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Abstract
Breast cancer (BrC) is a lethal form of cancer which causes numerous deaths in women
across the world. Generally, mammograms and histopathology biopsy images are rec-
ommended for early detection of BrC as they enable a more reliable prediction than just
using mammograms. However, research indicates that even the most experienced der-
matologists can detect BrC in early stage with an average accuracy of less than 80%. Over
the years, researchers have made significant progress in the development of automated
tools and techniques to assist radiologists or medical practitioners in BrC detection.
Various machine learning and deep learning based architectures are extensively
experimented on different publicly available datasets to improve the performance mea-
sures. There is further scope of improvements by extracting better representative features
with deep architectural variants or ensembles techniques to minimize the misclassifica-
tions. Learnt parameters of any pretrained deep models may provide a better starting point
for any other architectures using transfer learning technique. In this work, we propose
computer-aided transfer learning based deep model as a binary classifier for breast cancer
detection. Generally, deep learning architectures are sequential, following only a single
channel for features’ extraction and further classification. However, fused features ex-
tracted from multiple channels may better represent features qualitatively. The novelty of
our approach is the use of multi-channel merging techniques for devising a dual-
architecture ensemble. The models are trained and tested on the BreakHis dataset and
an improvement in comparison with the state-of-the-arts is observed in various perfor-
mance metrics. Among several combinations for ensemble architectures by utilizing
various pretrained models, the Xception + InceptionV3 combination achieved an average
accuracy of 97.5% for multi-channelled architecture, setting benchmarking results for
further research in this direction.

Keywords Breast cancer . Classification . Deep convolutional neural network .Multi-channel
merging

https://doi.org/10.1007/s11042-021-11199-y

* Jitendra V. Tembhurne
jtembhurne@iiitn.ac.in

Extended author information available on the last page of the article

Published online: 16 July 2021

Multimedia Tools and Applications (2021) 80:31647–31670

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11199-y&domain=pdf
http://orcid.org/0000-0002-1389-3456
mailto:jtembhurne@iiitn.ac.in


1 Introduction

Globally, the highest number of abnormal deaths are caused by Cancer which exceeds the
number of deaths caused by heart diseases [27]. Breast cancer (BrC) is the most common form
of cancer among women. It impacts 2.1 million women every year worldwide and is the third
leading cause of cancer-related deaths [30]. In 2018, BrC emerged as the second commonly
diagnosed cancer with 11.6% of the total cancer cases and 6.6% of the total female deaths due
to cancer [7]. This number is perpetually on the rise globally [5] and it accounts for
14% of cancers in Indian women [11]. Studies suggest that approximately 1 in 8
women is diagnosed with invasive BrC in their lifetime and 1 in 39 women dies from
BrC, if no corrective measures are taken.

The breast is the tissue in women overlying the chest muscles. Breasts are made up of fatty
tissues and a specialized tissue producing milk called the glandular tissue. The milk-producing
part of the breast is organized into 15 to 20 sections, called lobes as shown in Fig. 1. Within
each lobe, smaller structures are present called as lobules, where milk is produced. The milk
travels through a network of tiny tubes called ducts. The ducts get connected and come
together into larger ducts, which eventually exit the skin in the nipple. The dark area of skin
surrounding the nipple is called the areola. Connective tissue and ligaments provide support to
the breast and give it its shape.

BrC is a group of diseases wherein cells in breast tissue begin to grow abnormally. These
cells get divided rapidly than healthy cells and continue to accumulate, forming a mass or
tumour. Most BrCs begin in the lobules or in the ducts that connect the lobules to the nipple.
Broadly, cancers are divided in two categories viz. Benign andMalignant. The benign tumours
are in-situ or non-invasive. They do not spread and are not harmful. However, the malignant
tumours are invasive and harmful. BrC is caused by a complex interaction of environmental
factors and genetic susceptibility. Survival of malignant BrC patients largely depends on early
detection of tumours. The most common physical sign of BrC is a painless lump. Less

Fig. 1 Female Breast Anatomy
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common signs and symptoms include breast pain or heaviness; persistent changes such as
swelling, thickening, or redness of the skin; and nipple changes such as spontaneous discharge
(especially if bloody), scaliness, or retraction.

A late detection of this disease is often due to the lack of early symptoms which makes the
treatment challenging [18]. Since the lives of people are at stake, there is no scope for
misclassification. To avoid misclassification in cancer detection, it is aimed to reduce false
negatives, which can be reflected in recall performance measure. Hence, correct classification
or identification of cancer is vital for early-stage treatment in cancer diagnosis.

Studies have shown that early diagnosis and suitable treatment can significantly reduce the
mortality rate [17]. For an early detection of BrC, screening is extremely essential. It involves
testing women to identify cancers before any physical symptoms appear. Some common
clinical methods of BrC screening are mammography, breast ultrasound, biopsy and magnetic
resonance imaging (MRI) [16]. Radiology images like mammograms can locate BrC lesions
but cannot substantiate whether a highlighted region is cancerous or non-cancerous. In breast
biopsy [34], small tissue (sample) is taken from the breast under suspicious region and
examined by the microscope. This gives a more credible cancer diagnosis than radiology
images. However, visual inspection of histopathological (Hp) stained tissue sections is time
consuming and requires sophisticated tools. In addition, to investigate sample correctly,
various factors or characteristics of the radiologist play a vital role such as field experience,
expertise, domain knowledge, and regular workload [2].

To minimize diagnostic errors, digital pathology laboratories convert histopathological
breast tissue slides into digital images known as histopathological images by using scanners
with different zooming factors. Hp images allow the pathologist to distinguish between a
normal tissue, benign tissue, and malignant lesions. Due to Hp images, computerized classi-
fication models are designed for the detection of BrC to support pathologists and assist as the
basis of second opinion in BrC diagnosis, and overcome the issues of microscopic manual
analysis of breast histopathological slides [3, 19].

There are numerous research works found in the literature focusing on the improvements on
the various performance issues in the early-stage breast cancer detection and diagnosis.
Though, existing approaches and techniques resolve the issues to a considerable extent, the
aforementioned statistics are just due to the several misclassifications followed by late
diagnosis. BrC is a classic example wherein we cannot afford any misclassifications due to
the existing non optimal techniques or by the expert dermatologists. Due to limited accuracy in
the contemporary Artificial Intelligence (AI)/ML techniques, the further improvements are
possible by adopting the advancements in the DL technologies. We propose a novel approach
for the breast cancer detection using multi-channel merging that demonstrates measurable
improvements in comparison with the state-of-the-arts. Specifically, we propose a computer-
aided transfer learning (TL) based binary classification deep model for BrC detection. Gener-
ally, deep learning architectures are sequential, following only a single channel for features’
extraction and then perform the classification. Different instances of a dataset may pursue
varying efficiency in features’ extraction and representation against any pretrained
convolutional neural network (CNN) features’ extractor. Feature’s fusion is a heavily adopted
methodology in machine learning for various tasks. With the advent of deep learning tools and
models, handcrafted features engineering is no longer needed. Using transfer learning mech-
anism, we can employ multiple pretrained CNNs for features’ extraction and perform their fine
tuning. In breast cancer classification, existing deep models adopt only single channel in the
entire features’ extraction and classification task. However, fused features extracted from

31649Multimedia Tools and Applications (2021) 80:31647–31670



multiple channels may better represent features qualitatively. The motivation of the work lies
in the anticipation that the meaningful combination of existing ensembles could yield im-
proved results than their individual counterparts. To the best of our knowledge, this is the first
attempt that employs multiple channels for efficient features’ extraction and representation in
breast cancer classification.

We performed a comparative study to analyse the performance of five pre-trained CNNs
and three ensemble models to determine the best method for BrC classification on the
BreakHis dataset [26]. We also performed extensive investigation in determining the best
setup of hyper-parameters for five models pretrained on ImageNet namely ResNeXt101 [33],
InceptionResNetV2 [34], DenseNet121 [35], InceptionV3 [36], and Xception [32] and their
three ensembles Xception + InceptionV3, Xception + InceptionResNetV2, and InceptionV3 +
InceptionResNetV2. These models are fine-tuned further on BreakHis dataset using TL to
accurately classify the Hp images into benign or malignant cancer. Moreover, we have used
the image augmentation techniques such as rotation and flipping to enhance the number of
samples in model training.

The remaining sections of this paper are structured as follows. In Section 2, we present the
relevant literature survey which demonstrate the BrC classification problem in medical
imaging using various machine learning or deep learning models. In Section 3, we highlight
the proposed methodology including the experimentation and implementation setup. In Sec-
tion 4, we present the results and discuss the relevance of the results. Finally, conclusions and
future scope are presented in the last section of the paper.

2 Related work

The two approaches generally used for BrC classification are machine learning (ML) and deep
learning (DL). ML or DL based classification models mainly comprises of four steps: i) pre-
processing of image, ii) extraction of features, iii) model raining, and iv) performance
evaluation of the model. The success of traditional ML-oriented BrC classification models
depends upon the discriminative hand-engineered features (HeF) extraction step [1]. They
classify the mitosis candidates using different manually extracted features, such as morpho-
logical, textural, and statistical features. However, since the mitoses have varied shapes and
textures, it is hard to manually define features that can effectively represent the mitotic cells
[28]. The major limitations of hand-engineered feature extraction process include non-trivial
tasks such as the requirement of domain knowledge and rework for each datasets publicly
available. These are prone to lose important information of correlated neighbouring pixels
[19]. ML system for BrC recognition based on Neural Networks (NN) and Support Vector
Machine (SVM) was published in 2013 that reported 94% recognition accuracy on a dataset
consisting of 92 samples only [11].

Since the arrival of DL based models especially, CNN, in the medical imaging field,
researchers have developed several models based on CNN and its architectural variants to
tackle different medical tasks. The last decade has seen significant efforts put forth for BrC
detection using either mammograms or Hp images. Other medical modalities such as breast
ultrasound and MRI are rarely used for classification. Study [15] employs both hand-crafted
and convolutional features to make the mitosis detection system more effective. In DL, we do
not require HeF extraction step which is a part in traditional ML approach. Moreover, DL
techniques involve minimal data pre-processing tasks and identifies relevant information in a
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self-taught manner. BrC classification using DL model are of two types: (i) the de novo models
i.e., classification models based on DL, developed from scratch, and (ii) TL-based models
comprises of models created and retrained after fine-tuning pretrained models (AlexNet) [19].

The de novo model sizes are often small whereas large dataset is needed for DL models.
Moreover, the model performance can be improved by adding some customized layers, and to
avoid overfitting of model large dataset with proper labels are required for training. However,
we lack in the large sized labelled datasets in medical domain. In addition, deep model training
on the large dataset requires more time as the parameters learning start from scratch and many
computational resources are required such as high-end GPU, RAM, and storage devices, etc.
The overfitting may be observed in TL-based models when the target dataset is very small as
majority of pretrained models trained on large dataset. Thus, new features cannot be learned by
this model when we consider target dataset with only few instances. Pretrained models are
often larger or deeper (e.g. ResNet has 150 layers) and thus require a large amount of data, and
consume more time and computational resources to train.

In [23], a deep model is utilized wherein 2-stage TL and evolutionary pruning approach is
adopted where AlexNet is trained on ImageNet and deep CNN is utilized for training as well as
TL for classification. Mammograms are segmented, and TL-based model is adopted to extract
the features from Region-of-Interests (RoI). Random forest (RF) is employed for classification
after features extraction for binary classification of BrC and the accuracy of 90% is achieved.
Some limitations of the model include requirement of a GPU, since it was a large model and
required more resources and time. The performance is measured based on sensitivity and
precision. In addition, an exclusive dataset is utilized and hence the results obtained could not
be compared with those results obtained by other researchers.

In [55], a transfer learning is applied in combination with diverse supervised ML algorithms
to classify BrC intrinsic subtype. The Pan-cancer dataset was used to train three autoencoders
(AEs) in an unsupervised manner on a heterogeneous dataset having different types of cancers.
The resulting AEs were then fine-tuned in a supervised method on a reduced dataset of BrC
labelled samples. The results indicated that the leveraging information from many cancer types
does not contribute to solve a more complex and specific classification task of BrC intrinsic
subtypes. Furthermore, an interpretation of the neural-like network focussed on the modern
neuro-paradigms deficiencies and limitations elimination is performed by the geometric data
transformations (GDT) method in [56]. The concept of information modelling based on a
novel model of geometric transformations is presented by the authors. Geometric Transfor-
mations Model (GTM) uses a single methodological framework for various tasks and fast non-
iterative study with pre-defined number of computational steps. It provides repeatability of the
training outcomes and the possibility to obtain satisfactory solutions for large and small
training samples.

For an extensive training process, there is a requirement for data including all the variations
and characteristics in BrC. Also, it must be ensured that the images are clicked at different
lighting conditions and backgrounds. Due to the huge amount of effort required, procuring a
live dataset has always been a difficulty in developing models for BrC classification. For many
years, research is being conducted using a very small number of samples from private datasets.
In 2016 [26], a database for BrC classification problem was released, and one research group
reported 85.1% accuracy utilizing SVM and Parameter Free Threshold Adjacency Statistics
(PFTAS) features for patient-level analysis, which was the highest recognition accuracy at that
time. In [22], MIAS and DDSM mammogram-based public datasets were used to classify BrC
specifically into malignant and benign cases. Initially, ANN and CNN are applied for
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mammogram segmentation. Thereafter, shape features, intensity, and texture extraction is
performed on segmented images. Lastly, the performance is evaluated using Random Forest
(RF), Naïve Bayesian (NB), SVM, and k-nearest neighbour (kNN) and an accuracy of 96.47%
is obtained.

Most of the current studies use public datasets and very few studies have trained their CNN
classifiers on large labelled datasets. To tackle this issue of small datasets, we used the image
augmentation methods that includes image modifications by flipping, rotating, and
scaling the image. This helps in improving the overall training process in computer
vision and related tasks.

Over the years, CNNs have proven to be the most effective in image classification tasks.
Long Short-Term Memory (LSTM) networks allow encapsulation of a wider sequence of
images for prediction. It has the potential to memorize long-term dependencies. It has been
observed in studies that LSTMs are able to complement the feature extraction ability of CNN
when used in a layered order. LSTMs have the capacity to selectively remember patterns for a
long duration of time and CNNs are able to extract the important features out of it. Thus,
LSTM-CNN layered structure when used for image classification, has an edge over conven-
tional CNN classifier. Study [20] classified a set of BrC images on BreakHis dataset using
novel deep neural network (DNN) models guided by statistical and structural information
obtained from the images. CNN, LSTM, and ensemble of CNN + LSTM were employed for
the classification of BrC. Moreover, decision-making is performed by softmax and SVM
layers after the feature extraction stage. The proposed method achieved the higher accuracy of
91% for BrC classification using highly accurate and efficient pre-trained models trained on
the publicly available large BreakHis dataset.

The spectrum of deep learning applications has become so broad in the recent time that it
has covered and performed tremendously well in various domains in comparison with its
contemporary machine learning models. We can list some of them here such as natural
language understanding and generation, smart city and homes, wind estimation and forecast-
ing, and many more. The complete enumeration of these applications is not in the scope of this
paper. However, we list several examples of deep models in the context of smart cities for the
sake of understanding the broad application range of deep learning. Citywide crowd flow
prediction and its accurate analysis is one of the most important tasks in smart cities traffic
management system. Contemporary deep models such as CNN and LSTM perform compar-
atively well for the aforementioned task, however, neural networks incorporating the spatio-
temporal features in the deep neural networks outperforms these traditional deep models in the
performance improvement of crowd flow prediction [62, 63].

In Table 1, we present the comparative analysis of existing models for breast cancer
detection based on the accuracy reported in the literature. Moreover, Table 2 shows the
comparison of various models based on model utilized, drawbacks, and future direction. Thus,
after inspecting the facts presented in Tables 1 and 2, we need robust deep model to detect the
breast cancer with higher accuracy to better assist in diagnosis.

3 Materials and methods

The architecture of our proposed binary classification model for BrC detection is shown in
Fig. 2. Firstly, we load the dataset and split it into training and testing set in the 80:20 ratio. We
perform image pre-processing on the input images before training. To do so, we preformed
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image augmentation with random horizontal and vertical flips. We re-scale all the images to
reconcile with the input dimensions of the pre-trained architecture used in this experimenta-
tion. Furthermore, we feed the processed images into the pre-trained architecture for features’
extraction and fine tuning. The output is then classified into benign or malignant cancer. We
explored this proposition for five different pre-trained architectures namely; Xception,
InceptionV3, ResNeXt101, InceptionResNetV2, and DenseNet121. To achieve more accura-
cy, we propose a multi-channel merging network, obtained by concatenation of two architec-
tures from the set of five pre-trained architectures. The proposed ensemble models for the
breast cancer classification includes, Xception + InceptionV3, Xception + InceptionResNetV2,
and InceptionV3 + InceptionResNetV2. The architecture of one of the ensemble models,
obtained using Xception + InceptionV3 is presented in Fig. 3.

3.1 Dataset

Our research focuses on identifying BrC in Hp images of the breast tissues. We used the
publicly available BreakHis dataset [26] for the construction and evaluation of the proposed
models. BreakHis dataset was developed jointly by Pathological Anatomy and Cytopathology,
Brazil and P & D Laboratory. It comprises of 7909 microscopic images; classified into 2480
benign images and 5429 malignant images at different magnifications collected from 82
patients diagnosed with breast tumour tissues, as shown in Fig. 4 (ii). Each image is 700 ×
460 pixels in size with 3-channel RGB, 8-bit depth in each colour, and stored in png format.
Sample images of the BreakHis dataset at different magnification levels are shown in Fig. 4 (i).
For this research, we split the dataset into training set (80%) and testing set (20%). We ensure

Fig. 3 Proposed Ensemble Architecture (using Xception + InceptionV3) for BrC Classification

Fig. 2 Proposed Architecture for BrC Classification

31655Multimedia Tools and Applications (2021) 80:31647–31670



that the proportionate inclusion of samples from different magnifications in model training and
testing. This helps in an unbiased evaluation of the model’s performance.

3.2 Image pre-processing

This phase removes non-informative features and applies image augmentation to avoid CNN
overfitting and class imbalance to improve the classification performance. CNNs achieve
better performance with a larger amount of training data. Thus, we use image augmentation
to synthetically create similar images by applying some image pre-processing techniques on
the available images. We perform this using the built-in pre-processing function of Keras [8]
ImageDataGenerator. We rotate the images up to 90 degrees and perform random horizontal
and vertical flips. Figure 5 shows the resultant image. To avoid class imbalance, we select an
equal number of augmented images from each class. The image size of the training set
automatically changes on applying the mentioned augmentation techniques. By using bicubic
interpolation (BI) method [54], we rescaled all the images to 299 × 299 × 3 or 224 × 224 × 3 so
that the images reconcile with the input image dimension for the pre-trained models we have
used. In BI, sixteen nearest neighbours of a pixel are considered. The intensity value assigned
to a point (x, y) is obtained using the Eq. 1 where the 16 coefficients are determined from the
sixteen equations in sixteen unknowns that can be written using the 16 nearest neighbours of
point (x, y).

Fig. 5 Image Augmentation: (i) BreakHis sample image, (ii) 90° Rotation, (iii) Horizontal Flip, and (iv) Vertical
Flip

(i) (ii)
Fig. 4 BreakHis dataset: (i) Breast Tissue Samples at (a) 40x, (b) 100x, (c) 200x and (d) 400x, and (ii) Dataset
Distribution into Different Magnifications
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v x; yð Þ ¼ ∑
3

i¼0
∑
3

j¼0
aijxiy j ð1Þ

where, v(x, y) gives the value of intensity at the point (x, y).

3.3 Transfer learning

In transfer learning, the knowledge or parameters of an already trained ML/DL model is
applied to a different but related problem. The main advantages of transfer learning are: better
initialization of model’s parameters, saving training time, better performance of neural net-
works, and not requiring a lots of data. In our study, we have utilized five pre-trained models
namely Xception, InceptionV3, ResNeXt101, InceptionResNetV2, and DenseNet121. The
architecture of each of the pre-trained models are shown in Fig. 6.

(a)

(b)

(c)

(d)

(e)

Fig. 6 Architecture of (a) Xception, (b) InceptionV3, (c) ResNeXt101, (d) InceptionResNetV2, (e)
DenseNet121
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3.4 Classification models: Convergence and fine tuning

We have performed some customizations on the DL architectures to make it better suited for
our task of BrC detection. These customizations are described as follows:

3.4.1 Binary cross entropy as loss function

As our prediction model acts as a binary predictor, Logistic loss or Binary cross entropy loss is
used for computing the model loss and can be described using Eqs. 2 and 3 for the ith instance
in a batch and for an entire batch respectively. yi and p(yi) indicate the ground truth label and
the predicted output by the model respectively. N indicates the number of samples in a mini
batch in the gradient descent algorithm. As suggested by the following equations, predicted
outcome should be close to unity for minimizing the loss if the ground truth label is true. On
the other side, predicted outcome by the model should be close to zero for minimization of the
loss if the ground truth label of that instance is false. In case of a batch, we take the average of
log loss of all the samples in a batch.

Hp qð Þ ¼ −yilog p yið Þð Þ− 1−yið Þlog 1−p yið Þð Þ ð2Þ

Hp qð Þ ¼ −
1

N
∑
N

i¼1
yi � log p yið Þð Þ þ 1−yið Þ � log 1−p yið Þð Þ ð3Þ

3.4.2 Adam as optimizer

For better convergence of the gradient descent algorithm, Adam is used as a gradient descent
optimizer that is a combination of momentum and RMSProp. Parameters, i.e., weight matrices
in the subsequent iterations are getting updated using Eq. 4.

wt ¼ wt−1−η
bmtffiffiffiffiffiffiffiffiffiffiffiffibvt þ ϵ

q ð4Þ

Where w is model weights, η is the learning rate, bmt and bvt represent momentum and RMSProp
respectively and ϵ is a very small number which prevents a division by zero. Momentum and
RMSProp are the exponentially moving averages of the partial derivatives of the cost function
with respect to the weight matrices and biases, and can be represented using Eq. 5 and Eq. 6
respectively.

mi ¼ β1mi−1 þ 1−β1ð Þ ∇Eθi½ � ð5Þ

vi ¼ β2ϑi−1 þ 1−β2ð Þ ∇E θið Þ½ �2 ð6Þ

where β1 and β2 are the hyperparameters, 0.9 and 0.999 are the values of these
hyperparameters respectively considered in our experimentations.
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3.4.3 CNN-LSTM/BiLSTM layer

We have added a CNN-LSTM/BiLSTM layer to our model. In bidirectional LSTM, the output
at time t is not only dependent on the previous frames in the sequence, but also on the
upcoming frames [14]. Bidirectional Recurrent Neural Networks (RNNs) have two RNNs
stacked on top of each other. One RNN goes in the forward direction and another one goes in
the backward direction. The combined output is then computed based on the hidden state of
both RNNs. The CNN-LSTM/BiLSTM network architecture used in our work is specifically
designed for sequence prediction problems with spatial inputs like images. It involves using
CNN layers for feature extraction on input data combined with LSTM/BiLSTMs to support
sequence prediction. This method is accurate for generating a textual description of a single
image. CNN layers are added on the front end followed by LSTM/BiLSTM layers with a
dense layer producing an output. The CNN model helps in feature extraction whereas the
LSTM/BiLSTM model interprets the features across different time steps. The CNN-LSTM/
BiLSTM is presented in the Fig. 7.

3.4.4 Multi-channel merging

Generally, deep learning architectures are sequential, following only a single channel for
features’ extraction and further classification. However, fused features extracted from multiple
channels may better represent features qualitatively. This is the backbone of our entire
experimentation. Here, instance specific characteristics plays a vital role in the feature extrac-
tion process by various pretrained CNNs, although, the instances belong to the same or similar
datasets. It might be possible that one pretrained CNN model perform better features’
extraction for an instance whereas it may not capture the similar efficient features for another
instance. This may probably happen due to the inherent intra class variance among the
different instances of the same dataset. This is the overall intuition behind employing two
pretrained CNNs on two different channels, extracted features by these pretrained CNNs are
merged just before the final classification. However, we have not explored more than two
channels to maintain the model complexity to a significant level.

We have used two pre-trained blocks namely, Xception and InceptionV3 for feature
extraction as shown in Fig. 3. We have transformed each block into sub-nets with distinct
convolutional kernels and merge the two branches to get a combined convolutional network
for super resolution by concatenating the different features extracted by the two sub-nets
individually. Using these techniques, we developed three multi-channelled ensemble architec-
tures namely Xception + InceptionV3, Xception + InceptionResNetV2, and InceptionV3 +
InceptionResNetV2. Table 3 presents the complete architectural details of the proposed model
to visualize the layer-by-layer composition, specifically for Xception and InceptionV3 based
multi-channel deep model. Moreover, Fig. 8 also illustrates the detailed structure of multi-
channel deep model proposed in this paper.

Fig. 7 CNN-LSTM/BiLSTM Network Architecture
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Fig. 8 Structure of multi-channel deep model for BrC Classification

Table 3 Proposed multi-channel model’s layer wise details

Layers Input dimension Output dimension

Input layer 1 (299, 299, 3) (299, 299, 3)
Input layer 2 (299, 299, 3) (299, 299, 3)
Xception layer (299, 299, 3) (10, 10, 2048)
InceptionV3 layer (299, 299, 3) (8, 8, 2048)
Reshape layer 1 (10, 10, 2048) (100, 2048)
Reshape layer 2 (8, 8, 2048) (64, 2048)
LSTM layer 1 (100, 2048) (128)
LSTM layer 2 (64, 2048) (128)
Reshape layer 3 (128) (1, 2, 64)
Reshape layer 4 (128) (1, 2, 64)
Max Pool layer 1 (1, 2, 64) (64)
Max Pool layer 2 (1, 2, 64) (64)
Dropout layer 1 (64) (64)
Dropout layer 2 (64) (64)
Batch Norm. layer 1 (64) (64)
Batch Norm. layer 2 (64) (64)
Concat layer (64, 64) (64)
Dense layer (64) (2)
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3.4.5 Hyper-parameters tuning

The learning rate is the hyper-parameter that determines how fast we are adjusting the weights
of our network or model towards the local minima. Higher learning rate can result in abrupt
weight changes that it might result in overshooting the local minima. This causes the training
or testing error to fluctuate drastically between consecutive epochs. Moreover, lower learning
rate can result in taking longer time to train our network or model as little steps are adopted
towards the local or global minima of the loss curve. Thus, the learning rate is one of the most
important hyper-parameters that needs to be tuned intelligently when building the model. We
have set the learning rate for our model to 0.0001.

Furthermore, an epoch indicates the number of iterations required of the entire training set
processed by the ML/DL model. It is impossible to know the suitable number of epochs for a
model training. Thus, we have added a call-back function to run epochs for a considerable
number of times before there is no further improvements in accuracy. In addition, batch size
also play a vital role in model training i.e. batch size refers to the number of training examples
utilized in one iteration. We have trained the proposed model on a batch size of 8 for 20
epochs. Moreover, we monitor the value of testing accuracy for the proposed model. When
there is no further improvement in the testing accuracy for 5 consecutive epochs, the learning
rate is reduced by a factor of 0.2 up to a minimum of 0.0000001.

3.5 Performance metrics

The different performance measures are used for evaluating the various machine learning
and deep learning models based on the problem and context. Accuracy, precision, recall,
and F1-score are the most important performance measures in case of classification tasks.
However, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) are the performance measures, generally adopted in case of
regression problems. As we are focusing on binary classification in our cancer detection
task using TL-based deep models, we precisely define the performance measures used in
our experimentation to evaluate the proposed model. Accuracy is a ratio of correct
classification to the total number of instances, as indicated using Eq. 6. It does not take
specific misclassification into account. Precision can be defined as how many samples
are True Positives (TP) among all the samples predicted as positives and presented with
the help of Eq. 7. However, to take care of False Negatives (FN), Recall is introduced
and can be defined as the ratio of True positives to the Actual Positives samples. It is
presented using Eq. 8. F1-score is the most important performance measures that takes
care of both Precision as well as Recall and can be defined as a harmonic mean of both
of these, as indicated using Eq. 9. Here, TP indicate True Positives, FP indicate False
Positives, TN represent True Negatives, and FN represent False Negatives.

Accuracy ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ ð6Þ

Precision ¼ TP
TP þ FPð Þ ð7Þ

Recall ¼ TP
TP þ FNð Þ ð8Þ
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F1−score ¼ 2
Precision*Recall
Precisionþ Recall

� �
ð9Þ

3.6 Learning curves

The performance of model learning can be visualized by the learning curves over the
time. Basically, learning curve is adopted to investigate the performance of proposed
ML/DL model that how it is learning at the time of training from the targeted dataset
incrementally. By observing learning curve for the targeted dataset, we can get an insight
of learning behaviour of proposed model. It also gives an idea of how well the model is
generalizing.

To measure the losses in the proposed model, we have plotted the loss curve. It gives an
overview of the training process and the direction in which the model learns. In this work, we
have generated loss curve across the number of epochs wherein the loss function calculates the
loss across every data item for each epoch. This gives the quantitative loss measure at each
epoch. To get a good insight on the model loss, we plotted the training and testing loss on the
same graph. In the loss graphs, we observe a continuous decrease in both the training and
testing loss. Towards the last few epochs, the training and testing loss decreases to a point of
stability with a minimal gap between the two final loss values. This shows that our loss curves
have obtained a good fit. The gap between the training and the testing loss in the loss graph is
generally known as the generalization gap. We observe a very small gap between the two
losses in our model, which implies that our model has achieved a good generalization.

Another performance measure is accuracy curve where an overview of the training process
and the direction in which the model learns can be visualized and we can depict the progress of
deep model. To visualize the accuracy progress over the time for the targeted dataset, we have
generated the accuracy curve across the number of epochs i.e., accuracy is calculated across
every data items. So, we plotted the training and testing accuracy on the same graph for the
better understanding of model losses. The gap between training and testing accuracy is a clear
indication of overfitting i.e., larger the gap implies higher the overfitting. In our case, we
observe a minimal gap between the training and testing accuracies for all the proposed models.
So, we conclude that our model does not overfit and we have also ensured this by applying
dropout layers of 50% to our models. Dropout layers disable the neurons during training and
reduces the complexity of the proposed models.

4 Result and discussion

This section reports and discusses the experimental results of proposed models in terms of
overall predictive accuracy and other performance measures. All the experiments are accom-
plished using Deep Learning library [8] on Intel® Core™ i7-8550U CPU @ 1.80GHz
processor with 8GB RAM enabled with NVIDIA GeForce 940MX graphic card. Moreover,
python 3.7 is utilized for the modelling and programming purpose.

The performance is evaluated in terms of F1-score, recall, precision, and prediction
accuracy for all the standalone and multi-channelled architectures. Table 4 shows the various
measures obtained for individual architectures on BreakHis dataset. The categorical accuracy
for Xception, InceptionV3, ResNetXt101, InceptionResNetV2, and DenseNet121 are found to
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be 92.17%, 91.75%, 90.43%, 90.45%, and 89.13% respectively. Xception and InceptionV3
show the highest accuracy, followed by InceptionResNetV2. The accuracy of the ensemble
models viz. Xception + InceptionV3, Xception + InceptionResNetV2, and InceptionV3 +
InceptionResNetV2 are 97.5%, 96.25%, and 95.12% respectively and the results are shown in
Table 5. It took approximately 2h to train each of the ensemble models.

We also evaluate the weighted averages of recall, precision, and F1-scores to check the
performance of models with respect to the number of images for each class of testing data. We
observed that the Xception (92.17%) and InceptionV3 (91.75%) shows the best accuracy
among all the five architectures.

Moreover, amongst the ensemble models, Xception + InceptionV3 achieves the highest
accuracy of 97.5%. Our proposed architecture for the Xception + InceptionV3 model outper-
forms several models that have been trained and evaluated on the BreakHis dataset. The
comparison amongst proposed models and other existing models for the BrC classification on
the BreakHis dataset is shown in Table 6. Thus, based on the accuracy, we propose the
application of Xception + InceptionV3 model for the detection of BrC. The training-testing
accuracy curves and training-testing loss curves for the five individual models and the three
ensemble models are represented in Figs. 9 and 10 respectively.

From Fig. 9, we observe very good start for both the training and testing accuracy by using
transfer learning. In the starting epochs itself, models are blessed with the considerable training
and testing accuracies. If we would have started model training from scratch without any
transfer learning, we would have observed very less training and testing accuracies, resulting
more epochs to reach at the convergence points. However, with the usage of multichannel
merging, features are fused from multiple channels to better represent the qualitative features.
From Fig. 10, it is clear that the start of the training accuracy is not good but model evolved
eventually to grasp the advantages of multi-channel merging and outperform the standalone
models after certain epochs.

Our model (Xception + InceptionV3) classifies images with an accuracy of 97.50% and a
loss of 0.1, and outperforms many state-of-the-art models. In addition, if we replace the CNN-

Table 4 Independent Model’s Accuracy, Precision, Recall and F1-score for BreakHis dataset

Model Accuracy (%) Weighted Average

Precision (%) Recall (%) F1-score (%)

Xception 92.17 85 85 85
InceptionV3 91.75 85 83 84
ResNeXt101 90.43 84 84 84
InceptionResNetV2 90.45 81 81 81
DenseNet121 89.13 81 82 82

Table 5 Ensemble Model’s Accuracy, Precision, Recall and F1-score for BreakHis dataset

Model Accuracy (%) Weighted Average

Precision (%) Recall (%) F1-score (%)

Xception + InceptionV3 97.50 89 89 89
Xception + InceptionResNetV2 96.25 87 88 88
InceptionV3 + InceptionResNetV2 95.12 86 86 86
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LSTM layer with a CNN-BiLSTM layer, then we achieve an accuracy of 96.25% and a loss of
0.11 for the Xception + InceptionV3 model, measured separately. The CNN-LSTM shows
slightly better scores for precision, recall, and F1-score, as compared to the CNN-BiLSTM
architecture. These results show that BiLSTM also performs better for the BrC prediction task
as compared to the LSTM layer. Misclassification needs to be absolutely eradicated before this
model can be utilized for second opinion for BrC patients.

From Table 6, we depict that [13, 48–52, 58, 60] has achieved the accuracy in the range of
84% to 92% which is lower as compared to the accuracy (97.50%) of our proposed model.
Thus, an improved accuracy is achieved, an increment of around 5.5% to 13.5% by the
proposed model on the BreakHis dataset. Nevertheless, we witness the higher/similar accuracy
by our multi-channel model that matches the state-of-the-art [45, 46, 53, 57] on the BreakHis
dataset.

5 Conclusions and future research directions

This research propose a new model for the detection of BrC. It is a binary classification model
based on transfer learning that takes biopsy images as an input and classifies into benign or
malignant cancer. Histopathological images from the publicly available BreakHis dataset are
utilized for training and testing of the proposed models. The two major heuristics i.e., transfer
learning from the pretrained models and multi-channel merging are experimented in the course
of breast cancer detection and classification on the aforementioned dataset. The idea behind the

Table 6 Comparison with existing models trained on the BreakHis dataset

Ref. Model Accuracy (%)

[13] Gupta V et al. (2017) 88.89
[45] Chan A et al. (2016) 96.4
[46] Bardou D et al. (2018) 96.15
[47] Kahya MA et al. (2017) 94.54
[48] Alom MZ et al. (2019) 92.04
[49] Arslan AK et al. (2019) 91.4
[50] Bayramoglu N et al. (2016) 84.63
[51] Spanhol FA et al. (2017) 84.2
[52] Araújo et al. (2017) 83.3
[53] Jiang Y et al. (2019) 98.87
[57] Wenzhong at al. (2020) 96.43
[58] Gupta at el. (2020) 93.27
[58] Gupta at el. (2020) 86.73
[59] Nawaz at el. (2018) 95.40
[60] Patil at el. (2019) 86.56
[61] Hameed at el. (2020) 95.29
Our Xception 92.17

InceptionV3 91.75
ResNeXt101 90.43
InceptionResNetV2 90.45
DenseNet121 89.13
Xception + InceptionV3 97.50
Xception + InceptionResNetV2 96.25
InceptionV3 + InceptionResNetV2 95.12
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(a)

(b)

(c)

(d)

(e)
Fig. 9 Training-testingAccuracyandLossCurves for (a)Xception, (b) InceptionV3, (c)ResNeXt101, (d) InceptionResNetV2,
and (e) DenseNet121 models
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usage of transfer learning is quite intuitive and experimented a lot in the literature to provide
better starting point in the model training. Generally, deep learning architectures are sequential,
following only a single channel for features’ extraction and further classification. However,
fused features extracted from multiple channels may better represent features qualitatively.
This was the intuition behind employing multichannel merged networks in breast cancer
classification. To the best of our knowledge, multichannel merging along with transfer
learning is utilized for the first time in the breast cancer classification task. The model not
only performed well with the standalone architectures but ensembles using multichannel
merging also outperform state-of-the-arts in the breast cancer classification. Moreover, the

(a)

(b)

(c)
Fig. 10 Training-testing Accuracy and Loss Curves for (a) Xception + InceptionV3, (b) Xception +
InceptionResnetV2, and (c) InceptionV3 + InceptionResNetV2
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higher accuracy is achieved for the proposed standalone and ensemble model is 92.17% and
97.50% respectively. Although, ensembles are used globally to increase the accuracy in
classification tasks but it also significantly increases the architectural complexity, leading to
much longer training time for the model. We also observe that our architecture for the
Xception model also outperforms several models. Thus, keeping in mind the model complex-
ity and increased training time, the Xception model can also serve as a reasonable alternative
for the Xception + InceptionV3 model.

Future scope for this work includes using histopathological images for detection of other
types of cancers. The binary classifier in the model can be extended to solve multi-class
classification problems that can classify different types and stages of BrC like predicting the
four subtypes of benign BrC viz. tubular adenoma (TA), fibroadenoma (F), phyllodes tumour
(PT), adenosis (A)) and the four subtypes of malignant BrC viz. mucinous carcinoma (MC),
lobular carcinoma (LC), papillary carcinoma (PC), ductal carcinoma (DC)). It can also be
experimented to classify other types of cancers such as liver, lung, prostrate, bladder, colon,
etc. using biopsy images. The architectural variants such as different types of convolutions
(tiled-, transpose-, and dilated-convolution), other ensembles, faster prototyping, and various
optimization techniques should be explored for further enhancements in the breast cancer
classification.
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