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Abstract
Human action recognition is an active research area in computer vision. Although great
progress has been made, previous methods mostly recognize actions from depth video
sequences at only one scale, and thus they often neglect multi-scale spatial changes that
provide additional information in practical applications. In this paper, we present a novel
framework with a multi-scale mechanism to improve scale diversity of motion features.
We propose a multi-scale feature map called Laplacian pyramid depth motion images(LP-
DMI). First, We employ depth motion images (DMI) as the templates to generate the
multi-scale static representation of actions. Then, we caculate LP-DMI to enhance multi-
scale dynamic information of motions and reduce redundant static information in human
bodies. We further extract the multi-granularity descriptor called LP-DMI-HOG to provide
more discriminative features. Finally, we utilize extreme learning machine (ELM) for action
classification. The proposed method yeilds the recognition accuracy of 93.41%, 85.12%,
91.94% on the public MSRAction3D, UTD-MHAD and DHA dataset. Through extensive
experiments, we prove that our method outperforms the state-of-the-art benchmarks.
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1 Introduction

Human action recognition is a hot topic in computer vision, which aims to automatically
interpret the semantic information conveyed by human actions and interactions with the
external environment. It has many real-world applications, such as security monitoring,
intelligent human-computer interaction, smart home, and elderly healthcare etc. [12, 19,
41, 43, 44]. However, this task is still challenging because of problems like illumination,
occlusion, varying spatio-temporal scale, clothing, and viewing angles.

Initially, action recognition technology was mainly based on RGB videos acquired by
ordinary cameras [10, 49, 52]. However, RGB information is tempted with external fac-
tors, such as shooting environment, lighting, and wearing texture, which has limited the
development of action recognition. With the introduction of low cost depth sensors, such
as Microsoft Kinect, ASUS Xtion and SR-4000, major breakthroughs have been made
in human action recognition. Compared to traditional RGB data, depth video sequences
provide 3D structure of actions. The pixels of depth maps describe the distance between
the surface of objects and sensors [4]. This range information provides convenience for
segmenting the foreground person and eliminates the interference caused by complex back-
grounds. Therefore, depth maps have better invariance to illumination and texture changes.
Actually, human behavior is a tricky task in application scenarios, which contains abundant
spatial information in different scales. Over the past few decades, a variety of methods have
been investigated to describe depth videos for action recognition [3, 14, 18, 53]. However,
the descriptors mentioned in these methods all lack of scale diversity and fail to capture
more discriminative features.

Aiming at mining additional multi-scale spatial information from depth video sequences,
we motivate to study a novel human action recognition framework with a multi-scale mech-
anism as illustrated in Fig. 1. We project each frame of depth videos onto three orthogonal
Cartesian planes to obtain three-view depth motion images (DMI) which constitutes the 3D
action model. After that, we apply the Gaussian pyramid to simulate the scale changes of
human eyes and obtain the static multi-scale representation of human motions. Then, we
construct Laplacian pyramids to generate the compact feature map LP-DMI which enhances
the dynamic multi-scale information for action recognition, thus LP-DMI-HOG capturing
multi-granularity motion features can be extracted following the pyramid structure. Finally,
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Fig. 1 The framework of our proposed human action recognition method
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we employ ELM to classify actions. Specifically, the main contributions of this article are
summarized as follows:

1) We study a compact multi-scale feature map based on depth video sequences called LP-
DMI. Due to its superiority of enhancing multi-scale dynamic information of actions,
the proposed feature map outperforms other existing maps. Moreover, some redundant
static information inside the body is excluded simultaneously.

2) We introduce a feature extraction scheme according to the hierarchical structure of
Laplacian pyramids. We extract HOG features and cascade them as LP-DMI-HOG.
This descriptor captures multi-granularity features therefore it is more discriminative
than others.

3) We propose a multi-scale human action recognition framework in which we gener-
ate compact multi-scale feature maps through the Laplacian pyramid of three-view
DMI and then extract multi-granularity features. In addition, we use extreme learning
machine for action classification.

4) We conduct experiments on the public MSRAction3D, UTD-MHAD and DHA dataset,
and the experimental results demonstrate that our method surpasses the state-of-the-art
benchmarks.

The rest of this article is organized as follows. Section 2 reviews the previous work
related to ours. In Section 3, the proposed method is presented in detail, including building
Laplacian pyramids of DMI, extracting LP-DMI-HOG feature and action classification.
Section 4 discusses the experimental results compared to other human action recognition
methods. At last, the conclusions of this paper are drawn in Section 5.

2 Related work

According to the type of input data, human action recognition technologies consist of RGB
video based methods [10, 49, 52], depth video based methods [13, 25, 59, 62], 3D skele-
ton based methods [9, 38, 51], and multi-modal data fusion based methods [7, 16, 57]. Due
to the convenience of data acquisition and invariance to illumination and texture changes,
many researchers focus on the second methods which generally contain three steps: com-
puting depth feature maps from depth video sequences, generating feature descriptors for
motion representaion and recognizing actions by classifiers or neural networks [47, 55]. For
higher accuracy, tremendous effort has been made to investigate representation and feature
extraction strategy for human action recognition. Bobick and Davis [3] introduced a view-
based approach on the basis of a temporal template that contains two component versions:
the presence and recency of motion in sequence. They computed motion energy images
(MEI) and motion history images (MHI) to model spatial and temporal characteristics of
human actions. Mohammad et al. [4] utilized the static history images (SHI) as the comple-
mentary components of MHI. Motivated by MHI and MEI, Yang et al. [59] projected each
depth frame onto three orthogonal Cartesian planes, then the subtraction operations between
successive projections were carried out to obtain depth motion maps (DMM). On the con-
trary to DMM, Kamel et al. [18] investigated the depth motion images (DMI) in which the
pixel value is the minimum value of the position of the same pixels over time to describe
the overall action appearance from the front view. Since the DMM fails to recognize two
actions with reverse temporal orders, Elmadany et al. [13] divided the depth video sequences
into multiple partitions with the equal number of frames. Then they constructed the
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hierarchical pyramid depth motion maps (HP-DMM) so as to capture more detailed
information of human movements.

Based on the depth feature maps above, many descriptors have been studied for human
action recognition. The histogram of oriented gradients (HOG) [26], the local binary pat-
tern (LBP) [8], and other shape and texture features [11] were calculated from DMM for
more accurate description. Oreifej and Liu [27] introduced the histogram of oriented 4D
normals (HON4D) in order to describe the action in 4D space, including depth, spatial, and
time coordinates. Li et al. [23] introduced Local Ternary Pattern (LTP) as an image filter
for DMMs and applied CNN to classify corresponding LTP-encoded images. Tian et al.
[35] employed Harris detector and local HOG descriptor on MHI for action recognition and
detection. Furthermore, Gu et al. [14] selected ResNet-101 as the deep learning model and
fed it with MHI. Aly et al. [2] calculated global and local features using Zernike moments
with different polynomial orders to represent global and local motion patterns respectively.
Kamel et al. [18] presented a feature fusion method for human action recognition from
DMI and moving joints descriptor (MJD) data using convolutional neural networks (CNN).
Mohammad et al. [4] extracted the gradient local auto-correlations (GLAC) features from
the MHI along with SHI to represent the movements. Chen et al. [6] computed GLAC
features based on DMM and put them into the extreme learning machine for activity recog-
nition. Space time occupancy patterns (STOP) was proposed by Vieira et al. [40] in which
space and temporal axes were divided into several partitions for each sequence. Besides, the
bag of angles (BoA) applied to skeleton sequences and the other descriptor called Hierarchi-
cal pyramid DMM deep convolutional neural network (HP-DMM-CNN) for depth videos
were presented in [13].

In addition, some new methods have emerged in the latest work. Sun et al. [32] presented
a global and local histogram representation model using the joint displacement between the
current frame and the first frame, and the joint displacement between pairwise fixed-skip
frames, respectively. Ahmad et al. [61] fed feature maps into the CNN architecture rather
than using any conventional method, and ulteriorly Trelinski et al. [37] computed con-
catenated handcrafted and action-specific CNN-based descriptors together to obtain action
feature vectors. Li et al. [21] generated 3D body mask and then formed the depth spatial-
temporal maps (DSTMs) which provided compact global spatial and temporal information
of human motions. Wei et al. [51] modeled human actions with a hierarchical graph in which
the depth video sequence was represented as sequential atomic actions. Every atomic action
was denoted as a composite latent state consisted by a latent semantic attribute and a latent
geometric attribute. However, the methods above fail to capture the multi-scale features for
action recognition, and thus have poor robustness. Recently, more attention has been paid
to multi-scale motion information. Ji et al. [17] embedded the skeleton information into
depth feature maps to divide the human body into several parts. The surface normals of
local motion part sequence were partitioned into different space-time cells to obtain local
spatio-temporal scaled pyramid which was applied to extract local feature representation.
Yao et al. [60] studied parallel pair discriminant correlation analysis (PPDCA) to fuse the
multi-scale temporal information with a lower dimension. However, the multi-scale tempo-
ral information in this method means features related to different numbers of frames. These
methods obtain multi-scale information by different number of frames and cells or various
sampling rate, which is only the scale change in the temporal level in essence. In this paper,
we present a multi-scale method based on the Scale-space theory in [1]. Note that rather
than realize multi-temporal scale, we focus on spatial multi-scale of feature maps to tackle
the problem of complex model representation and low implementation efficiency.
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3 Proposedmethod for human action recognition

A typical action contains characteristic information in different scales, and it can be rep-
resented by the structured multi-scale features. Learning the information in single spatial
scale is deficient to provide discriminative feature sufficiently for human action recogni-
tion. In order to increase the scale diversity, we propose a novel method to represent actions
by multi-scale feature map LP-DMI and extract multi-granularity feature with hierarchical
pyramid structure. Then, extreme learning machine is utilized to recognize human actions.

3.1 Calculation of depthmotion images

With the advent of depth cameras, a lot of approaches have been introduced based on the
depth videos for human action recognition. Each frame of the depth camera records a snap-
shot of the action at a certain point in time. In general, DMI is considered as an effective
representation of depth video sequences. It captures not only the overall appearance of
actions but also the dense range changes in the moving parts. In this paper, we project the
frames obtained by the depth camera onto three orthogonal Cartesian coordinate planes,
thus each 3D depth frame generates three 2D maps. We record them as mapv(v ∈ {f, s, t})
corresponding to the front, side, and top view respectively. The pixel value of DMI is the
minimum value of the same spatial position of the depth maps. The three-view DMI of a
depth video sequence with N frames can be calculated by the following equation.

DMIv(i, j) = 255 − min
(
mapv(i, j, t)

)
,

∀t ∈ [k, . . . , (k + N − 1)] (1)

where mapv(i, j, t) is the pixel value of (i, j) position of 2D map at time t from the per-
spective of v. k represents the index of the frame. The maps are processed by dividing each
pixel value by the maximum value of all the pixels contained in the image for normalization.
We crop the region of interest (ROI) in DMI to exclude excess black pixels. This normal-
ization contributes to eliminating intra-class differences and reducing the nuisances caused
by body shape and motion amplitude. The generative process of DMI is depicted in Fig. 2.
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Fig. 2 The process of calculating DMIv from depth video sequences
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3.2 Multi-scale represtation of depth video sequences

However, DMI simply reflects spatial information of actions in single scale. In order to
capture multi-scale changes of human motions, we adopt the Gaussian pyramid transform
which has been demonstrated the practicability in increasing scale diversity [20, 31]. As
shown in Fig. 3, we acquire a cluster of multi-scale feature maps shaped like several pyra-
mids. We stipulate that the number of layers goes up in a bottom-up manner. Gl is used to
represent the image of lth layer of a Gaussian pyramid, that is to say, the size of Gl+1 is
smaller than that of the Gl . We need to perform Gaussian kernel convolution and downsam-
pling on the Gl to produce Gl+1. Mathematically, the gray value corresponding to the (i, j)

position of Gl can be formulated as:

Gl(i, j) =
c∑

m=−c

c∑

n=−c

�(m, n) ⊗ Gl−1 (2i + m, 2j + n) ,

(1 ≤ l ≤ L, 0 ≤ i ≤ Rl, 0 ≤ j ≤ Cl) (2)

where ⊗ is a convolution operator and L is the total number of layers in every Gaussian
pyramid. (m, n) is the position of the convolution kernel. Rl and Cl are the number of rows
and columns relative to the lth layer image of the Gaussian pyramid. c determines the size of
� and � is a Gaussian window of size (2c+1)×(2c+1) satisfying the following formula:

�(m, n) = 1

2πσ 2
e−(

m2+n2
)
/2σ 2

(3)

where σ is the standard deviation of the normal distribution. It refers to the variance related
to the Gaussian filter which reflects the degree to which the image is blurred. We regard
DMI as the lowest layer of the Gaussian pyramid denoted as G1. Then, a set of images
{G1,G2, . . . , GL} in which Gl+1 is 1/c2 size of Gl can be generated by (2), and constitutes

GP1-DMI
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GPL-DMI
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.

Fig. 3 The hierarchical structure of GP-DMI
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an L-layer Gaussian pyramid. Thus, a series of Gaussian pyramids represented as GPL-
DMI are simply calculated by this iterative scheme. In this paper, we set c to 2 and utilize a
5 × 5 Gaussian kernel as (4). The pyramid algorithm reduces the filter band limit between
layers by an octave, and chops the sampling interval by the same factor. The frequency
of downsampling operations is related to the size of the original image. For the Gaussian
pyramid based on an M × N image, the maximum number of layers is

⌊
log2 min{M,N}⌋.

� =

⎡

⎢
⎢
⎢
⎢
⎣

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤

⎥
⎥
⎥
⎥
⎦

(4)

Influenced by the complexity and concurrency of human behaviors, a simple action may
involve the movement of multiple body parts. We view the inherent characteristic inside
the body as static information, while the contour information that can better describe the
changing of movements as dynamic information. For the majority of actions, the static infor-
mation inside the human body is highly similar. Take waving arms in different directions for
instance, the information of the abdomen and legs are constant to some extent, and cannot
provide the discriminative feature for recognition very well. On the contrary, the dynamic
information of different body parts can better reflect the spatial changes of actions in the
interval, thus reflecting the specific feature of certain action. Inspired by this, we motivate
to obtain the multi-scale dynamic information for human action recognition. We interpolate
the lth layer of the Gaussian pyramid, that is, insert 0 in even rows and columns. Then, we
utilize Gaussian filter to get G∗

l which has the equal size as the image one layer below it. We
caculate the difference between Gl and G∗

l to get the multi-scale dynamic infomation. At
the same time, this operation removes a lot of reduntant static information, making LP-DMI
more compact than GP-DMI. As in the Gaussian pyramid, we set c to 2. Mathematically:

G∗
l (i, j) = 4

2∑

m=−2

2∑

n=−2

�(m, n) ⊗ Gl

(
i + m

2
,
j + n

2

)
,

(1 ≤ l ≤ L, 0 ≤ i ≤ Rl, 0 ≤ j ≤ Cl) (5)

and

Gl

(
i + m

2
,
j + n

2

)
=

{
Gl

(
i+m
2 ,

j+n
2

)
, if i+m

2 ,
j+n
2 ∈ N

+

0 , otherwise
(6)

Therefore, the Laplacian pyramid can be calculated as follows.

{
LPl = Gl − G∗

l+1, 1 ≤ l < L

LPL = GL, l = L
(7)

where LPl is the lth layer of the Laplacian pyramid. Considering the integrity of motion
infomation, we directly take the top layer of Gaussian pyramids as that of the Laplacian
pyramid. Consequently, they have equal number of layers. Specifically, each depth frame
produces three depth feature maps according to three views, thereby, it has three generated
Laplacian pyramids. As shown in Fig. 4, the Laplacian pyramids cut down a large amount of
static information inside the body meanwhile strengthen the dynamic information of body
boundaries, which is more conducive to extracting discriminative features. In Sec. 4, we
will further evaluate the proposed multi-scale feature map LP-DMI.
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Fig. 4 An example of a four-layer LP4-DMI with three angles

3.3 Feature extraction with hierarchical pyramid structure

There are several reasonable options for determining which feature to extract [42, 45, 46].
In this paper, we utilize HOG descriptors to extract the local features of LP-DMI denoted
as LP-DMI-HOG. HOG feature is sensitive to the distribution of gradient and edge infor-
mation, thus it characterizes gradient changes especially the shape of objects pretty well.
The basic idea is to compute gradient orientation histograms on a dense grid of uniformly
spaced cells and perform local contrast normalization [59]. Before extracting features, we
copy adjacent pixels to normalizing the feature maps from the same view to the same size.
The interpolated pixel values are the same as the neighboring pixels, so they will not inter-
fere with the multi-scale information and we can compute multi-granularity motion features
effectively. Moreover, this step is beneficial to solve the problem of too small pictures
caused by incremental layers. We cascade the HOG feature extracted from LP-DMI in the
same layer to obtain the three-view features at the same scale. Then we derive LP-DMI-
HOG from coarse-grained to fine-grained as the layer increases. We normalize the resulting
feature vectors using min-max scaling, and the principal component analysis (PCA) is
applied to reduce the dimension for the sake of computational efficiency.
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We normalize the depth feature maps projected onto the same planes to a uniform size,
and the specific parameter settings are shown in Fig. 2. We set the size of each cell to
10 × 10 pixels and the number of gradient orientation bins is 9. The size of block is 2 × 2.
Furthermore, the step is 10 pixels. The remained principal components of MSRAction3D,
UTD-MHAD, and DHA is 550, 860, and 450. So that, each action sample is a total of 15444
and 20592 dimensions when the number of layers is 3 and 4 respectively. Note that, we
consider this as the default setting of feature extraction. Then, the resulting feature will be
fed into ELM for action classification.

3.4 Action recognition by extreme learningmachine

In this work, we employ extreme learning machine (ELM) for action classification which
was proposed by Huang et al. for training single-hidden layer feed-forward neural networks
(SLFNs) [63]. The weight between the input layer and hidden layer can be initialized ran-
domly as well as the bias of the hidden nodes. Therefore, the ELM just calculates the weight
matrix between the hidden layer and output layer without the need to tune parameters. The
matrix can be figured out by finding the generalized inverse matrix, thus the extreme learn-
ing machine has distinct advantages in parameter selection and computational efficiency.
That is why we use extreme learning machine for action recognition. Given a training set
with n samples andm classesD = {(xi, yi) |xi ∈ Rn, yi ∈ Rm, i = 1, 2, . . . , n}, the SLFNs
with N hidden nodes can be expressed as:

f (xi) =
N∑

j=1

βjg
(
wj · xi + bj

) = oi, i = 1, 2, . . . , N (8)

where wj = (wj1, wj2, ..., wjd)T is the weight vector connecting the jth hidden node
with the input nodes. βj = (βj1, βj2, ..., βjm)T is the weight vector connecting the jth

hidden node with the output nodes. bj represents the threshold of the jth hidden neuron,
and g(x) denotes the activation function. Note that wj and bj are assigned randomly. The
goal of ELM is to minimize the training error as far as possible, which can be depicted as∑N

i=1 ‖oi − yi‖ = 0. Therefore, parameters βj = (βj1, βj2, ..., βjm)T can be estimated by
least-square tting with the given training data D. In other words, the problem can be written
as the following equation.

Y = Hβ (9)

with

H =
⎛

⎜
⎝

g (w1 · x1 + b1) . . . g (wm · x1 + bm)
...

. . .
...

g (w1 · xn + b1) · · · g (wm · xn + bm)

⎞

⎟
⎠ (10)

β =
(

βT
1 , βT

2 , . . . , βT
m

)T

,

Y =
(
yT
1 , yT

2 , . . . , yT
n

)T

H is the hidden layer output matrix of the network, in which the jth column is the jth hidden
nodes output vector concerning inputs (x1, x2, . . . , xm). The ith row of H is the output
vector of the hidden layer about input xi . Once the input weight wj and the hidden layer
bias bj are determined, the output matrix H of the hidden layer is unique. The number of
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hidden nodes is usually much smaller than that of training samples. In this case, the smallest
norm least-squares solution of (9) is equivalent to solving the following equation.

β̂ = H †Y (11)

where H † is the Moore-Penrose generalized inverse of matrix H [33].

4 Experiment results and analysis

In order to evaluate the effectiveness of the proposed framework, we conduct experiments
on the public MSRAction3D [18], UTD-MHAD [7], and DHA dataset [4]. In Fig. 5, the
depth video sequence of pickup and throw is shown as an example of action samples. We
investigate how many layers are sufficient to capture multi-scale features for action recog-
nition and compare several ways of extracting local features. In this section, we present the
results of the ablation experiment, optimizing and confirming the effectiveness of the multi-
scale mechanism in the proposed framework. Meanwhile, we show the advantages of our
proposal over other state-of-the-art methods.

4.1 Datasets and experimental settings

4.1.1 Datasets description

The MSRAction3D is a dataset for action recognition which contains 557 depth video
sequences and 557 skeleton sequences for 20 actions captured by Kinect sensor. The actions
including high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high
throw, draw x, draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward
kick, side kick, jogging, tennis swing, tennis serve, golf swing, and pickup and throw are
taken by 10 subjects. Every action is repeated by all the subjects two or three times.

The UTD-MHAD includes 861 samples of 8 subjects. There are 27 actions in total, and
every subject performed each action 4 times. The actions are: right arm swipe to the left,
right arm swipe to the right, right hand wave, two hand front clap, right arm throw, cross
arms in the chest, basketball shoot, right hand draw x, right hand draw circle (clockwise),
right hand draw circle (counter clockwise), draw triangle, bowling, front boxing, baseball
swing from right, tennis right hand forehand swing, arm curl, tennis serve, two hand push,
right hand knock on door, right hand catch an object, right hand pick up and throw, jogging
in place, walking in place, sit to stand, stand to sit, forward lunge, and squat.

Fig. 5 The depth video sequence of pickup and throw in MSRAction3D dataset
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The DHA database is orgnized with 483 depth video sequences for 23 actions. Each
sample video was performed by 2 or 3 times by 21 subjects (12 males and 9 females). The
list of action classes are: bend, jack, jump, pjump, run, side, skip, walk, one-hand-wave,
two-hand-wave, front-clap, side-clap, arm-swing, arm-curl, leg-kick, leg-curl, rod-swing,
golf-swing, front-box, side-box, tai-chi, pitch, and kick.

4.1.2 Experimental setups

We conduct experiments with the following experimental settings.
Setup 1: Cross-subject. In order to have fair experimental results, we perform the cross-

subject tests on the three benchmark datasets according to the experimental settings of [18,
28]. More precisely, we use odd subjects for training, whereas even subjects are applied for
testing.

Setup 2: Subset partition. We divide the MSRAction3D dataset into three subsets as
shown in Table 1, and three different tests are conducted on these subsets following the
settings as [4]. In test 1, 1/3 action samples in each subset are employed as the training set,
and the remaining samples are used for validation. On the contrary, test 2 uses 2/3 samples
for training, and the rest samples are taken in the testing set. Test 3 has a cross-subject test
on each subset abide by setup 1, that is to say, the action samples corresponding to the odd
subjects in each subset are used for training and the rest for testing.

Setup 3: K-Fold cross-validation. In order to further prove the scientific nature of multi-
scale feature maps, we carried out k-fold cross-validation (KFCV) experiments. In this
setting, every dataset is divided into ten portions in which the nine pieces are combined as
the training set, and the remaining parts are used as the testing set. The above process is
repeated for ten times testing all the parts one by one, and then the average score is taken as
the final recognition accuracy. Furthermore, in each fraction we keep the categories ratios
same as the original data.

4.2 Ablation study

4.2.1 Influence of layer parameter

To exploit the optimal muti-scale feature map of different datasets, we construct LP-DMI
with different layers in a step-wise manner and perform experiments according to setup 1

Table 1 Three subsets of the MSRAction3D dataset

Label AS1 Label AS2 Label AS3

2 Horizontal arm wave 1 High arm wave 6 High throw

3 Hammer 4 Hand catch 4 Forward kick

5 Forward punch 7 Draw x 15 Side kick

6 High throw 8 Draw tick 16 Jogging

10 Hand clap 9 Draw circle 17 Tennis swing

13 Bend 11 Two hand wave 18 Tennis serve

18 Tennis serve 14 Forward kick 19 Golf swing

20 Pickup and throw 12 Side boxing 20 Pickup and throw

32121Multimedia Tools and Applications (2021) 80:32111–32130



on three datasets. The experimental results with respect to the GP-DMI and LP-DMI from
2 to 6 layers are presented in Fig. 6. The first thing we noticed is that the motion feature
will be too coarse-grained ro recognize similar actions if the number of layers is inade-
quate. Otherwise, if the number of layers is superfluous, the static information may be more
redundant, which leads to low efficiency and accuracy. In addition, the experimental results
illustrate that LP-DMI yeilds better recognition accuracy on the whole, which achieves
the highest recognition rate of 93.41% when the number of layers is 4 on MSRAction3D
dataset. The LP3-DMI on UTD-MHAD and DHA dataset are the optimum, and the recog-
nition rates are respectively 85.12% and 91.94%. We will abide by the optimal layer setting
obtained here in subsequent experiments.

4.2.2 Evaluation of different feature extraction strategies

After that, we compare several strateges of feature extraction and normalization following
setup 1. The default feature extraction setting in Sec. 3 was not adopted in this experiment
but a combination of two dynamic constraints in order to prevent the feature map and the cell
of HOG from being too small. In details,Dl

v(w, h, d) is the normalization parameter denot-
ing that the size of LPl-DMIf , LPl-DMIs , LPl-DMIt is w ×h, h×d, w ×d. Constraint N1:
Dl

v(w/2l−1, h/2l−1, d/2l−1). Constraint N2: Dl
v(w, h, d) = Dl

v(160, 320, 240). Con-
straint C1: the size of cell is 20 × 20. Constraint C2:the size of cell is 20/2l−1 × 20/2l−1.
These parameters determine various scale of the feature map and the granularity of descrip-
tor, and we report experimental results in Tables 2 and 3. We observe that N2 combined with
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Fig. 6 The recognition accuracy of LP-DMI with different layers
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Table 2 The results of various normalization strategies on MSRAction3D dataset

Constraint N1 N2

Accuracy(%) Dimension Time(s) Accuracy(%) Dimension Time(s)

C1 89.01 15444 91.25 91.58 49968 254.88

C2 88.64 49968 205.34 87.55 1234512 3151.40

C1 outperforms other strateges. In other words, the applied normalization method achieve
the effect of improving the classification accuracy. We show the recognition accuracy and
average computation time of LP-DMI-HOG descriptor and VGG-16 [46] in Table 4, con-
firming that LP-DMI-HOG is more efficient and more discriminative. Considering the
tradeoff between precision and efficiency, we chose HOG descriptor to extract motion
features.

4.2.3 Effectiveness of multi-scale feature map LP-DMI

We evaluate the effectiveness of LP-DMI from two aspects. On the one hand, we have
proved that LP-DMI is a more discriminative multi-scale feature map compared with GP-
DMI. On the other hand, we will certify that the LP-DMI-HOG extracted from LP-DMI
excels HOG features based on other feature maps. For the fairness of the results, we fol-
low default feature extraction strategy on these depth maps to obtain HOG descripton, and
employ ELM for action recognition. In terms of MSRAction3D dataset, we conduct the
experiments following setup 2. The alone and average results with regard to AS1, AS2, and
AS3 are presented in Table 5, and the highest rate of each subset has been shown in bold. As
can be seen, LP-DMI achieves the highest average recognition rate in three different tests
and outperforms than other feature maps. Specifically, in test one, LP-DMI achieved 90.42%
accuracy on the three subsets. In addition to the performance on AS2 which is slightly lower
than DMM, LP-DMI has an absolute advantage on other two subsets. In the second test, our
proposal exceeds others significantly and gets the best recognition rate of 98.63% on AS2.
Furthermore, the ELM trained by LP-DMI-HOG even can completely label all the testing
samples on AS3. Therefore, in spite of the recognition rate of DMM and HP-DMM on AS1
equals to our method, the average recognition rate we have achieved is still 5% higher than
them. In test three, LP-DMI obtains an average recognition rate of 94.59%. The result of
LP-DMI on AS1 is 0.95% mildly lower than that of the DMM, but the recognition rates
on other subsets are optimal. Overall, LP-DMI surpasses MEI, MHI and GP5-DMI in all
tests. Although DMM, HP-DMM, and DMI on individual subsets are superior to LP-DMI,
the average recognition rate of our method is the highest. It should be noted that we almost
improved accuracy by 4% in three tests by constructing Laplacian Pyramid pyramid for

Table 3 The results of various feature extraction strategies on UTD-MHAD

Constraint N1 N2

Accuracy(%) Dimension Time(s) Accuracy(%) Dimension Time(s)

C1 79.53 15444 120.36 87.55 37476 255.38

C2 77.91 37476 205.34 84.91 296676 272.25
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Table 4 The comparsion of different descriptors

Datasets VGG HOG

Accuracy(%) Time(s) Accuracy(%) Time(s)

MSR 91.94 26.76 93.41 0.23

UTD-MHAD 81.86 12.62 85.12 0.17

DHA 84.35 19.44 91.94 0.12

DMI, and this transformation process is very efficient and does not cause too much time
consumption.

On UTD-MHAD and DHA dataset, we testify the proposed LP-DMI complying with
setup 1, and describe the result in Table 6. LP3-DMI yeilds the best recognition accuracy of
85.12% on UTD-MHAD. Once more, the experiments of DHA dataset validate our methods
in which LP3-DMI produce the result of 91.94%. For elaborating the performance of our
method clearly, the confusion matrix computed from three datasets is depicted in Fig. 7. It
can be seen that our method can correctly recognize the majority of actions. After analyzing
the accuracy of specific classes, we find that the errors mainly occur in the classification of
similar actions. For example, skip and jump, front-box and arm-curl, draw x and draw tick.
In a word, this experimrnt further confirms that LP-DMI is a compact multi-scale feature
map, and the proposed LP-DMI-HOG descriptor is promising.

In order to further prove the scientific nature of multi-scale action representation, we
conduct a k-fold cross-validation experiment additionally complying with setup 3. Figure 8a
shows the recognition accuracy of different feature maps corresponding to three datasets,
and Fig. 8b depicts the part of LP-DMI that is higher than others. ForMSRAction3D dataset,
LP-DMI achieves the highest recognition rate of 98.48% with a little difference of 0.43%
to GP-DMI. It should be noted that both of them are higher than their template feature map
DMI by more than 3%. Compared with the single scale feature map, LP-DMI can improve
the recognition accuracy by up to 8.27%. Besides, the experimental results of UTD-MHAD
prove the advantages of LP-DMI as well, which are 4.57% and 3.8% higher than MEI and
DMM, respectively. The scores of HP-DMM, DMI and GP-DMI are close, which are 0.61%

Table 5 The comparation of other feature maps on MSRAction3D dataset(%)

MEI MHI DMM HP-DMM DMI GP-DMI LP-DMI

Test One AS1 75.34 67.81 92.47 89.73 89.04 93.84 95.21

AS2 71.05 69.74 84.21 80.92 86.84 86.18 86.18

AS3 71.62 70.95 86.49 84.46 85.81 86.49 89.86

Average 72.67 69.50 87.72 85.04 87.23 88.84 90.42

Test Two AS1 89.04 84.93 97.26 97.26 93.42 93.42 97.26

AS2 82.89 82.89 86.84 88.16 93.42 93.42 98.63

AS3 90.54 93.24 97.30 94.59 97.30 97.30 100.00

Average 87.49 87.02 93.80 93.34 94.71 94.71 98.63

Test Three AS1 71.43 72.38 99.05 91.43 94.29 97.14 98.10

AS2 69.64 66.07 85.71 84.82 82.14 89.29 90.18

AS3 74.78 70.27 94.59 92.79 93.69 92.79 95.50

Average 71.95 69.57 93.12 89.68 90.04 93.07 94.59
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Table 6 The recognition rate of depth feature maps on UTD-MHAD and DHA dataset(%)

MEI MHI DMM HP-DMM DMI GP-DMI LP-DMI

UTD-MHAD 51.63 56.52 74.19 77.67 76.28 84.19 85.12

DHA 62.60 79.10 90.4 91.30 90.80 91.30 91.94

lower than LP-DMI on average. LP-DMI also achieves optimistic results 92.39% on the
DHA dataset, which is better than GP-DMI by 1.81% and even 9.49% higher than MEI.
Compared with common DMI, the accuracy of LP-DMI is markedly improved by 2.18%.
In general, the multi-scale feature maps LP-DMI and GP-DMI are significantly superior
to other single-scale feature maps. The results further prove that increasing scale diversity
can enhance the discriminativeness of motion features, thus achieving higher recognition
accuracy.

4.3 Comparisons to other state-of-the-art approaches

In this experiment, we follow setup 1 which is same as the baseline methods for persuasion.
The cross-subject test is challenging due to variations in the same actions performed by
different subjects, but our method can still achieve high accuracy. In Table 7, our method
obtains the promising accuracy of 93.4% compared with other solutions utilizing single
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Fig. 8 K-Fold cross-validation results of three datasets

depth modality data on MSRAction3D dataset, and it is 4.5% higher than DMM-GLAC
which extracts local feature descriptor from depth feature maps as well. The HP-DMM-
CNN, 3D-CNN as well as the method in [61] using convolutional neural networks are 1.1%,
7.3% , 6.3% lower than our method. It should be noted that the method proposed by Ji et al

Table 7 Comparison of our method with baseline methods on MSRAction3D dataset

Methods Modality Accuracy(%)

Pose Set [50] D 90.0

DMM-HOG [59] D 88.7

DMM-GLAC [6] D 88.9

HON4D [27] D 88.9

Skeletons Lie group [38] S 89.5

HOG3D+LLC [30] D 90.9

3D-CNN [58] D 86.1

DSTIP [53] D 89.3

STOP [40] D 87.5

HP-DMM-CNN [13] D 92.3

PointLSTM-late [24] D+S+RGB 95.4

MMHCCCA [13] D+S 93.5

Ji et al. [17] D+S 90.8

PointLSTM-late [24] D+S 95.4

Trelinski et al. [37] D 90.6

Ahmad et al. [61] D 87.1

Wei et al. [51] S 87.2

Xin et al et al. [15] D+S 91.6

LP-DMI D 93.4

LP-DMI+HP-DMM D 94.9

LP-DMI+MJD D+S 95.6

LP-DMI+GCN D+S 94.5
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Table 8 Comparison of our method with baseline methods on UTD-MHAD

Methods Modalities Accuracy(%)

DMM-HOG [59] D 81.5

3DHOT-MBC [62] D 84.4

Hierarchical Gaussian [25] D 84.1

HP-DMM-CNN [13] D 82.8

HP-DMM-HOG [56] D 73.7

MLSL [57] D+S 88.4

Kamel et al. [18] D+S 88.1

Chen et al. [7] D+S+RGB 79.1

STSDDI. [16] D+S+RGB 91.2

LP-DMI D 85.1

LP-DMI+HP-DMM D 89.1

LP-DMI+MJD D+S 90.5

LP-DMI+GCN D+S 94.2

[17] is 2.6% lower than ours although they obtain local spatio-temporal scaled pyramid
and embed skeleton information. Furthermore, we fuse LP-DMI-HOG descriptor with HP-
DMM-HOG, MJD-HOG, GCN [29] by canonical correlation analysis(CCA) [13], which
yeilds the recognition rate of 94.9%, 95.6%, 94.5%.

We also demonstrate the generality of our framework on UTD-MHAD and report the
results in Table 8. Our methods obtains the recognition accuracy of 85.1% which is 2.3%
and 0.7% higher than HP-DMM-CNN and 3DHOT-MBC. The method proposed by Nguyen
et al. which employs hierarchical gaussian descriptor is 1% lower than us. In addition, our
approach surpasses other methods employing HOG descriptor. For example, LP-DMI is
3.6% higher than DMM-HOG and 11.4% higher than HP-DMM-HOG. With same eval-
uation strategy, we compare our system with depth-based and multi-modal feature fusion
methods as well. The above experiments prove that our method is superior to other deep
video based approaches and is able to achieve better performance through fusion techniques.

5 Conclusion

In this paper, we proposed a novel method based on the Laplacian pyramid considering
multi-scale information for human action recognition. We calculated LP-DMI to increase
the scale diversity of depth motion images in order to capture the multi-scale motion fea-
tures and strengthen more favorable dynamic information. The experimental results have
demonstrated that LP-DMI is more compact and discriminative than existing feature maps.
Furthermore, the extracted LP-DMI-HOG which contains multi-granularity features has
effectively improved the accuracy of action recognition. The experiments results conducted
on MSRAction3D, UTD-MHAD and DHA dataset outperform the baseline methods. How-
ever, our method is still flawed in identifying actions with similar motion trajectories.The
future work will focus on fusing multimodal features and considering multi-scale temporal
information to facilitate the recognition accuracy.
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28. Padilla-López JR, Chaaraoui AA, Flórez-Revuelta F (2014) A discussion on the validation tests
employed to compare human action recognition methods using the msr action3d dataset. Computer
Science

29. Peng W., Shi J, Zhao G. (2021) Spatial Temporal Graph Deconvolutional Network for Skeleton-based
Human Action Recognition. IEEE Signal Processing Letters. https://doi.org/10.1109/LSP.2021.3049691

30. Rahmani H, Huynh DQ, Mahmood A, Ajmal M (2016) Discriminative human action classification using
locality-constrained linear coding. Pattern Recogn Lett 72:62–71

31. Sujee R, Padmavathi S (2018) Pyramid-based Image Interpolation. International Conference on Com-
puter Communication and Informatics (ICCCI), pp 1–5

32. Sun B, Kong D,Wang S,Wang L,Wang Y, Yin B (2019) Effective human action recognition using global
and local offsets of skeleton joints. Multimed Tools Appl 78:6329–6353. https://doi.org/10.1007/s11042-
018-6370-1

33. Tan Z, Xiao L, Chen S, Lv X (2020) Noise-Tolerant And Finite-Time convergent ZNN models for
dynamic matrix Moore–Penrose inversion. IEEE Trans Indust Inf 16(3):1591–1601. https://doi.org/10.
1109/TII.2019.2929055

34. Teng Y, Liu F,Wu R (2013) The research of image detail enhancement algorithmwith laplacian pyramid.
IEEE international conference on green computing and communications and IEEE internet of things and
IEEE cyber Physical and Social Computing, pp 2205–2209

35. Tian Y, Cao L, Liu Z, Zhang Z (2012) Hierarchical filtered motion for action recognition in crowded
videos. IEEE Trans Syst Man Cybern 42(3):313–323. https://doi.org/10.1109/TSMCC.2011.2149519

36. Tran DT, Yamazoe H, Lee JH (2020) Multi-scale affined-HOF and dimension selection for view-
unconstrained action recognition. Appl Intell 50(4):1468–1486. https://doi.org/10.1007/s10489-019-01
572-8

37. Trelinski J, Kwolek B (2019) Ensemble of classifiers using CNN and Hand-Crafted features for Depth-
Based action recognition. Int Conf Artif Intell Soft Comput:91–103

38. Vemulapalli R, Arrate F, Chellappa R (2014) Human action recognition by representing 3D skeletons as
points in a lie group. IEEE Conf Comput Vis Pattern Recogn:588–595

39. Vieira AW, Nascimento ER, Oliveira GL, Liu Z, Campos MF (2012) Stop: Space-time occupancy pat-
terns for 3d action recognition from depth map sequences. Iberoamerican Congress Pattern Recogn:252–
259

40. Vieira AW, Nascimento ER, Oliveira GL, Liu Z, Campos MF (2014) On the improvement of human
action recognition from depth map sequences using space-time occupancy patterns. Pattern Recogn Lett
36: 221–227

41. Vishwakarma DK, Kapoor R (2012) Simple and intelligent system to recognize the expression of speech-
disabled person. 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI),
Kharagpur, pp 1–6

42. Vishwakarma DK, Kapoor R (2015) Integrated approach for human action recognition using edge spatial
distribution, direction pixel and -transform. Adv Robot 29(23):1553–1562. https://doi.org/10.1080/0169
1864.2015.1061701

43. Vishwakarma DK, Kapoor R, Maheshwari R, Kapoor V, Raman S (2015) Recognition of abnormal
human activity using the changes in orientation of silhouette in key frames. In: 2015 2nd International
Conference on Computing for Sustainable Global Development. IEEE, pp 336–341

44. Vishwakarma DK, Kapoor R (2017) An efficient interpretation of hand gestures to control smart
interactive television. Int J Comput Vis Robot 7(4):454–471

45. Wan GY, Gai S, Yang Z (2017) Two-dimensional discriminant locality preserving projections (2ddlpp)
and its application to feature extraction via fuzzy set. Multimedia Tools and Applications

32129Multimedia Tools and Applications (2021) 80:32111–32130

https://doi.org/10.1109/WACV.2015.150
https://doi.org/10.1109/WACV.2015.150
https://doi.org/10.1109/tpami.2002.1017623
https://doi.org/10.1109/LSP.2021.3049691
https://doi.org/10.1007/s11042-018-6370-1
https://doi.org/10.1007/s11042-018-6370-1
https://doi.org/10.1109/TII.2019.2929055
https://doi.org/10.1109/TII.2019.2929055
https://doi.org/10.1109/TSMCC.2011.2149519
https://doi.org/10.1007/s10489-019-01572-8
https://doi.org/10.1007/s10489-019-01572-8
https://doi.org/10.1080/01691864.2015.1061701
https://doi.org/10.1080/01691864.2015.1061701


46. Wan M, Yang G, Sun C, Liu M (2019) Sparse two-dimensional discriminant locality-preserving
projection (S2DDLPP) for feature extraction

47. Wang P, Li W, Gao Z, Tang C, Ogunbona PO (2018) Depth pooling based Large-Scale 3-D
action recognition with convolutional neural networks. IEEE Trans Multimedia 20(5):1051–1061.
https://doi.org/10.1109/TMM.2018.2818329

48. Wang J, Liu Z, Wu Y, Yuan J (2012) Mining actionlet ensemble for action recognition with depth
cameras. IEEE Conf Comput Vis Pattern Recogn:1290–1297

49. Wang H, Schmid C (2013) Action recognition with improved trajectories. IEEE Int Conf Comput
Vis:3551–3558

50. Wang C, Wang Y, Yuille AL (2013) An Approach to Pose-Based Action Recognition. IEEE Conference
on Computer Vision and Pattern Recognition, Portland, pp 915–922

51. Wei P, Sun H, Zheng N (2018) Learning composite latent structures for 3D human action representation
and recognition. IEEE Trans Multimed 21:2195–2208. https://doi.org/10.1109/TMM.2019.2897902

52. Wiliem A, Madasu V, Boles W, Yarlagadda P (2010) An Update-Describe approach for human action
recognition in surveillance video. Int Conf Digit Image Comput Techn Appl:270–275

53. Xia L, Aggarwal JK (2013) Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition
Using Depth Camera. IEEE Conf Comput Vis Pattern Recogn:2834–2841

54. Xia L, Chen C, Aggarwal JK (2012) View invariant human action recognition using histograms of 3D
joints. IEEE Comput Soc Conf Comput Vis Pattern Recogn Worksh:20–27

55. Xiao Y, Chen J, Wang YC, Cao ZG, Zhou JT, Bai X (2019) Action recognition for depth video using
multi-view dynamic images. Inf Sci 480:287–304. https://doi.org/10.1016/j.ins.2018.12.050

56. Yang X. (2017) Super normal vector for human activity recognition with depth cameras. IEEE Trans
Pattern Anal Mach Intell 39(5):1028–1039

57. Yang T, Hou Z, Liang J, Gu Y, Chao X (2020) Depth Sequential Information Entropy Maps and Multi-
Label Subspace Learning for Human Action Recognition. In: IEEE Access, vol 8, pp 135118–135130.
https://doi.org/10.1109/ACCESS.2020.3006067

58. Yang R, Yang R (2014) DMM-Pyramid based deep architectures for action recognition with depth
cameras. Asian Conf Comput Vis:37–49

59. Yang X, Zhang C, Tian Y (2012) Recognizing actions using depth motion maps-based histograms of
oriented gradients. ACM Multimed:1057–1060. https://doi.org/10.1145/2393347.2396382

60. Yao GL, Lei T, Zhong JD, Jiang P (2019) Learning multi-temporal-scale deep information for action
recognition. Appl Intell 49:2017–2029. https://doi.org/10.1007/s10489-018-1347-3

61. Zeeshan A, Kandasamy I, Naimul K, Dimitri A (2019) Human action recognition using convolutional
neural network and depth sensor data. Int Conf Inf Technol Comput Commun:1–5

62. Zhang B, Yang Y, Chen C, Yang L, Han J, Shao L (2017) Action recognition using 3D his-
tograms of texture and a Multi-Class boosting classifier. IEEE Trans Image Process 26(10):4648–4660.
https://doi.org/10.1109/tip.2017.2718189

63. Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural
networks. IEEE Int Joint Conf Neural Netw 2:985–990. https://doi.org/10.1109/IJCNN.2004.1380068

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

32130 Multimedia Tools and Applications (2021) 80:32111–32130

https://doi.org/10.1109/TMM.2018.2818329
https://doi.org/10.1109/TMM.2019.2897902
https://doi.org/10.1016/j.ins.2018.12.050
https://doi.org/10.1109/ACCESS.2020.3006067
https://doi.org/10.1145/2393347.2396382
https://doi.org/10.1007/s10489-018-1347-3
https://doi.org/10.1109/tip.2017.2718189
https://doi.org/10.1109/IJCNN.2004.1380068

	Human action recognition based on multi-scale feature maps from depth video sequences
	Abstract
	Introduction
	Related work
	Proposed method for human action recognition
	Calculation of depth motion images
	Multi-scale represtation of depth video sequences
	Feature extraction with hierarchical pyramid structure
	Action recognition by extreme learning machine

	Experiment results and analysis
	Datasets and experimental settings
	Datasets description
	Experimental setups

	Ablation study
	Influence of layer parameter
	Evaluation of different feature extraction strategies
	Effectiveness of multi-scale feature map LP-DMI

	Comparisons to other state-of-the-art approaches

	Conclusion
	References


