =
�

2
√

2x + y
�

L

Subject to :

Where :

Problem‑2 Cantilever Beam

Minimize: f(a, b, c, d, e) = 0.0624(a + b + c + d + e)

Subject to : g(a, b, c, d, e) = 61

a3
+

37

b3
+

19

c3
+

7

d3
+

1

e3
≤ 1

Where : 0.01 ≤ a, b, c, d, e ≤ 100

Problem‑3 Process Synthesis Problem

Minimize : f(x, y) = x + 2xy

Subject to : g1(x, y) = 1.25 − x2 − y ≤ 0

Where : 0 ≤ x ≤ 1.6, y ∈ {0,1}

Problem‑4 Process Synthesis and Design Problem

Minimize : f(a, b, c) = 2a + b − c

Subject to : g1(a, b) = a − 2e−b = 0

Where : 0.5 ≤ a, b ≤ 1.4, c ∈ {0,1}

Declarations 

Conflict of interest Authors have no conflict of interest

g1(x, y) =
�
√

2x + y
�

P − σ(
√

2x2 + 2xy) ≤ 0

g2(x, y) = yP − σ(
√

2x2 + 2xy) ≤ 0

g3(x, y) = P − σ(
√

2y + x) ≤ 0

0 ≤ x, y ≤ 1,

L = 100cm, P = 2KN∕cm2, σ = 2KN∕cm2

g2(x, y) = x + y − 1.6 ≤ 0

g2(a, b, c) = c + b − a ≤ 0



3053Multimedia Tools and Applications (2024) 83:3021–3055 

1 3

References

 1. Azqandi MS, Delavar M, Arjmand M (2020) An enhanced time evolutionary optimization for solv-
ing engineering design problems. Eng Comput 36(2):763–81

 2. Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies 
in particle swarm optimization. In 2011 Third world congress on nature and biologically inspired 
computing 633–640. IEEE

 3. Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. 
Memetic Comput 5(3):229–51

 4. Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained 
engineering design problems. Appl Math Model 1(71):45–59

 5. Chen ZR, Guan KK, Tong MS (2019) An Improved Adaptive Chaotic Particle Swarm Optimization 
Algorithm for Antenna Synthesis. In  2019 Photonics & Electromagnetics Research Symposium-Fall 
(PIERS-Fall) 207–210. IEEE

 6. Chen M, Zhong Y, Wang L (2019) An Improved Pigeon-Inspired Optimization Combining Adap-
tive Inertia Weight with a One-Dimension Modification Mechanism. In International Conference 
on Bio-Inspired Computing: Theories and Applications 177–192. Springer, Singapore

 7. Chou JS, Ngo NT (2017) Modified firefly algorithm for multidimensional optimization in structural 
design problems. Struct Multidiscip Optim 55(6):2013–28

 8. Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-
objective problems. Springer, New York

 9. Das S, Saha P, Satapathy SC, Jena JJ (2020) Social group optimization algorithm for civil engineer-
ing structural health monitoring. Eng Optim 3:1–20

 10. de Paula Garcia R, de Lima BS, de Castro Lemonge AC, Jacob BP (2017) A rank-based constraint 
handling technique for engineering design optimization problems solved by genetic algorithms. 
Comput Struct 15(187):77–87

 11. Dey N, Rajinikanth V, Ashour AS, Tavares JM (2018) Social group optimization supported seg-
mentation and evaluation of skin melanoma images. Symmetry 10(2):51

 12. Dey N, Rajinikanth V, Shi F, Tavares JM, Moraru L, Karthik KA, Lin H, Kamalanand K, Emmanuel 
C (2019) Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/
diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–56

 13. Dhiman G, Kaur A (2017) Spotted hyena optimizer for solving engineering design problems. 
In 2017 International Conference on Machine Learning and Data Science (MLDS) 114–119. IEEE

 14. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In Proceedings of the 
1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) 2:1470–1477. IEEE

 15. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot 
path planning. International Journal of Intelligent Computing and Cybernetics

 16. Eberhart R, Kennedy J (1995) Particle swarm optimization. In Proceedings of the IEEE International 
Conference on Neural Networks 4:1942–1948). Citeseer

 17. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm 
optimization. In Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 
00TH8512) 1:84–88. IEEE

 18. Fan Z, Fang Y, Li W, Yuan Y, Wang Z, Bian X (2018) LSHADE44 with an Improved ϵ - Constraint-
Handling Method for Solving Constrained Single-Objective Optimization Problems. In  2018 IEEE 
Congress on Evolutionary Computation (CEC) 1–8. IEEE

 19. Fang J, Zheng H, Liu J, Zhao J, Zhang Y, Wang K (2018) A transformer fault diagnosis model using an 
optimal hybrid dissolved gas analysis features subset with improved social group optimization-support 
vector machine classifier. Energies 11(8):1922

 20. Feng Y, Teng GF, Wang AX, Yao YM (2007) Chaotic inertia weight in particle swarm optimization. In 
2nd International Conference on Innovative Computing, Informatio and Control (ICICIC 2007) 475–
475. IEEE

 21. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve 
structural optimization problems. Eng Comput 29(1):17–35

 22. Harrison KR, Engelbrecht AP, Ombuki-Berman BM (2016) Inertia weight control strategies for parti-
cle swarm optimization. Swarm Intell 10(4):267–305

 23. Hellwig M, Beyer HG (2018) A matrix adaptation evolution strategy for constrained real-parameter 
optimization. In 2018 IEEE Congress on Evolutionary Computation (CEC) 1–8. IEEE

 24. Hu H, Bai Y, Xu T (2017) Improved whale optimization algorithms based on inertia weights and 
theirs applications. International Journal of Circuits, Systems and Signal Processing 11:12–26



3054 Multimedia Tools and Applications (2024) 83:3021–3055

1 3

 25. Huang X, Li C, Chen H, An D (2019) Task scheduling in cloud computing using particle swarm 
optimization with time varying inertia weight strategies. Cluster Comput 9:1–1

 26. Imrana M, Hashima R, Abd Khalidb NE (2013) An overview of particle swarm optimization vari-
ants. Procedia Eng 53:491–6

 27. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915
 28. Kentzoglanakis K, Poole M (2009) Particle swarm optimization with an oscillating inertia 

weight. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation 
1749–1750

 29. Kiani AT, Nadeem MF, Ahmed A, Sajjad IA, Raza A, Khan IA (2020) Chaotic Inertia Weight Par-
ticle Swarm Optimization (CIWPSO): An Efficient Technique for Solar Cell Parameter Estimation. 
In  2020 3rd International Conference on Computing, Mathematics and Engineering Technologies 
(iCoMET) 1–6. IEEE

 30. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex 
constrained optimization problems from the real-world and some baseline results. Swarm and Evol 
Comput 12:100693

 31. Liu H, Zhang XW, Tu LP (2020) A modified particle swarm optimization using adaptive strategy. 
Exp Syst Appl 4:113353

 32. Malik RF, Rahman TA, Hashim SZ, Ngah R (2007) New particle swarm optimizer with sigmoid 
increasing inertia weight. Int J Comput Sci Secur 1(2):35–44

 33. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 1(95):51–67
 34. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 1(69):46–61
 35. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algo-

rithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 1(114):163–91
 36. Naik A, Satapathy SC, Ashour AS, Dey N (2018) Social group optimization for global optimization 

of multimodal functions and data clustering problems. Neural Comput Appl 30(1):271–87
 37. Naik A, Satapathy SC, Abraham A (2020) Modified Social Group Optimization-a meta-heuristic 

algorithm to solve short-term hydrothermal scheduling. Appl Soft Comput 16:106524
 38. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm 

with adaptive inertia weight. Appl Soft Comput 11(4):3658–70
 39. Olivas F, Valdez F, Castillo O, Gonzalez CI, Martinez G, Melin P (2017) Ant colony optimization 

with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl Soft Com-
put 1(53):74–87

 40. Orouskhani M, Mansouri M, Teshnehlab M (2011) Average-inertia weighted cat swarm optimiza-
tion. Int Conf Swarm Intell 12. Springer, Berlin, Heidelberg 321–328

 41. Pawan YV, Prakash KB (2020) Impact of Inertia Weight and Cognitive and Social Constants in 
Obtaining Best Mean Fitness Value for PSO. In Soft Computing for Problem Solving 197–206. 
Springer, Singapore

 42. Praveen SP, Rao KT, Janakiramaiah B (2018) Effective allocation of resources and task scheduling 
in cloud environment using social group optimization. Arab J Sci Eng 43(8):4265–72

 43. Rajinikanth V, Satapathy SC (2018) Segmentation of ischemic stroke lesion in brain MRI based on 
social group optimization and Fuzzy-Tsallis entropy. Arab J Sci Eng 43(8):4365–78

 44. Rani KA, Hoon WF, Abd Malek MF, Affendi NA, Mohamed L, Saudin N, Ali A, Neoh SC (2012) 
Modified cuckoo search algorithm in weighted sum optimization for linear antenna array synthesis. 
In 2012 IEEE symposium on wireless technology and applications (ISWTA) 210–215. IEEE

 45. Rao RV, Kalyankar VD (2011) Parameters optimization of advanced machining processes using 
TLBO algorithm. EPPM, Singapore 20(20):21–31

 46. Rao RV, Pawar RB (2020) Self-adaptive multi-population Rao algorithms for engineering design 
optimization. Appl Artif Intell 34(3):187–250

 47. Rathore A, Sharma H (2017) Review on inertia weight strategies for particle swarm optimization. In 
Proceedings of 6th International Conference on Soft Computing for Problem Solving 76–86. Springer, 
Singapore

 48. Rauf HT, Malik S, Shoaib U, Irfan MN, Lali MI (2020) Adaptive inertia weight Bat algorithm with 
Sugeno-Function fuzzy search. Appl Soft Comput 90:106159

 49. Satapathy S, Naik A (2016) Social group optimization (SGO): a new population evolutionary opti-
mization technique. Complex Intell Syst 2(3):173–203

 50. Singh SB, Singh N, Hachimi H (2019) Inertia Constant strategy on Mean Grey Wolf Optimizer 
Algorithm for Optimization Functions. In 2019 5th International Conference on Optimization and 
Applications (ICOA) 1–7. IEEE

 51. Shukla AK, Singh P, Vardhan M (2020) An adaptive inertia weight teaching-learning-based optimiza-
tion algorithm and its applications. Appli Math Model 1(77):309–26



3055Multimedia Tools and Applications (2024) 83:3021–3055 

1 3

 52. Trivedi A, Srinivasan D, Biswas N (2018) An improved unified differential evolution algorithm for 
constrained optimization problems. In Proceedings of 2018 IEEE Congress on Evolutionary Computa-
tion 1–10. IEEE

 53. Yang XS (2010) A new metaheuristic bat-inspired algorithm. InNature inspired cooperative strategies 
for optimization (NICSO 2010). Springer, Berlin, Heidelberg 65–74

 54. Yang XS (2008) Firefly algorithm: Nature-Inspired Metaheuristic Algorithms. Luniver Press 
 55. Yue X, Zhang H (2020) Modified hybrid bat algorithm with genetic crossover operation and smart 

inertia weight for multilevel image segmentation. Appl Soft Comput 90:106157
 56. Zheng YL, Ma LH, Zhang LY, Qian JX (2003) On the convergence analysis and parameter selection in 

particle swarm optimization. In Proceedings of the 2003 International Conference on Machine Learn-
ing and Cybernetics (IEEE Cat. No. 03EX693) 3:1802–1807. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	A new adaptive tuned Social Group Optimization (SGO) algorithm with sigmoid-adaptive inertia weight for solving engineering design problems
	Abstract
	1 Introduction
	2 Related works
	3 Application of different inertia weight strategies to SGO
	3.1 SGO algorithm
	3.2 SGO with inertia weight strategies
	3.2.1 Linear decreasing inertia weight
	3.2.2 Linear increasing inertia weight
	3.2.3 Sigmoid increasing and decreasing inertia weight
	3.2.4 Oscillating inertia weight
	3.2.5 Chaotic inertia weight
	3.2.6 Adaptive inertia weight
	3.2.7 Adaptive chaotic inertia weight


	4 Sigmoid-adaptive inertia weight strategy and its effect on SGO
	5 Simulation and results
	5.1 Performance evaluation using benchmark functions
	5.2 Performance evaluation using engineering design problems

	6 Conclusion
	Appendix
	Problem-1 Three Bar Truss
	Problem-2 Cantilever Beam
	Problem-3 Process Synthesis Problem
	Problem-4 Process Synthesis and Design Problem

	References


