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Abstract
Compared to extractive machine reading comprehension (MRC) limited to text spans,
multi-choice MRC is more flexible in evaluating the model’s ability to utilize external com-
monsense knowledge. On the one hand, existing methods leverage transfer learning and
complicated matching networks to solve the multi-choice MRC, which lacks interpretabil-
ity for commonsense questions. On the other hand, although Transformer based pre-trained
language models such as BERT have shown powerful performance in MRC, external knowl-
edge such as unspoken commonsense and world knowledge still can not be used explicitly
for downstream tasks. In this work, we present three simple yet effective injection meth-
ods plugged in BERT’s structure to fine-tune the multi-choice MRC tasks with off-the-shelf
commonsense representations directly. Moreover, we introduce a mask mechanism for
the token-level multi-hop relationship searching to filter external knowledge. Experimen-
tal results indicate that the incremental BERT outperforms the baseline by a considerable
margin on DREAM and CosmosQA, two knowledge-driven multi-choice datasets. Further
analysis shows the robustness of the incremental model in the case of an incomplete training
set.

Keywords Machine reading comprehension · BERT · External knowledge ·
Common sense · Deep learning

1 Introduction

Machine Reading Comprehension (MRC) is a classic task in textual question answering
(QA), where models are required to answer a natural language question given the rele-
vant/irrelevant passages. Thanks to the release of large-scale datasets [17, 22, 25, 43], related
end-to-end neural networks have achieved promising results in various scenarios [1, 7, 27,
36, 47]. Usually, MRC based question answering (QA) can be divided into three types of
tasks: extractive QA, generative QA, and multi-choice QA. Compared to extractive MRC
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limited to text spans, multi-choice MRC allows more flexible design of multiple types of
questions such as summarization, commonsense, logical reasoning, arithmetic, and senti-
ment analysis. Hence, most commonsense-based QA datasets are designed in a multi-choice
form. For example, as shown in Fig. 1, the well-known fact that “McDonalds” is a restaurant
is useful to find the correct option.

Existing multi-choice QA datasets are small in size, making previous methods focus on
transfer learning with out-of-domain datasets and tasks [14, 33] or designing complicated
matching networks [35, 47]. Nevertheless, more data and more parameters mean more com-
puting resources are consumed. Besides, the out-of-domain data and the accumulation of
model capacity can not solve the fact-based QA task well and explain the commonsense
reasoning explicitly.

On the other hand, although pre-trained language models (LMs) such as BERT [5] have
shown powerful achievements at downstream tasks, including MRC, in the past year, their
pre-training methods ignore the role of factual knowledge. Existing work injects knowledge
into LMs by auxiliary knowledge-driven objectives and updating parameters in a multi-task
learning manner [24, 48], requiring pre-calculating knowledge representation and even pre-
training from scratch. Another solution is to leverage the language model as an encoder,
whose outputs are fed into the knowledge-text interaction layer for specific downstream
tasks [41], increasing model complexity and computational cost.

To alleviate these problems, we take BERT as a base pre-trained model and incorporate
the off-the-shelf commonsense representations for multi-choiceMRC. Intuitively, it is easier
to get the correct answer by fusing the commonsense relationships between the passage and
options into the model for inference. Instead of stacking interaction layers downstream, we
introduce three simple yet effective methods plugged in BERT structure, respectively named
additive feature-based gating, multi-level linear transformation, and multi-head attentional
fusion, to integrate token-level knowledge representations into BERT. Thus, text can be
encoded in BERT while considering commonsense information. Different from previous
work training the knowledge embedding before/after retrieving relevant entities, we directly
leverage pre-computed ConceptNet embeddings [28] as external knowledge representation.
Moreover, since not all commonsense concepts are necessary to the token and much external
knowledge implicitly exists in conversations, a mask mechanism is introduced for token-
level multi-hop relationship searching. Our goal is to enable the self-attention (SA) in BERT
to identify the knowledge-aware tokens without additional knowledge-driven objectives or
pre-training from scratch.

The remainder of this paper is organized as follows: Section 2 summarizes the main
contributions. Section 3 describes the task and related notations, followed by a concise
introduction to the baseline BERT. In Section 4, we propose our incremental language

Dialog : 
M: Right. Where was it stolen?

W: In the city center, outside McDonalds, on Hope 

Avenue.

Question : Where was the woman's camera stolen?

A: Outside an ice cream place.

B: Outside a restaurant.
C: Outside her home.

Fig. 1 An example of DREAM dataset. (�: the correct answer)
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models with three variants of injection methods. In Section 5, we present our token-level
multi-hop relationship filtering mechanism. Section 6 shows the experimental details and
results. Section 7 gives further analysis to verify the effectiveness of our methods. Section 8
introduces related work. Section 9 concludes.

2 Contributions

The main contributions of this paper can be summarized as follows:

1. We have proposed three simple yet effective injection methods plugged in BERT to
incorporate off-the-shelf commonsense representations for multi-choice MRC;

2. We have introduced a token-level multi-hop mask mechanism to adaptively select
relevant external knowledge, emphasizing the knowledge-aware tokens through the
self-attention (SA) scores;

3. We have evaluated the incremental BERT on three prevalent multi-choice datasets,
DREAM, CosmosQA and RACE. DREAM and CosmosQA contain a higher propor-
tion of commonsense questions while RACE has few commonsense questions. The
incremental BERT has obtained considerable improvements on two knowledge-driven
datasets and comparable results on DREAM compared with the vanilla system. Further
experimental analysis shows the robustness of the incremental model in the case of an
incomplete training set.

3 Background

3.1 Task description

Given a passage C = {c1, c2, ..., cs}, a question Q = {q1, q2, ..., qm} about this passage,
and the answer options A = {A1, A2, ...Ak}, the target of multi-choice MRC is to choose
the correct one from the candidate answer set A.

3.2 Baseline

BERT is based on Transformer backbone framework. In this paper, we directly use BERT
as a baseline, which includes a multi-layer bidirectional Transformer encoder and a linear
classifier. Following [23] we concatenate the context C, question Q, and answer option Ai

as the input sequence:

[CLS]c1..s[SEP]q1..m[SEP]a
i
1..n[SEP]

where [SEP] is the separating token, and [CLS] is the token for classification. For each
token, the input representation is constructed as:

BEi = etok
i + e

pos
i + e

seg
i , i = 1..T

where etok
i , e

pos
i , e

seg
i , and T are the token embeddings, position embeddings, segment

embeddings, and maximum length of sequence respectively. Tokens in C share a same
segment embedding pseg , and tokens in Q and Ai a same segment embedding qaseg .

Such input representations are then fed into a stack of Transformer encoder blocks,
which contains two sub-layers. The first sub-layer is a multi-head self-attention MHA. Given
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a matrix of T query vectors Q ∈ R
T ×d1 , keys K ∈ R

T ×d1 and values V ∈ R
T ×d1 ,

MHA(Q, K, V ) is computed as:

Attention(Q, K,V ) = sof tmax(
QKT√

d1
)V (1)

bj = Attention(QW
Q
j ,KWK

j ,V WV
j ) (2)

B = Concat (b1, ..., bH ) (3)

where d1 is the number of the hidden units, H denotes the number of heads used to focus
on different parts of channels of the value vectors, WQ

j ∈ R
T ×d1/H , WK

j ∈ R
T ×d1/H and

WV
j ∈ R

T ×d1/H are the parameters of linear mapping layer for j -th head. The second sub-
layer is a position-wise fully connected feed-forward network (FFN), which consists of two
dense linear layers with a GELU activation in between.

ul = MHA(hl , hl ,hl ) (4)

hl+1 = FFN(ul ) (5)

FFN(x) = W 2GELU(W 1x + b1) + b2 (6)

where hl ∈ R
T ×d1 denotes the hidden state at the l-th layer. We utilize the input rep-

resentations BE as the initial state h0. Note that we omit residual connection and layer
normalization used in each sub-layer for simplicity, and refer readers to [31] and [5] for
more details.

The final hidden state of the token [CLS], hL[CLS], is then projected into a score pi ∈ R
1

via a linear layer. For each question, we obtain the logit vector p = [p1, p2, ..., pk] for all
options. We choose the option with highest score p as the answer.

4 Incremental BERT with commensense

4.1 Knowledge integrationmechanism

There have been many studies proving that large-scale pre-training language models based
on Transformer, such as BERT, have a promising ability to represent text. However, they
ignore the effective integration of external commonsense and consensus, which plays an
important role in conversation comprehension. To this end, we explore three token-level
injection methods to extend BERT to allow flexibility in incorporating external knowledge.
Specifically, we integrate the commonsense embeddings CE selected with a multi-hop co-
occurrence mask (We will describe the knowledge representations and selection in Section
5) into BERT in three ways: additive feature-based gating, multi-level linear transformation,
and multi-head attentional fusion. We denote the three methods as “gate”, “linear”, and
“attention”, respectively.

Additive Feature-based Gating As depicted in the upper left part of Fig. 2, the method
“gate” tries to add the ConceptNet representation of the selected commonsense associated
token to the corresponding hidden state at each layer. To be specific, for each token ti , we
integrate the input representations BEi with external knowledge embeddings CEi ∈ R

d2

as:
Ini = BEi + σ(W gCEi + bg) (7)

where σ denotes the sigmoid activation function served as a gate mechanism and W g ∈
R

d1×d2 is a trainable weight parameter. This gating mechanism generates a mask-vector
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Fig. 2 Overview of the incremental language model. Three proposed fusion methods are abbreviated as
“gate”, “linear”, and “attention”, respectively

from each CEi with values between 0 and 1, incorporating information into salient
dimensions of BEi .

Multi-level Linear Transformation The middle part of Fig. 2 shows the second method
“linear” that integrates the external knowledge at each intermediate FFN layer of BERT.
For each Transformer encoder block, we replace the second sub-layer with a knowledge
fusion layer for the incorporation of the token representations and their corresponding
commonsense embeddings, which is computed as:

ũl
i = GELU(W l

1u
l
i + W̃

l

1CEi + bl ) (8)

hl+1
i = W 2ũ

l
i + b2 (9)

where W̃
l

1 ∈ R
d1×d2 is a trainable weight parameter. Note that this method is in a similar

spirit to the work of [48]. However, since our method focuses on the role of commonsense
invariance between related tokens in text-based comprehension and their approach focuses
on knowledge-driven tasks, we did not apply multi-head self-attention and mutual projec-
tion to knowledge embedding encoding. Instead, the knowledge embeddings are fixed for
multi-level Transformer encoder blocks, which is simpler and does not require pre-training
objective.

Multi-head Attentional Fusion The third method, as depicted in the “attention” part of
Fig. 2, is inspired by the work of [18] and applies attention-based integration to the final
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hidden states hL. Specifically, we add another Transformer encoder block with two multi-
head attention sub-layers to the output of the BERT encoder. The first sub-layer is a multi-
head knowledge attention (KA) computed as:

vL = MHA(hL, ˜CE, ˜CE) (10)

where ˜CE is a concatenation of CE and a knowledge sentinel s ∈ R
d2 . Considering not

all tokens are relevant to the background knowledge, we follow [42] to employ the sentinel
vector to control the tradeoff between background knowledge and information from the
passage text. Thus, we get the knowledge-aware context representations vL and feed them
into the second sub-layer, which consists of a multi-head self-attention and a FFN:

ṽL = MHA(vL, vL, vL) (11)

yL = FFN(ṽL) (12)

Note that we also employ residual connection and layer normalization around each attention
layer. We replace hL with yL to predict the correct answer.

5 Commonsense representation and filtering

Existing commonsense libraries are usually presented in structured data. Taking into
account the diversity of commonsense and the ready-made vector representation acquisition,
we use ConceptNet 5.5,1 a knowledge graph (KG) including linguistic and world knowl-
edge from many different sources such as WordNet [21] and DBPedia. Commonsense in
ConceptNet is represented in the form of a triple (subject, relation, object). For example, “a
dog has a tail” can be represented as (dog,HasA, tail). Additionally, daily lexical knowledge
and even emojis can be found in ConceptNet (e.g., (lol, DerivedFrom, laugh)). We believe
that the graph-structured knowledge can be useful for multi-choice MRC that involves
further reasoning with commonsense. Below we first introduce commonsense knowledge
representations, and then present a token-level multi-hop knowledge filtering method.

5.1 Knowledge graph embedding

Unlike previous work training the knowledge embedding before/after retrieving relevant
entities, we directly leverage off-the-shelf ConceptNet embeddings as external knowledge
representation, representing global commonsense relationships. To be specific, we retrieve
the tokens from the common vocabulary of BERT and ConceptNet and extract the corre-
sponding KG embeddings. For those BERT tokens that are not found in ConceptNet, we set
them to 0. We use three types of representation for common tokens: ConceptNet-PPMI 2,
ConceptNet Numberbatch, 3 and Randomly Initialized Embedding.

ConceptNet-PPMI A matrix of word embeddings trained on a sparse, symmetric term-
term matrix where each cell contains the sum of the weights of all edges that connect the
two corresponding terms. For each term in the ConceptNet graph, its ConceptNet-PPMI

1https://github.com/commonsense/conceptnet5/wiki
2https://conceptnet.s3.amazonaws.com/precomputed-data/2016/numberbatch/16.09/conceptnet-55-ppmi.h5
3https://github.com/commonsense/conceptnet-numberbatch
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representation reflects the context containing the information of other nodes to which it is
connected.

ConceptNet Numberbatch A set of semantic vectors built with an ensemble that combines
data from ConceptNet, word2vec, GloVe, and OpenSubtitles 2016, using a variation on
retrofitting. Word embeddings in ConceptNet Numberbatch can represent both text-based
context and structured knowledge.

Randomly Initialized Embedding Since the relations are not scored and represented
explicitly, we also use randomly initialized embeddings for tokens to analyze the indirect
commonsense relation between words in the passage and the effect of KG embeddings.

5.2 Token-level multi-hop knowledge filtering

Although vectors calculated based on the knowledge graph can represent the common-
sense relationships, fusing these embeddings into all tokens of the question-oriented passage
is usually invalid or even noisy. Moreover, the model requires commonsense relation not
directly stated in the context to reach the correct option. For example, Fig. 3 shows that the
model possibly needs multi-hop commonsense to reason about where the conversation takes
place. Therefore, to improve the precision of useful information, we design a mask vector
M to filter commonsense representations. Specifically, the length of M is the same as the
sequence length input to the model and we initialize the mask values of all tokens to 1. For
each token t1 ∈ Ai that is not a stop word or a padding token, we set M index(t1) = 0 and
use it as a subject concept to search for the object concept t2 ∈ C ∪ Q connected to t1 in
ConceptNet, then set M index(t2) = 0 and continue searching t3 ∈ C with t2. For concepts
consisting of multiple tokens (e.g., sign contract), we mask subtokens in the passage and
repeat the above operation. We present this overall procedure in Fig. 4.

Thus, we obtain the mask vector M , which only contains 0 and 1 binary values. We
further define the mask operation as follow:

Φmask(CEi) =
{

CEi ,M i = 0
0 ,M i = 1

(13)

Dialog: 

W: Good morning, can I help you?

M: Yes, please. I'd like to cash two traveler's cheques.

W: Could you sign your name here please?

M: Sure.

W: Thank you. How would you like your money?

M: In hundreds and fifties, please.

W: Ok. It's 1,660 yuan, here you are.

M: Thanks. May I know the exchange rate?

W: Well, at the moment the exchange rate between US dollars 
and RMB is 1:8.3. You give me two $100 cheques; here is 1,660 

yuan. Is that right?

M: Yes, thanks

Question : Where is the conversation most probably taking place?

A: In a supermarket.

B: In a bank.

C: In an office.

bank

money cash

exchangesign_contract

dollars

Fig. 3 An example of multi-hop relation searching. In ConceptNet, “bank” is connected to “money”, “cash”
and “dollars” through the RelatedTo relationship. Further, “sign contract” and “exchange” can be found
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Fig. 4 Procedure of the token-level multi-hop knowledge filtering mechanism
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For tokens corresponding to multiple concepts in multi-hop alignment, we use a single-layer
feedforward network for weighted integration:

CEi = ∑K
k=1αk ∗ ci,k (14)

αk = ewci,k∑K
k=1e

wci,k

(15)

where w ∈ R
d2 is a trainable weight parameter and K is the number of concepts containing

the token in multi-hop alignment.
The filtered commonsense embeddings CE will be taken as input to the three fusion

methods, depicted in Fig. 2. It is obvious that the commonsense filtering mechanism
essentially improves the prediction of commonsense questions by integrating effective
representations to change the token-level attention weights within the language model.

6 Experiments

6.1 Dataset and evaluationmetric

We report results on three well-known multi-choice datasets, CosmosQA [13],
DREAM [29], and RACE [17], which are summarized in Table 1. Specifically, we introduce
the datasets:

CosmosQA is a large-scale dataset that requires commonsense-based reading compre-
hension, formulated as multiple-choice questions. In contrast to most existing MRC
datasets where the questions focus on a factual and literal understanding of the context
paragraph, CosmosQA focuses on reading between the lines over a diverse collection of
people’s everyday narratives.

DREAM is collected from text material of listening comprehension examinations
designed for evaluating the dialog understanding level of Chinese learners of English.
DREAM contains 34% questions with unspoken commonsense, which requires the
model to answer these questions not only by advanced reading skills but also with rich
background knowledge.

RACE consists of two subsets: RACE-M and RACE-H respectively corresponding to the
English exams for middle and high school Chinese students, which is recognized as one
of the largest and most difficult datasets in multi-choice reading comprehension.

For all datasets, we use the official train/dev/test splits. For multi-choice MRC task, the
evaluation metric is accuracy calculated as acc = N+/N , where N+ denotes the number of
examples the model selects the correct answer, andN denotes the total number of evaluation
examples.

Table 1 Statistics of multi-choice
machine reading comprehension
datasets. ∗ denotes the numbers
are based on 500 samples

CosmosQA DREAM RACE

# paragraphs 21,866 6,444 27,933

# questions 35,588 10,197 97,687

# options 4 3 4

Ave. # paragraph 70.3 85.9 321.9

Need commonsense (%) 93.8 33.7 11.0∗

32319Multimedia Tools and Applications (2021) 80:32311–32333



Table 2 The best
hyperparameters on different
datasets
(BERT-base/BERT-large). T
denotes the max sequence length

Dataset lr epoch Batch size T

CosmosQA 2e−5/2e−5 10/8 32/32 256

DREAM 2e−5/2e−5 8/8 24/12 512

RACE 3e−5/2e−5 3/3 16/8 512

6.2 Implementation details

We implement our experiments using Huggingface4. We use BERT-base and BERT-large as
baseline systems. To keep the order of magnitude close, we use L2 normalization to prepro-
cess ConceptNet-PPMI. We experiment with commonsense relation searching of up to three
hops. We set K = 3. The embeddings of commonsense are fixed during the fine-tuning
process, and the parameters of BERT are trainable and initialized from the Huggingface
checkpoint. For all fine-tuning experiments, we use BertAdam as the optimizer. We employ
early stopping and predict the test set using the best model on the development set.

For training, we run all experiments on two 16G Quadro P5000. For CosmosQA, we set
the max sequence length T to be 256 and select the hyperparameters from batch size: {16,
32, 64}, learning rate: {5e-5, 2e-5, 1e-5, 8e-6}. It takes about 8 hours to get the best result.
For DREAM dataset, we run experiments for 8 epochs, set the max sequence length to be
512, and select the hyperparameters from batch size: {8, 12, 24, 36}, learning rate: {2e-5, 1e-
5, 8e-6}. It takes about 4 hours to get the best result. For RACE dataset, we run experiments
for 3 epochs, set the max sequence length to be 512, and select the hyperparameters from
batch size: {8, 16, 32}, learning rate: {3e-5, 2e-5, 1e-5}. It takes about 12 hours to get the
best result. In Table 2, we present the best hyperparameters on the development set and use
them to verify on the test set.

6.3 Results

We compare the performance of the three proposed fusion methods with the two baselines
in Table 3, where models on the leaderboards and publications are also shown.

(1) BERT+WAE: To mimic the human exclusion strategy, authors train their model with
the wrong answer loss and correct answer loss to generalize the features of their model,
and exclude likely but wrong options.

(2) MMM: It involves two sequential stages: coarse-tuning stage using out-of-domain
datasets and multitask learning stage using a larger in-domain dataset to help model
generalize better with limited data. Furthermore, the authors propose a novel multi-
step attention network (MAN) as the top-level classifier for this task.

(3) DUMA: It proposes a novel going-back-to-the-basic solution that straightforwardly
models the MRC relationship as attention mechanism inside the network.

(4) DCMN: It proposes a dual co-matching network (DCMN) which models the rela-
tionship among passage, question and answer options bidirectionally. Besides, it
integrates two reading strategies including passage sentence selection and answer
option interaction.

4https://github.com/huggingface/transformers
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Table 3 Accuracy (%) on the multi-choice datasets including CosmosQA, DREAM and RACE. ConceptNet
Numberbatch is used as commonsense representation and two-hop relation searching is applied. “-B” means
the base model and “-L” means the large model. Due to the submission limit of CosmosQA, we only evaluate
the incremental BERT-large model and publish the best result

Model CosmosQA DREAM RACE

Leaderboard

BERT-B 62.9 63.2 65.0

BERT-L – 66.8 72.0

BERT-B+WAE – 64.7 –

BERT-L+WAE – 69.0 –

Publication

MMM-B [14] – 72.2 68.0

MMM-L [14] – 76.0 72.5

DUMA-B [50] – 62.3 –

DCMN-B [47] – – 67.0

DCMN+-L [47] – – 75.8

Multiway-L [13] 68.4 – –

Ours (Concept Numb.+2hop)

BERT-B – 62.8 65.0

BERT-Bgate – 64.8 64.9

BERT-Blinear – 65.3 65.3

BERT-Battention – 63.5 64.5

BERT-L 66.8 66.6 72.1

BERT-Lgate 67.9 67.8 72.4

BERT-Llinear 69.2 69.3 72.6

BERT-Lattention 67.6 67.3 72.0

(5) Multiway: It performs multiway attention over BERT encoding output. Specifically,
for the passage, question and option, the mutual attention will be calculated separately
and pooled into the final representation.

ConceptNet Numberbatch is used as commonsense representation (We will discuss the role
of knowledge embedding in Section 7), and we apply a two-hop commonsense relationship
to filter knowledge.

From the results, we observe that our plug-in methods of incorporating commonsense
can improve performance over the vanilla BERT on DREAM and CosmosQA. Specif-
ically, multi-level linear transformation achieves the best results on CosmosQA (69.2%
vs. 66.8% with BERT-large) and DREAM (65.3% vs. 62.8% with BERT-base and 69.3%
vs.66.6% with BERT-large). Compared with the other two methods, multi-head attentional
fusion improves less on CosmosQA and DREAM, and decreases performance on RACE.
In knowledge-driven multi-choice tasks, the incremental model variants obtain 0.7%-2.7%
considerable improvement in average accuracy over the baseline of directly fine-tuned
BERT. In contrast, our increment models have achieved comparable results on RACE. On
the one hand, it means RACE requires little external knowledge for reading comprehension.
On the other hand, it illustrates our methods do not lose the textual information after hetero-
geneous knowledge fusion. Compared to these public models, although the performance is
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slightly worse on DREAM and RACE, the proposed methods have two advantages: 1) Dif-
ferent from DUMA and DCMN+, which are designed to be complex interactive matching
networks, only a few mapping parameters and a single layer of parallel attention calcula-
tion are added to fuse commonsense into BERT; 2) Different from MMM using data from
out-of-domain tasks for transfer learning, the incremental BERT has significantly improved
the performance by direct fine-tuning. In addition, prediction results involving common-
sense questions are difficult to explain in the existing methods clearly. On the contrary, we
directly incorporate off-the-shelf commonsense representations into BERT’s internal struc-
ture through token-level pre-matching to achieve the purpose of explicit use of external
knowledge, obtaining interpretable performance improvement.

7 Discussion

7.1 Knowledge embedding

Table 4 shows the results of our incremental BERT-baselinear model obtained by adding
initialization with different commonsense representations. From this table, we see that
adding Concept-PPMI globally has a negative impact on the performance of BERT, while
fusing it according to multi-hop commonsense relation improves the results. A possible
reason is that Concept-PPMI only contains structured information based on the knowl-
edge graph, providing a lot of noise when integrated indiscriminately. Hence, leveraging
the multi-hop commonsense filtering algorithm helps BERT effectively utilize the struc-
tured information, which is also demonstrated in the experiment with random initialization.
Moreover, the incremental model using random initialization commonsense performs better
than using Concept-PPMI in global fusion, which means heterogeneous information is diffi-
cult to integrate directly without prior filtering since the pre-training procedure for language
representation is quite different from the knowledge representation procedure.

7.2 Multi-hop commensense selection

Table 5 illustrates the role of filtering commonsense, where we also integrate commonsense
representations for each token in C and Ai for multi-hop analysis (global in Table 5). We
can see that: (1) All three methods achieve their own best results in the two-hop common-
sense relation search, which means that the indirect commonsense concept does not always
work; (2) Multi-head attentional fusion performs better only in no more than two-hop com-
monsense relation, which is probably due to the knowledge-context attention mechanism
is not sensitive to excessive noise fusion. Interestingly, additive feature-based gating with
global commonsense performs better than itself with one-hop commonsense on DREAM

Table 4 Performance in accuracy (%) with different knowledge representation. We use BERT-baselinear and
DREAM development set for analysis

KG Embeddings Global One-hop Two-hop Three-hop

Random 62.9 63.5 63.6 63.0

Concept-PPMI 62.3 63.9 64.2 63.9

Concept Numb. 64.4 64.7 65.1 64.2

The best perfomance of each variant is illustrated in bold
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Table 5 Accuracy (%) on the CosmosQA, DREAM and RACE development dataset based on the different
number of hop commonsense relation searching, where “global” means commonsense representations are
integrated into all tokens

Model CosmosQA DREAM RACE

global 1h 2h 3h global 1h 2h 3h global 1h 2h 3h

BERT-Bgate 63.7 64.1 64.4 64.3 64.5 63.9 64.9 63.4 64.5 64.5 64.9 64.6

BERT-Blinear 64.9 64.6 65.3 64.8 64.4 64.7 65.1 64.2 64.8 65.1 65.4 64.6

BERT-Battention 62.9 63.4 63.8 63.3 62.6 63.2 63.5 62.2 64.0 64.4 64.4 64.1

Bold entries demonstrate that indirect commonsense concept does not always work

and CosmosQA. We hypothesize that the ConceptNet Numberbatch contains text-based
lexicon information since it is obtained by jointly retrofitting from word2vec and GloVe.

7.3 Self-attention

To verify our goal to enable the self-attention in BERT to identify the knowledge-aware
tokens, we consider the case depicted in Fig. 3. In this case, the BERT chooses the wrong
candidate option (A) and our models make the right choice (B). We capture the correlation
between tokens in the BERT and two-hop BERT-baselinear respectively, which are visualized
in Fig. 5a and b, obtained from the penultimate self-attention layer of BERT and two-hop
BERT-baselinear, respectively.5 For BERT, the token “bank” has a low degree of similarity to
all tokens ti ∈ C except “traveler” and “cheques”, and the focus of almost all tokens in the
dialog is quite discrete. Moreover, part of tokens has a relatively high degree of similarity to
“conversation” and the segment token, which is not enough to support the model to choose
the correct conversation place. By contrast, our incremental model can learn more accurate
representations to understand the commonsense relation between the passage and the can-
didate option, and infer the correct answer. From Fig. 5b, we can observe that “bank” has
a high degree of relevance with “cash”, “sign”, “money”, “exchange” and “dollars”, which
perfectly reflects their commonsense relationships shown in Fig. 3. In addition, the original
similarity between “bank” and “cheques” is also retained or even strengthened. It illus-
trates that the commonsense fusion method preserves textual information while effectively
utilizing heterogeneous knowledge.

7.4 Incomplete training set

BERT pre-trained on large-scale texts is still deficient in explicitly representing the relation-
ship between commonsense concepts. The smaller the text training set in the downstream
knowledge-driven task, the higher the requirement for the commonsense understanding abil-
ity of the model. We show the results of different incomplete training set settings in Fig. 6,
using BERT-base as the baseline. We can see that the performance of all models shows a
similar trend with the decrease in training set size. Compared to the vanilla BERT, our incre-
mental models maintain better robustness. It is worth mentioning that the performance of the
three-hop models have decreased more slowly than the one-hop models when the training

5During visualization, we use a row-wise softmax operation to normalize similarity scores over all sequence
tokens.
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Fig. 5 Case study. In this case, the BERT (a) chooses the wrong candidate option and our models make the
right choice. Two-hop BERT-baselinear (b) is used for comparison. Heat maps present similarities between
correct answer (row) and dialog (column) tokens

set size drops to 60% and 40%. The three methods have different performances for differ-
ent number of hops. We argue that commonsense would be more needed when the scale of
text training set decreases to a certain extent. Augmenting BERT with external knowledge
incorporation results in significant improvements in the settings with incomplete training
set.

7.5 Computational costs

We present the computing resources used in our experiments. Each component’s parameters
and the running time for each variant (1-hop/2-hop/3-hop) are summarized in Table 6. Since
proposed methods add few parameters, each variant took the same time as the BERT-large
baseline. The computation bottleneck is mainly from BERT and multi-hop token alignment.
Considering the performance improvement of the two-hop relation search, the increase in
overall running time is acceptable. However, the huge amount of parameters and long run-
ning time mean that there is still much work to deploy the model as a practical question
answering system. Interestingly, we have found that the running time on RACE did not
increase significantly as the number of search hops increased, which further reflects that
RACE contains few commonsense questions.
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Fig. 6 Accuracy on DREAM development set with the decrease in training set size. BERT-base is used for
comparison
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Table 6 Computational costs for each variant of proposed methods. BERT-large is taken as the baseline.
Running time is the sum of relation search time (1-hop/2-hop/3-hop) and model training time

Components #Parameters (M) Running Time (h)

DREAM CosmosQA RACE

BERT-large 340 6.5 8 12

gate 0.31 6.8/7.4/9 8.7/10/12.6 13.8/14.5/14.9

linear 3.7

attention 3.15

7.6 Error analysis

We conduct the following error analysis to investigate problems that our model is short
of the ability to address. We randomly extract 200 samples from the development set of
DREAM, and then classify them into several question types according to the annotation cri-
terion consistent with [29]. We compare two-hop BERT-baselinear with BERT-base on these
categories, as shown in Table 7. Both models perform worse than random guessing (33.3%)
on math problems since the Conceptnet does not contain the commonsense of mathemati-
cal computing, especially time and currency, which can be future work. Although superior
to BERT on the implicit questions (e.g., under the categories logic and commonsense)
which require external knowledge, our incremental model is less capable of answering these
questions under the category summary. We hypothesize that integrating token-level com-
monsense may interfere with the reasoning requiring the aggregation of information from
multiple sentences.

8 Related work

Machine Reading Comprehension In recent years, many MRC datasets have been
released to solve different task scenarios, e.g., cloze-style [8, 9], extractive/abstractive
answer [6, 15, 16, 22, 25], multi-choice [17], conversational QA [3, 26], multi-hop [38,
43], and whether external knowledge is needed [4, 13, 19, 30, 46]. Most MRC datasets
that require external knowledge such as ARC, DREAM, OpenBookQA, CommonsenseQA
and CosmosQA are designed in a multi-choice form. In this paper, we focus on the multi-
choice MRC task. Hence, we choose CosmosQA, DREAM and RACE in the experiments.

Table 7 Error analysis on
DREAM. The column of
“Proportion” reports the
percentage of question types
among 200 samples that are from
the development set of DREAM
dataset

Question type BERT-B BERT-Blinear Proportion

Matching 65.1 65.4 12.2

Reasoning 62.9 64.9 87.8

Summary 78.1 77.7 8.6

Logic 59.3 62.1 76.1

Arithmetic 31.7 32.3 2.5

Commonsense 57.9 62.2 32.5
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For multi-choice MRC, existing methods include designing the interaction among the pas-
sage, question and option [35, 47, 50], or transfer learning through data augmentation [14].
Nevertheless, these methods do not rely on commonsense knowledge for logical reasoning.

Integrating External Knowledge for MRC Existing work has utilized structured knowl-
edge from KBs/KGs to improve performance on MRC and QA. Existing work has utilized
structured knowledge from KBs/KGs to improve performance on MRC and QA. Yang et al.
[42] incorporate retrieved knowledge into LSTM by employing an attention mechanism
with a sentinel. Bauer et al. [1] select grounded multi-hop relational commonsense informa-
tion from ConceptNet via pointwise mutual information and term-frequency based scoring
function and use a selectively gated attention mechanism to fuse the knowledge. Mihaylov
et al. [20] introduce a mixed attention to external knowledge for cloze-style reading com-
prehension. Chen et al. [2], Wang et al. [33] and Zhong et al. [49] explore the effect of
semantic relations from KGs such as ConceptNet on MRC. Wang et al. [32] propose a
data enrichment method, which uses WordNet to extract inter-word semantic connections
as general knowledge from each given passage-question pair. Xiong et al. [40] retrieve the
corresponding entities and relation from text to aggregate answer evidence from an incom-
plete KB. Yang et al. [41] take BERT as encoder and employ an attention mechanism similar
to Yang et al. [42] to fuse globally pre-trained knowledge downstream. Compared to these
methods, we mainly focus on plug-in fusion methods and explore token-level multi-hop
commonsense representation integration instead of relation embeddings.

Injecting knowledge into LMs Neural networks and deep learning have been widely used
in many fields such as computer vision and image processing [10–12, 44, 45]. Recently,
pre-trained deep language models such as BERT have shown powerful achievements in
downstream NLP tasks including MRC. The injection of external knowledge to LMs can be
generally divided into two groups. Methods in the first group design auxiliary knowledge-
driven objectives and updating parameters in a multi-task learning manner [24, 37, 39, 48],
which requires pre-calculating knowledge representation and even pre-training BERT from
scratch. The second group is to pre-train external modules to assist LMs [34, 49]. In contrast,
our fusion methods are to directly fine-tune on the target MRC datasets.

9 Conclusion

This paper introduces increment BERT with three plug-in fusion methods, which enhances
the vanilla BERT with commonsense representations from ConceptNet. We have used
pre-computed ConceptNet embeddings as external knowledge representation and intro-
duced a mask mechanism for token-level multi-hop relationship searching to filter external
knowledge, so as to enable the self-attention in BERT to identify the knowledge-aware
tokens effectively. Our variants of proposed methods have achieved significant improve-
ments over baseline on two knowledge-driven multi-choice datasets. Experiments on
few-commonsense dataset RACE shows that the introduction of external knowledge will
not cause loss to the original text information understanding. Future work can start with
more granular relationships to integrate external knowledge and how to design an effective
yet efficient model architecture for practical deployment.
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