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Abstract
Automated techniques for Arabic content recognition are at a beginning period contrasted
with their partners for the Latin and Chinese contents recognition. There is a bulk of
handwritten Arabic archives available in libraries, data centers, historical centers, and work-
places. Digitization of these documents facilitates (1) to preserve and transfer the country’s
history electronically, (2) to save the physical storage space, (3) to proper handling of the
documents, and (4) to enhance the retrieval of information through the Internet and other
mediums. Arabic handwritten character recognition (AHCR) systems face several chal-
lenges including the unlimited variations in human handwriting and the leakage of large
and public databases. In the current study, the segmentation and recognition phases are
addressed. The text segmentation challenges and a set of solutions for each challenge are
presented. The convolutional neural network (CNN), deep learning approach, is used in the
recognition phase. The usage of CNN leads to significant improvements across different
machine learning classification algorithms. It facilitates the automatic feature extraction of
images. 14 different native CNN architectures are proposed after a set of try-and-error trials.
They are trained and tested on the HMBD database that contains 54,115 of the handwrit-
ten Arabic characters. Experiments are performed on the native CNN architectures and the
best-reported testing accuracy is 91.96%. A transfer learning (TF) and genetic algorithm
(GA) approach named “HMB-AHCR-DLGA” is suggested to optimize the training param-
eters and hyperparameters in the recognition phase. The pre-trained CNN models (VGG16,
VGG19, and MobileNetV2) are used in the later approach. Five optimization experiments
are performed and the best combinations are reported. The highest reported testing accuracy
is 92.88%.
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1 Introduction

Arabic is a very important international language. The number of Arabic speakers exceeds
half a billion (native and non-native) around the world. Arabic is the second most used after
the Latin script [67].

Arabic has 28 alphabetical letters, all representing consonants, and are written from right
to left [62]. Twenty-two of these letters are those of the Semitic alphabet from which it
descended [44]. They are modified only in the letterform. The remaining six letters represent
sounds not used in the languages written in the earlier alphabet [100].

The shape of each Arabic letter depends on its position in a word: initial, middle, end,
or isolated as shown in Table 1. There are no uppercase nor lowercase distinctions as it is
in the Latin characters [125]. Arabic is written cursively both typed and printed [85]. This
means, intuitively, the Arabic recognition system needs letter segmentation [43].

Recognizing Arabic writings opens the area of recognizing similar languages that are
written with the same script. These similar languages are fourteen including Persian, Urdu,
and Pashto [14].

In recent years, there is much interest in the area of handwritten document recogni-
tion, especially in Arabic. Among the handwritten and printed documents, the automatic
handwritten document recognition is more challenging [35].

Handwritten characters that are written by different persons are not identical and vary
in both sizes and shapes. These numerous variations in the writing styles of the individual
characters make the recognition process more difficult and challenging [7].

The similarities among distinct character shapes, the overlaps, the ligatures [38], and
the interconnections of the neighboring characters [103] further complicate that recognition
task.

Little research progress has been achieved compared to what has been done with Latin
and Chinese languages [3, 5]. Research in Arabic optical character recognition is still a
wide-open area [73].

Arabic texts and their segmentation and recognition challenges [19] can be summarized
as follows:

– Arabic text is written typed and printed cursively in blocks of interconnected characters.
The cursive nature of the Arabic characters and different forms of Arabic charac-
ters makes it more difficult to achieve high accuracy in character classification and
recognition.

– One or more blocks can be used to form an Arabic word. This leads to the necessity of
an adaptive Arabic text segmentation algorithm.

– Arabic characters in addition to their isolated form can take different shapes depending
on their position inside the text: initial, middle, end, or isolated as shown for the letter
“Ayn” in Table 1.

– Some characters can be written vertically or horizontally which may lead the character
blocks to have more than one baseline or different baselines’ locations as shown in
Fig. 1. This prevents the simple adaptations of the published baseline detection methods
related to the English or Chinese languages.
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Table 1 Arabic alphabet characters with different positions

– Arabic has diacritical marks that must be dealt with [55].
– Arabic uses different types of external objects such as dots (single, double, or triple),

“Hamza”, and “Madda” [39].
– The same character can have substantial length variation in each different text as shown

in Fig. 2.
– Handwritten characters vary in both sizes and shapes and some combinations of the

Arabic characters have unique forms.
– There are not enough public and available Arabic handwritten text and characters

datasets to work on compared to the Latin language.

Fig. 1 Four shapes of five arabic
letters “Alif”, “Baa”, “Taa”,
“Tha”, and “Jim” with baselines
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Fig. 2 Three different shapes of
the word “Mohammed ( )”

Pattern recognition is a branch that covers various fields such as face recognition, fin-
gerprint recognition, image recognition, citywide traffic crowd flows, character recognition,
and numerals recognition [10, 11, 61].

Arabic handwritten character recognition (AHCR) system is an intelligent system that
can classify and recognize handwritten characters similar to humans [94]. The input to the
AHCR system is the text required to be recognized and the output is the corresponding
recognized text in the digital form. Figure 3 shows sample input and output of an AHCR
system.

There have been different machine learning methods and techniques that are used for
offline handwritten characters classification and recognition [8] such as support vector
machines [16, 110] and K-nearest neighbor [66]. The traditional machine learning meth-
ods extract the features manually using feature engineering [63]. After that, classification
algorithms are used to classify the characters based on the extracted features.

Deep learning (DL) is a trending research machine learning branch [46] that includes
different algorithms and architectures such as: Deep Neural Networks [30], Convolutional
Neural Networks (CNNs) [70], Deep Belief Networks [56], Autoencoders [21], and Recur-
rent Neural Networks [108]. They are capable of extracting the features automatically
[78].

Deep neural networks consist of an input layer, multiple non-linear hidden layers, and an
output layer. The number of connections and trainable parameters can become very large
and the network does not fit in the device memory especially with images and videos [83].
The deep neural network needs also a very large dataset to avoid overfitting [31].

A CNN has a comparatively smaller set of parameters (i.e. weights) and easier to train
[77]. It is a multi-layer feed-forward neural network that extracts salient features and proper-
ties from the input data automatically. It uses the neural network back-propagation algorithm
[57] in its training.

A CNN adds the new dimension for image classification systems and recognizing
visual patterns directly from pixel images with minimal pre-processing [4]. Besides, It
automatically provides some degree of translation invariance [29]. It can learn from high-
dimensional complex inputs, non-linear mappings from a very large number of records
[80].

Fig. 3 Sample input and output of the AHCR system
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Another major advantage of CNN is the usage of the shared weights in the convolu-
tional layers. This means that the same filter is used for each input in the layer [76]. The
shared weights reduce the parameter numbers and improve the overall performance [18].
Recently, CNN is found more efficient for handwritten character recognition due to its
distinct features [112].

Instead of learning the CNN from scratch, the transfer learning (TF) approach can be
used. Transfer learning is a machine learning approach that focuses on the gained knowledge
and experience storage while working on a task or a problem [93]. It can be applied to
different related problems.

This TF approach is engaged in deep learning by working on these stored pre-trained
models as the starting points. This allows rapid progress and performance improvement
[79].

The pre-trained model can be achieved by two common paths (1) choosing a related
predictive modeling task with an abundance of data where there are relationships in the
input and output data or (2) selecting a pre-trained source model from the available ones
released by companies, research institutions, universities, etc. [137].

There are many available pre-trained CNN models such as VGG16 [113], ResNet [52],
MobileNet [58], Xception [27], NASNet [138], and DenseNet [59]. These pre-trained mod-
els were trained on the ImageNet [33]. It is an very large scale hierarchical image database
(over 14 million images). It was designed for visual object recognition software research
and computer vision tasks [102].

Selecting between the different hyperparameters (e.g. batch size, parameters initializers,
and activation functions) used in the training of CNNmodels can lead to a non-deterministic
polynomial-time hard (NP-hard) problem [49].

Determining the optimal set of training hyperparameters to achieve the maximum per-
formance can be considered as an optimization problem that can be solved using soft
computing algorithms such as genetic algorithms (GAs) and fuzzy logic systems [99].

Hence, the current study presents an AHCR system for text segmentation and recogni-
tion. The recognition uses CNNs and TF for the parameters optimizations and uses GA for
the hyperparameters optimizations.

The main contributions of the current study can be summarized as follows:

– Discussing the Arabic handwritten character recognition system.
– Presenting the text segmentation challenges and suggesting a set of solutions for each

challenge.
– Suggesting different native CNN architectures for the problem of AHCR.
– Applying transfer learning for the AHCR problem using different pre-trained CNN

models.
– Proposing a TF and genetic algorithm approach, HMB-AHCR-DLGA, to optimize the

AHCR training parameters and hyperparameters.
– Performing different experiments and reporting the best architectures using different

performance metrics. Reporting the effectiveness of the best ones.

The rest of the paper is organized as follows: Section 2 presents the related works.
Section 3 presents the problem formulation, discusses the text segmentation task, and out-
lines the different challenges with suggested solutions, presents the classification task using
native and transfer learning approaches, and proposes the TF and GA approach to optimize
the AHCR training parameters and hyperparameters. Section 4 presents the experiments,
results, and discussions, and finally, Section 5 concludes the paper and presents future work.
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2 Related work

According to the available and public publications, many researchers addressed the classi-
fication and recognition of letters including Arabic. On the other hand, there are a smaller
number of methods and approaches used for the Arabic language that had been explored for
recognizing the individual characters. Hence, Arabic optical character recognition is less
common compared to English, French, and Chinese [12].

Various methods and approaches were presented and high recognition rates were
achieved and reported for the handwritten recognition of English [18, 132], Chinese [51,
126, 131, 135, 136], Hangul [40], Malayalam [87], Devanagari [2, 114], and Telugu [116]
using CNN.

Shams et al. [111] presented an algorithm for recognizing Arabic characters based on
deep CNN and support vector machine. They used the correct classification rate (CRR) and
error classification rate (ECR). Their proposed system used a K-means clustering algorithm
to check the Arabic characters’ similarity. They proposed a sample dataset. They applied
840 tested images from 3 persons where each one wrote each character 10 times. Their
reported rates were 95.07% CRR and 4.93% ECR.

Altwaijry et al. [13] presented a new dataset (named “Hijja”) of Arabic letters written
that were compiled by children aged 7 to 12. It contained 47,434 characters written by
591 participants. They proposed an automatic handwriting recognition architecture based
on CNN. They trained their model on “Hijja” and “AHCD” [36] datasets. They reported
accuracies of 97% and 88% on the “AHCD” and “Hijja” datasets respectively.

Kef et al. [68] presented a Fuzzy ARTMAP [48] neural network. The fuzzy ARTMAP
neural network is an incremental supervised learning classifier. Five Fuzzy ARTMAP neu-
ral networks were used to classify characters using the “IFN/ENIT” database [95]. The
“IFN/ENIT” database contains 3,840 handwritten character images (2,304 for training and
1,536 for testing). The reported recognition rate was 93.80%.

ElAdel et al. [37] presented a Neural Network architecture based on the Fast Wavelet
Transform, Multi-Resolution Analysis, and Adaboost algorithm. The learning and testing
of the Arabic handwriting character classification system were conducted using the “IESK-
arDB” [41] dataset which includes 6,000 segmented characters. The classification rate for
the different groups of characters was 93.92%.

Elleuch et al. [40] introduced an Arabic handwritten character’s recognition using Deep
Belief Neural Networks. The approach was tested on the “HACDB” database [74]. The
“HACDB” database contains 6,600 shapes of handwritten characters written by 50 persons.
The dataset is divided into a training set of 5,280 images and a test set of 1,320 images. The
classification result was promising with an error rate of 2.1% (97.90% accuracy).

Lawgali et al. [75] proposed a framework for the recognition of handwritten Arabic
words based on segmentation. It involved two phases: training and testing phases. In the
training phase, They trained Arabic handwritten characters to be recognized in the next
phase, while in the testing phase, they segmented words into characters for recognition.
They used the IFN/ENIT database [95]. Their reported accuracy was 90.73% based on their
used segmentation method.

Mozaffari et al. [87] proposed a method for the isolated Farsi/Arabic handwritten numer-
als recognition. They used quad tree-based fractal representation and iterated function
systems. The reported recognition rate was 92.60% and was obtained on their numeral
database. Their database contained 480 samples per digit and was gathered from nearly 200
people. They had different ages and educational backgrounds.
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Al-Shaher et al. [6] presented training point distribution models using the expectation-
maximization algorithm. They designed an optical character recognition system and trained
their system using eight Arabic letters. They used a small database tested on 7-character
classes. They used 100 samples of each character and reported a successful recognition rate
of 98.30%.

Amin et al. [15] used conventional machine learning methods. They used rule-based
stroke types to extract the relationships automatically. Their inductive learning program
generated first-order Horn clauses for characters. The system was tested on their sam-
ple handwritten characters that were compiled from several individuals. It contained 120
characters of 40 samples (30 for training and 10 for testing). Their reported accuracy was
86.65%.

Abuhaiba et al. [1] presented a text recognition system that was capable of recognizing
offline handwritten Arabic cursive text. Their system was tested against the handwritings of
20 subjects. Their reported accuracies were 55.40% and 51.10% for sub-word and character
recognition rates respectively.

Table 2 summarizes the presented related works and studies. The table is ordered from
the latest to the oldest.

3 Problem formulation and suggested approach

Arabic handwritten character recognition (AHCR) system accepts the input scanned phys-
ical image that contains the Arabic text and outputs the corresponding digital form of the
text. The AHCR system consists of (1) image acquisition phase, (2) image pre-processing
phase, (3) image segmentation phase, (4) classification phase, and (5) output phase [9] as
shown in Fig. 4.

The image acquisition phase converts the image from the physical form into a digi-
tal one. There are different image acquisition tools and equipment such as scanners and
cameras.

The image pre-processing phase targets to refine the image globally and improves its
quality for the next phases [42, 117]. There are many pre-processing techniques such as
noise removal [86], grayscale conversion, and slant and skew correction [26, 115].

The image segmentation phase performs three internal sub-phases. They are (1)
page-to-lines segmentation, (2) line-to-words segmentation, and (3) word-to-characters
segmentation [32, 92].

An Arabic handwritten recognition system can depend only on the first two sub-phases
if the classifier (in the fourth phase) works on the words instead of the characters.

The classification phase accepts each character’s sub-image and outputs the correspond-
ing digital format of that character by passing it through the trained model.

Finally, the output phase presents the result to the user by merging the characters into
words, words into lines, and lines into a page concerning their order from the image
segmentation phase.

3.1 Pre-processing phase

The pre-processing phase is essential in enhancing the quality of the images (in
our case). They are numerous techniques that can be used including grayscale con-
version, binary conversion, noise removal, slant and skew correction, and histogram
equalization.
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Fig. 4 The phases of an AHCR
system

The grayscale conversion is a technique that converts from the color format into the
grayscale format. There are different methods such as average and weighted method (i.e.
luminosity method) [105].

The binary conversion is a technique that converts the image into a monochromatic black
and white image (i.e. bi-level or two-level) [72].

The slant and skew correction technique is used to deskew the image to return it to its
original orientation. Several studies addressed different solutions and reviews that target
that problem [17, 65, 69].

The noise removal (i.e. image denoising) technique targets the removal or reduction of
the unrequired elements from the image. There are numerous methods such as linear, min,
max, median, Wiener, Gaussian, and Guided filtering [130].

3.2 Text segmentation phase

The text segmentation phase accepts a textual image and extracts the characters from it. The
text segmentation phase passes through three sub-phases: (1) text-to-lines segmentation, (2)
lines-to-words segmentation, and finally, (3) words-to-characters segmentation. The output of
this phase should be theArabic letters that should be passed after that to the recognition phase.

3.2.1 Segmentation challenges

There are different challenges associated with the text segmentation phase. Some of them
can be handled and refined in the pre-processing phase such as noise removal and the others
require additional processing [90]. They can be presented as follows:

– Differing Acquisition Methods: The image file format is not specified and the phase
is required to be able to handle the different image formats from different sources such
as scanners, digital cameras, and mobile cameras.

– Different Encodings: The phase should not be affected by the information and lost
details by the different lossy and lossless encoding methods [124].
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– Varying Lighting: The image acquisition environment can vary in lighting conditions.
– Varying Orientations: The text can be skewed or rotated and the text segmentation

phase should detect and correct that.
– Varying Text Color: The text required to be detected and segmented can include

multiple colors in the same image.
– Varying Text Font: The text is not specified to be computer printed or handwritten and

the text segmentation phase should handle both of them.
– Varying Text Size: The text size can vary in the same image.
– Varying Relative Size: The relative size of the text to the image size is not specified

and the module should be able to handle any variations.
– Multiple Objects on the Same Image: Non-textual element can be part of the textual

image.
– Non-Clear Background: Text can be written on a writing line, not on a blank white

paper.
– Non-Uniform Letter Box: Since handwritten text segmentation is targeting the bound-

ing box, the letter can be in a non-rectangular form and can overlap with other letters
boxes [128].

– Limited Processing Time: The text segmentation phase is a part of a bigger system or
a framework. Hence, it should be functioning in a near real-time manner.

The main challenge in the current study is segmenting Arabic connected cursive text as
the rest of the challenges can be avoided or were solved previously in the previous studies.

3.2.2 Segmentation suggested solution

A standard optical character recognition module design, a multi-stage module, is followed.
The task is divided into multiple sub-phases (i.e. steps). It makes the design simpler, how-
ever, the errors accumulate over the steps. The steps in the suggested solution are as
follows:

– Step 1: Page Layout Analysis: This step detects the text and non-text regions of the
textual image.

– Step 2: Image Normalization: To make processing time acceptable, the image is
normalized by scaling it to an acceptable size in the current step.

– Step 3: Binarization and Noise Removal: This step should remove the non-textual
parts from the textual image and making the text in a solid black color.

– Step 4: Skew Correction and Rotation: The image skew is detected and corrected by
rotating it.

– Step 5: Finding Writing Lines: This step targets the baselines on the different writing
lines.

– Step 6: Segmenting Connected Components: The connected components can be a
character or multiple characters connected together (i.e. sub-words).

– Step 7: Generating Multiple Possible Final Segmentations: These segmentations
will be passed to the recognition module to be evaluated.

– Step 8: Final Segmentation Choice: Based on the score returned from the recognition
module for each segmentation, this step will decide which segmentation is the best to
be the final one.

Table 3 summarizes the challenges with their solutions.
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Table 3 Segmentation challenges and solutions summarization

Challenge Solution

Differing Acquisition Methods Using pre-existing libraries such as OpenCV [25] to read the
image as an array of colored pixels regardless of how it was
represented.

Different Encodings Encoding artifacts are removed in the noise removal step.

Varying Lighting Lighting variation is removed in the binarization step.

Varying Orientation Fixed in the skew correction and rotation step.

Varying Text Color Removed in the binarization step.

Varying Text Font Handled by the feedback mechanism step.

Varying Text Size Handled in segmenting the connected components step.

Varying Relative Size Handled in finding the writing lines step.

Multiple Objects on the Same Image Handled in page layout analysis step.

Non-Clear Background Handled in the binarization and noise removal step.

Non-Uniform Letter Box Handled by the feedback mechanism step.

Limited Processing Time Handled by the normalization step.

3.2.3 Main challenge discussion

This is mainly handled in steps 7 and 8. In step 7, the segments are generated based on the
features extracted from the connected component. A set of rules are then used to form these
segments based on the features. These features can be structural features such as loops,
endpoints, X-cross points, and T-cross points, or statistical features such as moments and
Fourier descriptors [54].

In step 8, the tag scores are used to determine how likely the segmentation is valid. A
suggested function would be based on Bayes’ rule [121] by treating each score as probability
and trying to find the minimum noise probability.

The following example summarizes the discussion (the numbers and tags here are man-
ually generated to give an illustration and not the actual results). For the 7th step, Fig. 5
shows one possible connected component box and Fig. 6 shows multiple possible generated
segmentations. The multiple segmentations are passed to the recognition module and the
module assigns tags and numbers corresponding to each tag as shown in Table 4.

For the 8th step, the goal of this function is to maximize the letter score and minimize
the noise score in the overall segmentation. A function is designed to determine the best
segmentation based on the tags and scores.

Some suggested functions: (1) Minimizing the Sum of Noise: The sum of noise score
is calculated for each possible segmentation and the one having the least noise sum is
selected to be the accepted segmentation element and (2)Minimizing the Root of theMean
Squares Summation (RMSS) as shown in (1). They require no information other than the

Fig. 5 One possible connected
component box for the word
“ ”
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Fig. 6 Multiple possible segmentations for the word “ ”

Table 4 Example on the
segmentation tags and their
corresponding numbers
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segmentation and the noise scores.

RMSS =
√∑ (

NoiseScore

Numberof LetterBoxes

)2

(1)

3.3 Classification phase

As mentioned earlier, the classification phase accepts each character’s sub-image and out-
puts the corresponding digital format of that character by passing it through the trained
model. The model can be trained from scratch or using the transfer learning approach with
the help of the pre-trained CNN models.

This subsection is divided into three inner subsections: (1) designing CNN models from
scratch, (2) using pre-trained models (transfer learning approach), and (3) proposing a TF
and genetic algorithm (GA) optimization approach for the best training parameters and
hyperparameters selection.

3.3.1 Designing CNNmodels

AConvolutional Neural Network (CNN) is a multi-layer neural network designed to analyze
the visual inputs and perform tasks. The input data in our case is the images X as shown in
(2).

X = [x1, x2, ..., xj , ..., xn] (2)

where X is the whole dataset, xj is a dataset entity (i.e. element) at a position j , and n is
the number of elements in X. Formally, the input to a convolutional layer is an image with
a shape shown in (3).

shape(xj ) = M × M × C (3)

where M is the size of the image (i.e. width and height) and C is the number of channels
per pixel. For a grayscale image, it has one channel and hence C = 1 but Red-Green-Blue
(RGB) images have three channels and hence C = 3.

CNN is composed of several kinds of layers:

Convolutional layers The convolutional layer has K filters (i.e. kernels) each filter has a
shape that can be computed from (4).

shape(ConvLayer) = N × N × R (4)

where N is the size of the filter (i.e. width and height) and R is the number of channels.
R should be equal to or less than C. Convolutional layer creates K feature maps of size
M − N + 1. They are used to predict the class probabilities for each feature by applying a
filter that scans the whole image, a few pixels at a time.

Figure 7 illustrates the convolution process on an input image of size M × M with a
kernel of size N × N . If the input is 32 × 32 and the kernel is 5 × 5, then the output of the
convolution is 28 × 28.

Pooling layers Each feature map is then pooled typically with mean-, min- or max-pooling
over a Q × Q where Q is a range between 2 to 5 for large inputs.

Figure 8 illustrates the pooling process on the feature map that produces a new feature
map of size (M − N + 1)/2. If the input is 28 × 28, then the output of the pooling layer is
14 × 14.
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Fig. 7 Illustration of the convolution process on an input image of size M × M with a kernel of size N × N

Pooling layers are used to scale down the amount of information the convolutional layer
generates for each feature and maintains the most essential information. Notice that, the
process of the convolutional and pooling layers usually are repeated several times [106].

Fully-connected layers After the convolutional and pooling layers, one or more fully-
connected layers exist(s). The high-level reasoning in the neural network is done via the
fully-connected layers.

Fig. 8 Illustration of the pooling process on the feature map
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A fully-connected layer accepts all neurons from the previous layer and connects them
to every single neuron it has. Fully-connected layers are not spatially located anymore, so
there can be no convolutional layers after a fully connected layer.

Activation functions Activation functions are non-linear transformations used to deter-
mine whether a neuron should be activated or not. There are several activation functions
such as Sigmoid, ReLU (Rectified Linear Unit), and Leaky ReLU [91].

The activation function that is used in the current study for the hidden layers of the
designed CNN models is ReLU [89].

ReLU is a piece-wise linear function that will output the input directly if it is positive,
otherwise, it will output zero. It has become the default activation function for neural net-
work types because the architecture that uses it is easier to train and often achieves better
performance than others [50].

The SoftMax classifier function is a generalization of the binary form of Logistic
regression [34]. It is commonly used for multi-class classification problems. The mapping
function is defined such that it takes an input dataset X and maps them to the output class
labels via a simple linear dot product of the data X and weights W .

Learning weights optimization Optimization algorithms and techniques help us to min-
imize (or maximize) an objective function (i.e. the error function). An error function
is simply a mathematical function that is dependent on the model’s internal learnable
parameters. It is used to compare the target values of Y and model predictions.

The gradient descent algorithm [101] updates the parameters to minimize the error func-
tion. It takes small steps in the direction of the negative gradient of the loss function as
shown in (5).

Pi+1 = Pi − α × ∇ × E(Pi) (5)

where i refers to the iteration number, ∇ is the learning rate, E is the error function, P is the
parameter vector and Pi is the loss function. The gradient of the loss function, ∇ × E(Pi),
is evaluated using the entire training dataset. The standard gradient descent algorithm uses
the entire dataset at once.

The learning rate is a hyperparameter that controls how much we are adjusting the train-
able weights of the network concerning the calculated loss gradient. The lower the learning
rate value, the slower we move along the downward slope and the more time it takes.

Adam (Adaptive Moment Optimization Algorithm) [71] combines the heuristics of both
the Momentum [129] and RMSProp [22] optimization algorithms. They take contrasting
approaches. The Momentum optimizer accelerates the search in the direction of the minima
while the RMSProp optimizer impedes the search in the direction of oscillations.

There are other weights optimizers such as Nadam [119], AdaGrad [88, 122], AdaDelta
[133], AdaMax [60], and FTRL [82].

The authors prepared 14 CNN architectures after try-and-error trials where 3 of them
achieved the best results as shown later in the experiments and results section. The 14 CNN
architectures are labeled from 1 to 14, so that, the first one is CNN-1, the second one is
CNN-2, and so on.

Figures 9, 10, and 11 show the top-3 suggested CNN architectures CNN-5, CNN-12, and
CNN-11 respectively for Arabic handwritten character recognition. The layers’ sizes and
types are labeled on the figures.

All of the suggested CNN architectures have the last output fully-connected layer
with 115 classes. This number refers to the number of classes of the used dataset. The
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Fig. 9 A suggested CNN architecture, CNN-5, to classify the arabic handwritten characters

used dataset is described later in the experiments and results section. The used activation
functions in the hidden and output layers are ReLU and SoftMax respectively.

Figure 9, CNN-5, is described as follows: INPUT → CONV → RELU →
POOL → CONV → RELU → POOL → CONV → RELU → POOL →
FC → RELU → FC. The input layer accepts images with a size of 32 × 32. The second
layer, C1, is a convolutional layer with a size of 30 × 30 and 64 parallel filters. The third
layer, S2, is a max-pooling layer with a size of 15 × 15 and 64 parallel kernels.

The fourth layer, C3, is a convolutional layer with a size of 13 × 13 and 128 parallel
filters. The fifth layer, S4, is a max-pooling layer with a size of 6 × 6 and 128 parallel kernels.
The sixth layer, C5, is a convolutional layer with a size of 4 × 4 and 256 parallel filters.

The seventh layer, S6, is a max-pooling layer with a size of 2×2 and 256 parallel kernels.
The eighth layer, FC7, is a fully-connected layer with a number of neurons of 1024. The
last layer, FC8, is another fully-connected layer with a number of neurons of 115.

Figure 10, CNN-12, is described as follows: INPUT → CONV → RELU →
POOL → CONV → RELU → POOL → CONV → RELU → POOL →
FC → RELU → FC → RELU → FC. The input layer accepts images with a size of
32× 32. The second layer, C1, is a convolutional layer with a size of 30× 30 and 64 paral-
lel filters. The third layer, S2, is a max-pooling layer with a size of 15 × 15 and 64 parallel
kernels.

The fourth layer, C3, is a convolutional layer with a size of 13 × 13 and 128 parallel
filters. The fifth layer, S4, is a max-pooling layer with a size of 6 × 6 and 128 parallel
kernels. The sixth layer, C5, is a convolutional layer with a size of 4 × 4 and 256 parallel

Fig. 10 A suggested CNN architecture, CNN-12, to classify the arabic handwritten characters
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Fig. 11 A suggested CNN architecture, CNN-11, to classify the arabic handwritten characters

filters. The seventh layer, S6, is a max-pooling layer with a size of 2 × 2 and 256 parallel
kernels.

The eighth layer, FC7, is a fully-connected layer with a number of neurons of 100. The
ninth layer, FC8, is another fully-connected layer with a number of neurons of 100. The
last layer, FC9, is also another fully-connected layer with a number of neurons of 115.

Figure 11, CNN-11, is described as follows: INPUT → CONV → RELU →
POOL → CONV → RELU → POOL → CONV → RELU → POOL →
FC → RELU → FC. The input layer accepts images with a size of 32 × 32. The second
layer, C1, is a convolutional layer with a size of 30 × 30 and 64 parallel filters. The third
layer, S2, is a max-pooling layer with a size of 15 × 15 and 64 parallel kernels.

The fourth layer, C3, is a convolutional layer with a size of 13 × 13 and 128 parallel
filters. The fifth layer, S4, is a max-pooling layer with a size of 6 × 6 and 128 parallel kernels.
The sixth layer, C5, is a convolutional layer with a size of 4×4 and 128 parallel filters. The
seventh layer, S6, is a max-pooling layer with a size of 2 × 2 and 128 parallel kernels.

The eighth layer, FC7, is a fully-connected layer with a number of neurons of 50. The
last layer, FC8, is also another fully-connected layer with a number of neurons of 115.

3.3.2 Transfer learning approach

VGG16 [113], VGG19 [113], and MobileNetV2 [104] pre-trained CNN models are used
in the current study as the base models. The ImageNet [33] weights are used with them to
initiate their weights.

Each pre-trained model consists of a set of layers internally and we can control which
layers to train and update their weights. For example, freezing all the pre-trained model
layers unless the last two layers. In the training (in the current study), the last two layers’
weights will be updated while the rest of the layers will remain with their initial weights.

By decreasing the number of trainable layers, the number of trainable weights will
decrease and hence the training time. This may lead to a noticeable decrease in the accuracy
and hence selecting a suitable learning percent for the pre-trained model layers is necessary.

A global average pooling layer [28], dropout layer [118, 127], and a fully-connected
layer are added after the pre-trained model’s last layer. Similar to max-pooling layers, the
global average pooling layers are used to reduce the spatial dimensions (i.e. dimensionality
reduction) but in an extreme manner where the feature maps layer with dimensionsM−N+
1×M −N + 1×R is reduced in size to have dimensions of 1× 1×R as shown in Fig. 12.
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Fig. 12 Illustration of the global average pooling process on the feature maps

Dropout layer Dropout is a regularization technique that refers to dropping some of the
neurons of the layer that precedes this layer as shown in Fig. 13. Dropout layers are
important in training the CNNs as they prevent overfitting [134] on the training data.

Selecting a suitable dropout ratio is necessary as selecting a very high ratio will decrease
the number of trainable neurons and may lead to a decrease in accuracy.

3.3.3 Proposed TF and GA parameters and hyperparameters optimization approach
(HMB-AHCR-DLGA)

From the previous subsections, different DL training hyperparameters are required to be
optimized. They are the (1) DL weights optimizers, (2) dropout ratios, (3) batch sizes, and
(4) transfer learning model learning ratios in the current study.

Depending on the grid search [53] only, it will lead to a × b × c × d tries where a,
b, c, and d are the numbers of DL weights optimizers, dropout ratios, batch sizes, and

Fig. 13 Illustration of the dropout process
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TF model learning ratios respectively. Hence, a suitable optimization approach for these
hyperparameters is required to be applied.

A genetic algorithm (GA) [123] approach is used to solve this issue and to achieve the
best combinations faster than the grid search or native searching approach.

GA has different important features [84] such as (1) it combines different solutions to
boost the best one, (2) it is used to solve many problems effectively, (3) simpler to imple-
ment and deploy, and (4) requires fewer computations compared to other state-of-the-art
approaches [45].

The proposed genetic algorithm approach named HMB-AHCR-DLGA is described in
detail in this subsection. Initially, all chromosomes are initiated randomly concerning the
given ranges (i.e. DL weights optimizers, dropout ratios, batch sizes, and TF model learning
ratios). They are constructed as a matrix where each row is a chromosome.

A GA is applied to the whole population. The algorithm steps include the objective func-
tion calculation, sorting, selection, crossover, and mutation. After a set of iterations, the final
best chromosome that includes the combination with the highest objective function value
is achieved upon completion. The steps are described comprehensively in the following
paragraphs.

Initial poulation The initial population is created as a matrix where each row represents a
chromosome. The size of the population is initiated as Np. Each chromosome (i.e. row) has
a set of genes (i.e. columns). The size of each chromosome is set to 4.

They are (1) the first column is for a DL weights optimizer, (2) the second column is for
a dropout ratio, (3) the third column is for batch size, and (4) the fourth column is for a TF
model learning ratio as shown in Fig. 14.

The used DL weights optimizers are Adam, Nadam [119], AdaGrad [88, 122], AdaDelta
[133], AdaMax [60], RMSProp, SGD, and FTRL [82]. The TF model learning ratio is
ranged from 0% to 60% with a step of 5% and hence there are 13 learning ratios.

The batch size is ranged from 32 to 128 with a step of 32 and hence there are 3 sizes. The
dropout ratio is ranged from 0% to 60% with a step of 1% and hence there are 61 dropout
ratios.

Objective function Each chromosome is applied to the objective function to determine the
corresponding score. The more the value, the better the chromosome. The used objective
function is a multi-objective function consisting of the deep learning performance metrics
[64].

They are accuracy, loss, F1-score, recall, the area under curve (AUC), and precision. The
more the accuracy, F1-score, recall, and precision, the better the deep learning model. The
lower the loss, the better the deep learning model. To solve the loss value issue to maximize
it, the value of 1/loss is computed instead of the loss value.

The used objective function is designed in a way to maximize and integrate the objec-
tives. To solve the multi-objective optimization problem, the weighted sum approach (WSA)
[81] is used. It multiplies each objective by a weight w and finds the sum of them as shown
in (6).

V alue = w1 × Accuracy + w2 × 1
Loss

+
w3 × Recall + w4 × F1 +
w5 × Precision + w6 × AUC

(6)

where w1, w2, w3, w4, w5, and w6 are the weight values and their summation equals 1. The
accuracy is most intuitive performance metric [23] and hence its weight w1 is set to be the
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Fig. 14 Graphical representation of the GA population

highest. The used values for w1, w2, w3, w4, w5, and w6 in the current study are set to 0.5,
0.1, 0.1, 0.1, 0.1, and 0.1 respectively.

The values of accuracy, recall, F1-score, precision, and AUC are computed after training
the transfer learning pre-trained model on the chormosome columns’ values using (7), (8),
(9), and (10) [109].

Accuracy = T P + T N

T P + T N + FP + FN
(7)

Recall = T P

T P + FN
(8)

F1 = 2 ∗ Precision ∗ Recall

P recision + Recall
(9)

Precision = T P

T P + FP
(10)

where T P , T N , FP , and FN are the true positive, true negative, false positive, and false
negative respectively.

Sorting After computing the objective function for each chromosome in the population set,
they are sorted in a descending order concerning the objective function values.

Selection The new population is created in this phase by performing three steps. The first
step is to divide the chromosomes into two halves where the first half survives and remains
in the new population while the second half passes to the second step.

The second step is the crossover [98]. It is the operation of exchanging between two
random parents.
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To perform a crossover between two parents and generate a new chromosome, the first
parent extracts its first two genes (DL weights optimizer and dropout ratio) while the second
parent extracts its last two genes (batch size and TF model learning ratio) as shown in
Fig. 15. The generated chromosome is passed to the third step.

The third step is the mutation [107]. It is the operation of providing diversity in the search
space. It applies a small change in the mutated chromosome. It is preferred to be a low rate
to avoid randomness in the search space.

The used mutation rate in the current study is set to 25% which means that only a sin-
gle gene from the four genes in the mutated chromosome is changed randomly from the
available options.
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Fig. 15 Graphical representation of the GA crossover process

Iterations The objective function calculation, sorting, selection, crossover, and mutation
are computed iteratively for Ns times. Algorithm 1 summarizes the proposed approach.

4 Experiments, results, and discussion

The experiments in this section are divided into two types. The first type is experiments
related to the proposed native CNN models while the second type is experiments related to
the proposed transfer learning and genetic algorithm, HMB-AHCR-DLGA, approach.

Table 5 summarizes the experiments’ configurations. They with their corresponding
results will be discussed in the following subsections.

4.1 Dataset

A large and public dataset named “HMBD” [20] is used in the current study. It is
composed of 54,115 images in which each is of size 32 × 32 pixels. It is parti-
tioned into 115 classes and used for both training and testing. It can be downloaded
and used from https://github.com/hossambalaha/hmbd-v1 or https://www.kaggle.com/
hossammbalaha/hmbd-v1-arabic-handwritten-characters-dataset

Data augmentation is applied to the dataset to increase the accuracy and reduce the over-
fitting. The data augmentation used methods are image rotation, shifting, zooming, and
shearing [97].

4.2 CNN architectures

The objective is to choose the best model that fits the dataset well. As mentioned, many try-
and-error trials in the network configuration tuning mechanism are performed. This resulted
in 14 different CNN architectures, CNN-1 to CNN-14, which are compiled and trained after
that.

The main difference between them is the hierarchy of building the architecture layers.
The best CNN architecture is selected from them. Then, different combinations of weight
initializers and optimizers are applied to the best-selected architectures. The later process
aims to report the most suitable weight initializers and optimizers. The training process is
performed on Google Colab [24] with its Graphical Processing Unit (GPU) environment.
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Table 5 Experiments configurations summarization

Approach Configuration Values

CNN Architectures Dataset HMBD [20]

Image Size (32, 32) (Grayscale)

Models CNN-1 to CNN-14 (14 Models)

DL Weight Initializers 8 Initializers: Glorot Uniform [96],
Random Normal, Random Uniform,
Truncated Normal, Variance Scaling [47],
Orthogonal LeCun Uniform, Glorot Normal
[120], and He Uniform

Weight Optimizers 7 Optimizers: Adam, NAdam [119],
AdaGrad [88, 122], AdaDelta [133],
AdaMax [60], RMSProp, and SGD

Number of Epochs 50

Batch Size 32

Hidden Activation Function ReLU

Output Activation Function SoftMax

Training Environment Google Colab [24]

HMB-AHCR-DLGA Dataset HMBD [20]

Image Size (32, 32, 3) (RGB)

Models VGG16 [113], VGG19 [113], and
MobileNetV2 [104]

Pre-trained DL Weights ImageNet [33]

DL Weight Optimizers (Os ) 8 Optimizers: Adam, NAdam [119], Ada-
Grad [88, 122], AdaDelta [133], AdaMax
[60], RMSProp, SGD, and FTRL [82]

Number of Epochs 64

Batch Sizes (Bs ) [32, 64, 128]
TF Model Learn Ratios (Ls ) [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]
Dropout Ratios (Ds ) [1, 2, ..., 60]
Number of GA Iterations (Ns ) 10

Training Environments Google Colab [24] and Toshiba Qosmio X70-A

To select the best and leading architectures, the 14 suggested architectures, CNN-1 to
CNN-14, are trained and the best three are selected using two scenarios (1) without data
augmentation and (2) with data augmentation.

The number of epochs and batch size are 50 and 32 respectively. The default optimizer
and weight initializer are Adam and Glorot Uniform [96] respectively.

Tables 6 and 7 show the reported results for the 14 different CNN architectures without
data augmentation and with data augmentation respectively.

The CNN architectures CNN-12, CNN-14, and CNN-11 reported the top-3 testing accu-
racy architectures for the first scenario (without data augmentation), and CNN-12, CNN-11,
and CNN-5 reported the top-3 testing accuracy architectures for the second scenario (with
data augmentation).

Architecture CNN-9 failed to reach valuable accuracy after applying data augmentation
on it. This abnormal result means that the model fell in the local minima and could not get
out from it.
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Table 6 Results of the 14 CNN architectures after training on HMBD without data augmentation

Architecture no. Training accuracy Training loss Testing accuracy Testing loss

1 84.92% 0.46 83.04% 0.59

2 84.99% 0.44 81.67% 0.66

3 89.23% 0.31 76.98% 0.97

4 77.87% 0.68 76.20% 0.80

5 87.34% 0.39 85.14% 0.50

6 79.23% 0.70 77.35% 0.95

7 84.86% 0.47 80.49% 0.67

8 75.79% 0.76 62.45% 1.50

9 71.89% 0.85 69.48% 1.14

10 96.34% 0.11 74.28% 0.99

11 96.61% 0.10 85.22% 0.57

12 88.37% 0.34 88.06% 0.39

13 83.48% 0.51 80.45% 0.70

14 86.81% 0.40 86.29% 0.49

The bold entries reflect the best reported results concerning the testing accuracies

Figure 16 shows the curve of the 14 architectures in the two scenarios. The blue curve is
for the first scenario while the orange curve is for the second scenario. The x-axis represents
the 14 architectures and the y-axis represents the testing accuracies.

The top-3 CNN architectures in the second scenario are trained after that on sets of
different optimizers and weight initalizers to report the best combinations. The used DL

Table 7 Results of the 14 CNN architectures after training on HMBD with data augmentation

Architecture no. Training accuracy Training loss Testing accuracy Testing loss

1 66.15% 1.16 78.12% 0.70

2 77.27% 0.74 84.05% 0.53

3 77.87% 0.70 79.74% 0.73

4 63.74% 1.26 72.07% 0.95

5 74.03% 0.90 85.01% 0.50

6 59.78% 1.52 75.71% 0.81

7 68.90% 1.08 80.87% 0.64

8 66.77% 1.10 66.87% 1.19

9 1.70% 4.74 1.69% 4.74

10 90.01% 0.29 79.46% 0.92

11 92.07% 0.23 87.31% 0.45

12 82.81% 0.56 88.22% 0.37

13 75.12% 0.85 83.15% 0.55

14 75.78% 0.78 76.22% 0.82

The bold entries reflect the best reported results concerning the testing accuracies
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Fig. 16 Testing accuracies before and after data augmentation of the 14 architectures

optimizers are Adam, NAdam [119], AdaGrad [88, 122], AdaDelta [133], AdaMax [60],
RMSProp, and SGD.

The used weight initalizers are: Glorot Uniform [96], Random Normal, Random Uni-
form, Truncated Normal, Variance Scaling [47], Orthogonal LeCun Uniform, Glorot
Normal [120], and He Uniform.

Tables 8, 9, and 10 report the top-10 training experiments (concerning the testing accura-
cies) performed on the CNN architectures CNN-12, CNN-11, and CNN-5 respectively using
different weight initializers and optimizers applied on the augmented version of the HMBD
dataset. The tables are ordered in descending order according to the testing accuracies.

The CNN architecture, CNN-12, reported the highest testing accuracy value of 88.17%
with a testing loss value of 0.38 using AdaMAx optimizer and Glorot Normal weight ini-
tializer. Figure 17 shows a graphical representation of the testing and training accuracies

Table 8 Training the CNN architecture no. 12 using different optimizers and weights initializers on HMBD
with data augmentation

Optimizer Weight initializer Training accuracy Training loss Testing accuracy Testing loss

AdaMax Glorot Normal 82.33% 0.58 88.17% 0.38

AdaMax Variance Scaling 82.27% 0.58 88.08% 0.38

Adam Glorot Uniform 82.76% 0.56 87.98% 0.38

NAdam Glorot Uniform 82.48% 0.57 87.95% 0.38

AdaMax He Normal 81.94% 0.59 87.90% 0.38

AdaMax Glorot Uniform 82.25% 0.58 87.90% 0.38

AdaMax LeCun Uniform 82.19% 0.58 87.89% 0.38

AdaMax Random Uniform 82.21% 0.58 87.87% 0.39

AdaMax Truncated Normal 82.24% 0.58 87.80% 0.38

AdaMax Orthogonal 82.05% 0.59 87.77% 0.38

32498 Multimedia Tools and Applications (2021) 80:32473–32509



Table 9 Training the CNN architecture No. 11 using different optimizers and weights initializers on HMBD
with data augmentation

Optimizer Weight initializer Training accuracy Training loss Testing accuracy Testing loss

Adam He Uniform 92.30% 0.22 87.70% 0.46

AdaMax Truncated Normal 91.70% 0.24 87.52% 0.44

Adam Truncated Normal 92.44% 0.22 87.51% 0.43

Adam He Normal 92.26% 0.22 87.44% 0.44

Adam LeCun Uniform 92.38% 0.22 87.44% 0.42

Adam Random Normal 92.28% 0.22 87.38% 0.45

Adam LeCun Normal 92.51% 0.22 87.21% 0.45

AdaMax Random Normal 91.56% 0.25 87.19% 0.44

Adam Variance Scaling 92.37% 0.22 87.16% 0.42

SGD Random Uniform 90.61% 0.27 87.15% 0.44

for CNN-12. The graph shows that the testing accuracy precedes the training accuracy and
hence there is an underfitting with a maximum difference of 5.96%.

The CNN architecture, CNN-11, reported the highest testing accuracy value of 87.70%
with a testing loss value of 0.46 using Adam optimizer and He Uniform weight initializer.
Figure 18 shows a graphical representation of the testing and training accuracies for CNN-
11. The graph shows that the training accuracy precedes the testing accuracy and hence
there is an overfitting with a maximum difference of 5.30%.

The CNN architecture, CNN-5, reported the highest testing accuracy value of 91.96%
with a testing loss value of 0.23 using SGD optimizer and LeCun Uniform weight initializer.
Figure 19 shows a graphical representation of the testing and training accuracies for CNN-
5. The graph shows that the testing accuracy precedes the training accuracy and hence there
is an underfitting with a maximum difference of 1.94%.

This reports the CNN architecture, CNN-5, as the best architecture among others as it
achieved the highest testing accuracy of 91.96%.

Table 10 Training the CNN architecture no. 5 using different optimizers and weights initializers on HMBD
with data augmentation

Optimizer Weight Initializer Training Accuracy Training Loss Testing Accuracy Testing Loss

SGD LeCun Uniform 90.62% 0.26 91.96% 0.23

AdaMax Truncated Normal 90.49% 0.30 91.89% 0.25

AdaMax Glorot Uniform 90.49% 0.29 91.86% 0.24

AdaMax LeCun Uniform 90.10% 0.31 91.80% 0.25

AdaMax Random Uniform 89.88% 0.32 91.67% 0.25

AdaMax Variance Scaling 90.51% 0.29 91.65% 0.24

AdaMax Random Normal 90.10% 0.31 91.62% 0.25

AdaMax LeCun Normal 89.97% 0.31 91.57% 0.25

AdaMax Glorot Normal 90.20% 0.30 91.47% 0.26

AdaMax He Normal 89.47% 0.33 91.41% 0.26
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Fig. 17 Graphical representation of the testing and training accuracies for CNN-12

4.3 The HMB-AHCR-DLGA

The objective is to optimize the hyperparameters to evaluate the best combination set.
VGG16 [113], VGG19 [113], and MobileNetV2 [104] pre-trained CNN models with the
ImageNet [33] weights. The used DL optimizers are Adam, NAdam [119], AdaGrad [88,
122], AdaDelta [133], AdaMax [60], RMSProp, SGD, and FTRL [82].

The images are used in the RGB format with the size of 32 × 32 × 3. The num-
ber of epochs and number of GA iterations are set to 64 and 10 respectively. The
training process is performed on Google Colab [24] with its GPU environment and

Fig. 18 Graphical representation of the testing and training accuracies for CNN-11
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Fig. 19 Graphical representation of the testing and training accuracies for CNN-5

Toshiba Qosmio X70-A with 32 GB of RAM and NVIDIA GeForce GTX 770M
GPU. The used batch sizes are [32, 64, 128]. The used TF model learn ratios are
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]. The used dropout ratios are [1, 2, ..., 60].

Five experiments are performed as follows three experiments are performed on VGG16,
one on VGG19, and one on MobileNetV2. Table 11 reports the best combinations with the
corresponding hyperparameters for each experiment.

AdaMax is reported to be the best DL weight optimizer in three experiments. The batch
size of 64 is reported to be the best in three experiments. The dropout ratio of 10% is
reported to be the best in three experiments.

The TF model learning ratio 60% is reported to be the best in three experiments. Two
experiments using VGG16 (first and third) report testing accuracies better than the highest
testing accuracy in the native CNN models experiments (91.96%).

Table 11 Experiments results using the proposed HMB-AHCR-DLGA approach

Pre-trained TF Model First VGG16 Second VGG16 Third VGG16 VGG19 MobileNetV2

DL Weights Optimizer AdaMax AdaGrad AdaMax SGD AdaMax

Batch Size 128 64 64 32 64

Dropout Ratio 10% 10% 0% 30% 10%

TF Model Learn Ratio 60% 60% 60% 55% 50%

Objective Function Value 84.45% 81.73% 84.52% 82.87% 73.23%

Testing Loss 0.374 0.366 0.393 0.424 0.725

Testing Accuracy 92.85% 89.28% 92.88% 90.91% 78.91%

Testing F1-Score 92.97% 89.59% 93.21% 91.07% 79.13%

Testing Precision 93.41% 91.29% 93.71% 91.86% 83.24%

Testing Recall 92.54% 88.00% 92.74% 90.36% 75.51%

Testing AUC 98.71% 99.24% 98.57% 98.51% 98.49%

32501Multimedia Tools and Applications (2021) 80:32473–32509



The lowest testing loss is 0.374 by the first VGG16 experiment. The highest testing accuracy
is 92.88% by the third VGG16 experiment. The highest testing F1-score is 93.21% by the third
VGG16 experiment. The highest testing precision is 93.71% by the third VGG16 experiment.

The highest testing recall is 92.74% by the third VGG16 experiment. The highest testing
AUC is 99.24% by the second VGG16 experiment.

As mentioned, the highest testing accuracy is 92.88% which is achieved by the third
VGG16 experiment using AdaMax weights optimizer, 64 batch size value, 0% dropout ratio,
and 60% TF model learning ratio. It can be considered as the best combination using the
VGG16 pre-trained TF model for the HMBD dataset.

It worth mentioning that, the HMB-AHCR-DLGA approach reported higher testing
accuracy by the third VGG16 (92.74%) than the suggested abstract CNN model, CNN-5
(91.96%). However, the CNN-5 architecture is less complex than the third VGG16 concern-
ing the number of parameters and neurons. Hence, it requires less memory, processing, and
time in the prediction phase.

As the difference between them is less than 1%, we can select the third VGG16 if we
are targeting the prediction accuracy and we can select the CNN-5 architecture if we are
targeting the prediction speed.

5 Conclusions and future work

Handwritten Character Recognition for Arabic characters is an active research area that
always needs an improvement in results. The study presented different AHCR systems
concerning the related work. In this study, CNNs are used for the recognition of Ara-
bic handwritten characters problem using the 28 Arabic characters. CNN is a well-known
state-of-the-art algorithm for classifying images and big data.

The deep learning-based AHCR system is developed. The study presented the different
challenges related to text segmentation by describing a set of solutions that can be further
improved in future studies.

The segmented elements should be entered into the recognition phase to be converted
from handwritten characters format into the printed ones. The system can be divided into
two main phases. The first one is to divide the given handwritten text into segments. The
second is to convert the segments into printed ones.

From the trials, it is very difficult to use a general formula to produce text segments due
to the cursive nature and ligatures of the Arabic language. Handwriting varies from a person
to another, different lighting, and many other presented reasons. The solution for each of
these challenges has been suggested.

In the second phase, the classification phase, different experiments in two paths were
performed and the results are reported.

For the first experimental path, 14 CNN architectures were suggested after lots of tri-
als. The training was performed on the HMBD dataset. Two scenarios (1) without data
augmentation and (2) with data augmentation were applied to the architectures.

The testing accuracy was used as the performance metric to judge the best architecture.
Different optimization methods were also applied to increase the CNN performance. The
top-3 in each scenario were reported. The CNN architectures CNN-12, CNN-14, and CNN-
11 reported the top-3 testing accuracies for the first scenario, and CNN-12, CNN-11, and
CNN-5 reported the top-3 testing accuracies for the second scenario.

The top-3 CNN architectures were trained after that on sets of different optimizers and
weight initializers. The CNN architecture, CNN-12, reported the 88.17% as the highest
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testing accuracy value with a testing loss value of 0.38 using AdaMAx optimizer and Glorot
Normal weight initializer. The CNN architecture, CNN-11, reported 87.70% as the high-
est testing accuracy value with a testing loss value of 0.46 using Adam optimizer and He
Uniform weight initializer.

The CNN architecture, CNN-5, reported 91.96% as the highest testing accuracy value
with a testing loss value of 0.23 using SGD optimizer and LeCun Uniform weight initializer.
The CNN architecture, CNN-5, reported the best architecture among others as it achieved
the highest testing accuracy value 91.96%

For the second experimental path, a TF and GA approach (named “HMB-AHCR-DLGA”)
was proposed to optimize the training parameters and hyperparameters. The HMBD dataset
with data augmentation was used in the training. Accuracy, recall, F1-score, AUC, and preci-
sion were used as the performance metrics to judge the best pre-trained CNN architecture.

The highest testing accuracy using the HMB-AHCR-DLGA approach was 92.88%which
was achieved by the third VGG16 experiment using AdaMax weights optimizer, 64 batch
size value, 0% dropout ratio, and 60% TF model learning ratio. It could be considered as
the best combination using the VGG16 pre-trained CNN model.

Even though there is a lot of work for the recognition of handwritten characters for
English, Chinese, French, and some other Indian languages, only a little work was done for
the Arabic language. Due to the lack of research work in the area, there was a big challenge
to get a dataset for the Arabic language.

In future studies, the plan is to (1) work on improving the performance of the hand-
written text segmentation phase, (2) work on Arabic handwritten word recognition using
deep learning architectures, (3) apply the system on different available datasets, and (4) try
different machines learning or deep learning approaches.

Appendix A

A. 1 Table of abbreviations

Table 12 presents the abbreviations.

Table 12 Table of abbreviations
Abbreviation Discussion

Adam Adaptive Moment Optimization Algorithm

AHCR Arabic Handwritten Character Recognition

AUC Area Under Curve

CRR Correct Classification Rate

CNN Convolutional Neural Network

DL Deep Learning

ECR Error Classification Rate

GA Genetic Algorithm

GPU Graphical Processing Unit

NP-hard Non-deterministic Polynomial-time Hard

ReLU Rectified Linear Unit

RGB Red-Green-Blue

RMSS Root Mean Square Summation

TF Tranfer Learning

WSA Weighted Sum Approach
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