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Abstract
This paper presents a new two-step image denoising method termed multidirectional
gradient domain image denoising (MGDID). In each step, unlike previous gradient
domain designs, the multidirectional gradient domain information is used to represent
the noise component so that the more directional image features are extracted. The
Gaussian pre-filter is carried out in the square gradient coefficients. The nonlinear
remedied factor is adopted to modify the denoising amount. The whole denoising process
originates from classical nonlocal means (NLM) and nonlinear diffusion. MGDID takes
full advantage of ability of NLM to better process the image with the rich repetitive
features and the denoising scheme of relatively simplicity and efficiency of nonlinear
diffusion. Experimental results show MGDID is superior to the related gradient domain
methods and NLM methods in peak signal-to-noise ratio (PSNR), mean structural
similarity (MSSIM) and visual performance. For example, for Barbara image with the
rich repetitive texture feature, MGDID outperforms classical NLM from 0.33 dB to 1.66
dB in PSNR. Usually, classical NLM wins the local adaptive layered Wiener filer (a state-
of-the-art gradient domain method) more than 0.44 dB for Barbara. In addition, MGDID
is also very efficient compared to the related methods.

Keywords Image denoising . Nonlocal means (NLM) . Nonlinear diffusion . Gradient domain

1 Introduction

There are many tasks in the field of image processing. A literature often focuses on a specific
task. For example, the literature [7] designed the multiple images steganography algorithm by
studying adaptive payload distribution. The literature [8] proposed a convolutional neural
network based forensic framework for detecting the image operations. Denoising is then one
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of the most fundamental problems in the field of image processing. Currently, a variety of
denoising methods have been proposed in the different forms. Among these methods, window-
based methods have achieved success. The classical window-based methods have the local
Wiener filter method [11] and the nonlocal means (NLM) filter method [1]. They are the
representative methods of the window-based local ones and the window-based nonlocal ones,
respectively. The common point of twomethods is that the denoised result of the processed pixel
is obtained by employing the information of the pixels in a neighborhood window centered at the
processed pixel. The different point of two methods is that the weights of pixels in the window
are the same commonly in the window-based local methods while the weights of pixels in the
window are different customarily in the window-based nonlocal methods. Currently, two
methods have attracted significant attention. The window-based local methods are very efficient.
There have beenmany variants [2, 4, 13, 18–21]. The methods in [4, 18–21] are the development
of local Wiener filter. The methods in [4, 18] operate in the wavelet domain. The methods in
[19–21] can also be seen as variants of nonlinear diffusion in [13]. In fact, nonlinear diffusion
method (PMAD) is popular and has been attracting attention since it was proposed by Perona
and Malik in [13]. For example, Gaussian filter acts on the image domain to overcome the
theoretical and practical limitations of the PMAD model [2]. To solve PMAD model, a new
algorithm based on mixed finite element method was proposed in [5]. Recently, a hybrid
diffusion framework was established so that the desirable mathematical properties are obtained
for PMAD model [9]. On the other hand, the window-based nonlocal methods [3, 6, 10, 12, 14,
15, 17] obtain better performance. But it has been found that the window-based nonlocal
methods have usually high computational load. Therefore, some improvements [6, 15] are done
to accelerate the window-based nonlocal methods. In addition, the parameters on window-based
nonlocal methods are also researched. For example, the weight of the center pixel is modified so
that the better results are obtained [12, 14, 17]. In [14], the center weight based on the Stein’s
unbiased risk estimate principle was proposed. It is a global center weight which uses the
constant weight for all pixels. In [17], a new local James-Stein type center pixel weight
(LJSCPW) was developed. LJSCPW is locally tuned for each image pixel. In [12], the novel
local center pixel weight estimation methods using Baranchik’s minimax estimator were pro-
posed based on the LJSCPW method. In [3], NLM is improved by the shape-adaptive patches.

In view of good performance of the window-based nonlocal methods and efficiency of
the window-based local methods, this paper presents a new image denoising method
based on the neighborhood window centered at the processed pixel. The proposed
method is different from the previous gradient domain methods. It is called multidirec-
tional gradient domain image denoising (MGDID). This is because that it operates in the
multidirectional gradient domain so that the image features can be better captured. And
the time step size is adaptive for image contents. The proposed method is different from
the NLM filter. This is because that the filter result is obtained in term of the iterative
implementation of nonlinear diffusion. Experiment results show that the proposed
MGDID obtains good results but is very efficient because of possessing the advantages
of the window-based nonlocal and local methods.

The paper is organized as follows. Section 2 first reviews window-based gradient domain
layered denoising method and window-based nonlocal method. And then, the derivation of the
proposed method is presented. At last, the adjustment strategy of the parameters for the
proposed method is described in detail. The experimental results are presented in Section 3.
The simulation results show the proposed method achieves the desired effects. The paper is
concluded in Section 4.
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2 The proposed method

Assume an original image is degraded by additive noise and the noise is signal independent.
The typical image degradation model at (i, j) in a two-dimensional coordinate can be written as

I0 i; jð Þ ¼ I i; jð Þ þ n i; jð Þ ð1Þ
where I, I0, and n represent the original image, the observed image, and the additive Gaussian
random noise with zero mean and variance σ2, respectively. The aim here is to restore the
original pixel by using neighbor pixels centered at the processed pixel. In the following, the
several respects on the proposed method are detailed.

2.1 Gradient domain layered denoising

Gradient domain image denoising based on nonlinear diffusion was proposed in [2, 13,
19–21]. Among these methods, the gradient domain local adaptive layered Wiener filter
(LALWF) in [20] achieves the very good performance. This method is formed by researching
the statistical property of gradient coefficients. In this method, the local Wiener filter [11] was
successfully embedded into gradient domain. In term of [20], the scheme of gradient domain
LALWF can be written as:

Ik i; jð Þ ¼ Ik−1 i; jð Þ þ β ∑
l

u¼−l
∑
l

v¼−l
∇bnu;vk−1 i; jð Þ ð2Þ

∇bnu;vk−1 i; jð Þ ¼ threshold � ∇Iu;vk−1 i; jð Þ ð3Þ
where ∇Iu;vk−1 i; jð Þ ¼ I k−1 iþ u; jþ vð Þ−Ik−1 i; jð Þ(u = − l, − l + 1,⋯, − 1, 1,⋯, l and v = − l, −
l + 1,⋯, − 1, 1,⋯, l) represent the differences of different distances in the different directions
centered at (i, j) in the “square” search window, respectively. l ≥ 0 is an integer. β is a constant.
Ik represents the kth denoised image. The ∇Iu;vk i; jð Þ is also called the gradient coefficient for
image Ik. The computations of gradient coefficient of other images are the same as that of Ik.
The (2) and (3) can also be used to describe the traditional gradient domain scheme in form.
The difference lies in that threshold is taken as the local Wiener filter in gradient domain
LALWF scheme. Obviously, the scheme (2) adopts the iterative scheme to remove noise layer
by layer. The preceding step denoising result is the input of the current step denoising. The
initial noisy image is input of the first step denoising. In the traditional gradient domain
denoising including gradient domain LALWF, the pixels at (i, j), (i + 1, j), (i − 1, j), (i, j + 1)
and (i, j − 1) are included in the (search) window. That is to say, the “+” shape (search)
window is used in traditional gradient domain denoising. The advantage of the layered
denoising lies in that the denoising amount can be flexibly grasped so that the features of
image are preserved at the controllable degree.

The proposed method will adopt the layered denoising scheme. But, unlike the previous
gradient domain, the multidirectional (search) window is used. For the “square” multidirec-
tional (search) window, please see Fig. 1 (l = 2). Multidirectional (search) window can be used
to extract the more directional image features. In Fig. 2, clean House image is used for
demonstrating the ability of the proposed method to extract multidirectional information.
Image feature maps extracted by using multidirectional (search) window with l = 1 are shown.
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That is to say, the “square” 8 direction (search) window is used in Fig. 2. Obviously, compared
to the “+” shape search window with 4 directions, multidirectional (search) window with the
“square” 8 direction (search) window extracts more image information (Figs. 2b, d, f and h are
the feature maps with “+” shape search window in four different directions).

In Fig. 2, for the sake of comparison, the feature map f ∇I1;0 in the (1, 0) direction is given by

f ∇I1;0 i; jð Þ ¼ ∇I1;0 i; jð Þ� �2−Min ∇I1;0
� �2

Max ∇I1;0
� �2−Min ∇I1;0

� �2 � 255 ð4Þ

where Min(∇I1, 0)2 and Max(∇I1, 0)2 are the minimum and maximum “signal” gradient
(difference) maps of the clean image House in the (1, 0) direction. The computations of
feature maps of different directions of other image are the same as above.

In the design of denoising algorithm, the pre-filter has been successfully used in wavelet
transform domain and nonlinear diffusion such as gradient domain for image denoising. So, to
better implement the denoising process, the pre-filter way is also adopted in the proposed
method. The Gaussian filter is used in the stage of the pre-filter of the proposed method. It
operates in the square gradient coefficient. Gaussian filter is used because it assigns the
processed pixel the higher weight so that the edges can be retained in the process of denoising.

Gradient domain LALWF employs local Wiener filter to obtain good performance. Local
Wiener filter shrinkage function is as follows:

threshold ¼ σ2
k−1

σ2
k−1 þmax qk−1 i; jð Þ−σ2k−1; 0

� � ð5Þ

where the max qk−1 i; jð Þ−σ2
k−1; 0

� �
is “signal” variance at iteration k, the qk − 1(i, j) in size (2l1 +

1) × (2l1 + 1) local (similar) window is computed as

Fig. 1 The “square” search window
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 2 Feature maps for House
(256 × 256) image. Zoom into file
for a better view. (a) noise-free
House image. (b) (1,0)direction.
(c) (1,−1)direction. (d) (0,−1) di-
rection. (e) (−1,−1)direction. (f)
(−1,0)direction. (g) (−1,1)direc-
tion. (h) (0,1)direction. (i)
(1,1)direction
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qk−1 i; jð Þ ¼ 1

2l1 þ 1ð Þ2 ∑
i1¼−l1

l1

∑
j1¼−l1

l1

∇Iu;vk−1 iþ i1; jþ j1ð Þ� �2 ð6Þ

From above, the conclusion can be drawn that the computation of local “signal” variance
is based on the square gradient coefficient. This is the vital step so that Wiener filter can
get the good performance. And then, the local Wiener filter shrinkage function is formed.
Therefore, the proposed pre-filter way takes the advantage. That is that the proposed
method approximately uses the advantages of local Wiener filter because the square
gradient coefficient will be integrated into the following shrinkage function. This is
different from the previous gradient domain filter. In the previous nonlinear diffusion
gradient domain implementation, for example, the method in [2], the image domain
Gaussian filter is used, and which is equivalent to the gradient domain Gaussian filter on
the gradient coefficient.

2.2 Nonlocal means (NLM)

In the NLM algorithm [1], the restored intensity bI i; jð Þ is the weighted average of all the pixel
intensity values of the processed pixel neighborhood in the noisy image. This method is
expressed as:

bI i; jð Þ ¼ ∑
i0 ; j0ð Þ∈N i; jð Þ

ω i
0
; j

0
� �

; i; jð Þ
� �

I0 i; jð Þ ð7Þ

where N(i, j) represents the neighborhood at (i, j) and is called the search window. The weight
ω((i′, j′), (i, j)) depending on the similarity between I0(i, j) and I0(i′, j′) satisfies 0 ≤ ω((i′, j′), (i, j))

≤ 1 and ∑
i0 ; j0ð Þ∈N i; jð Þ

ω i
0
; j

0
� �

; i; jð Þ
� �

¼ 1. The similarity between I0(i, j) and I0(i′, j′) depends

on the similarity of the intensity gray level vectors I0(Ns(i, j)) and I0(Ns(i′, j′)). Here, Ns(i, j) and
Ns(i′, j′) represents the neighborhoods at (i, j) and (i′, j′), respectively. This similarity is
measured as a decreasing function of the weighted Euclidean distance

I0 Ns i; jð Þð Þ−I0ðNsði0 ; j0 ÞÞ
�� ��2

Gρ
¼ Gρ* I0 Ns i; jð Þð Þ−I0ðNsði0 ; j0 ÞÞ

�� ��2 whereGρ is the Gaussian

kernel with standard deviation ρ. The weights are computed as:

ω i
0
; j

0
� �

; i; jð Þ
� �

¼ 1

C i; jð Þ e
−

I0 Ns i; jð Þð Þ−I0

�
Ns

�
i
0
; j
0
����� ���2

Gρ
h2 ð8Þ

where C(i, j) is the normalizing constant

C i; jð Þ ¼ ∑
i0 ; j0ð Þ∈N i; jð Þ

e−
I0 Ns i; jð Þð Þ−I0

�
Ns

�
i
0
; j
0
����� ���2

Gρ
h2 ð9Þ

and the parameter h acts as a degree of filtering. It controls the decay of the exponential function.

Here, letOh ¼ e−
sh2

h2 (sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0 Ns i; jð Þð Þ−I0ðNsði0 ; j0 ÞÞ

�� ��2
Gρ

q
), and Oh is called the shrinkage

coefficient. sh describes the difference degree between two pixels I0(i, j) and I0(i′, j′). And then
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let Ratio = O18/O14. Figure 3 presents the picture of Ratio changing with sh. A conclusion can
be drawn. The change of h will lead to greater change of the shrinkage coefficient Oh with
larger sh. Larger sh often describes more important features of image. Larger h can remove
more noise, but may also destroy image features. So, the proper h is very important for
denoising performance. In the classical NLM [1], h is σ so that the good result is obtained.

2.3 Derivation for the proposed multidirectional gradient domain image denoising
(MGDID)

In fact, after a series of manipulations, the nonlocal scheme (7) can be written as

bI i; jð Þ ¼ I0 i; jð Þ þ 1

C i; jð Þ ∑
i0 ; j0ð Þ∈N0 i; jð Þ

e−
I0 Ns i; jð Þð Þ−I0

�
Ns

�
i
0
; j
0
����� ���2

Gρ
h2 I0 i

0
; j

0
� �

−I0 i; jð Þ
� �

ð10Þ

where N0(i, j) represents the hollow neighborhood at (i, j). That is, (i, j) is not included in N0(i,
j). From (10), it can be seen that (7) can be considered as one step gradient domain filter
scheme. Only unlike the previous scheme, the information of multiple directions is used. This
is one advantage of (7) and (10). But (10) has no the merits of the layered denoising. Inspired
by (2) and (3), (10) is improved as

Ik i; jð Þ ¼ Ik−1 i; jð Þ þ 1

C i; jð Þ ∑
i0 ; j0ð Þ∈N0 i; jð Þ

e−
Ik−1 Ns i

0
; j
0ð Þð Þ−Ik−1

�
Ns

�
i; j

����� ���2

Gρ
h2 Ik−1 i

0
; j

0
� �

−Ik−1 i; jð Þ
� �

ð11Þ

F ig . 3 Rat io = O 1 8 /O 1 4 va r i e s wi th the d i f f e r ence degr ee sh be tween two p ixe l s

(Oh ¼ e−
sh2

h2 ,sh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0 Ns i; jð Þð Þ−I0ðNsði0 ; j0 ÞÞ

�� ��2
Gρ

q
)
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Now, the scheme (11) is established. Gaussian filter is used. This is because that Gaussian
filter achieves success in NLM. To remedy (11), two factors are introduced. One is h′, and it is
a linear factor. Another is θ, and it is a nonlinear remedied factor.

The two factors are used to control the denoising amount at each step. So, the proposed
scheme is formulated as:

Ik i; jð Þ ¼ Ik−1 i; jð Þ þ h
0

C
0
i; jð Þ þ θ

∑
i0 ; j0ð Þ∈N0 i; jð Þ

e−
Ik−1 Ns i

0
; j
0ð Þð Þ−Ik−1

�
Ns

�
i; j

����� ���2

Gρ
h2 Ik−1 i

0
; j

0
� �

−Ik−1 i; jð Þ
� �

1≤k≤Kð Þ

ð12Þ

where C′(i, j) = C(i, j) − 1. The step size is h
0

C
0
i; jð Þþθ

. Obviously, the step sizes at the different

locations are changed in a linear proportional fashion with h′. For so, h′ is called a linear factor.

On the other hand, h
0

C
0
i; jð Þþθ

= h
0

C
0
i; jð Þ ¼

C
0
i; jð Þ

C
0
i; jð Þþθ

¼ 1− θ
C
0
i; jð Þþθ

. Here, the parameter θ is a con-

stant. Compared to NLM with “zero” center weight, the bigger C′(i, j) is, the less the step sizes
change in the proportion of the reduction. The smaller C′(i, j) is, the greater the step sizes
change in the proportion of the reduction. The noisy pixel with more similar pixels will be
smoothed more deeply (at this time, C′(i, j) is big). The noisy pixel with less similar pixels will
be smoothed more slightly (at this time, C′(i, j) is small). For so, θ is called a nonlinear
remedied factor. It plays an important role in tuning the denoising amount at different
locations.

In the classical NLM filter, θ is the weight of center pixel. It is taken to be 1 or 0 or the
maximal value of weight of pixels in the neighborhood. In the different literature, the value of
θ is presented in term of the different ways [12, 14, 17]. This means the role of θ is very
important for the denoising performance. But to my knowledge, the optimal θ for the different
images at the different cases is still in the study until now. The different literature presents the
different computations of θ in NLM implementation. In the proposed diffusion iterative based
denoising scheme, the value of θ will be set by empirically in the proposed iterative scheme.
Good results are obtained. In the following Section 2.4, the determination of h′,θ and other
parameters will be detailed.

In (12), let

e−
Ik−1 Ns i

0
; j
0ð Þð Þ−Ik−1

�
Ns

�
i; j

����� ���2

Gρ
h2 Ik−1 i

0
; j

0
� �

−Ik−1 i; jð Þ
� �

¼ threshold � Ik−1 i
0
; j

0
� �

−Ik−1 i; jð Þ
� �

ð13Þ

This shows that threshold is the function of the Gaussian filter result of square difference

domain Ik−1 i″ þ i
0−i

� �
; j″ þ j

0− j
� �� �

−Ik−1 i″; j″ð Þ� �2 ¼ ∇I i
0
; j
0

k−1 i; jð Þ
� �2

((i″, j″)covers the image

domain) at (i, j). And then, threshold · (Ik − 1(i′, j′) − Ik − 1(i, j)) is rewritten as e−
∇I i

0
; j
0

k−1

� �2

Gρ
i; jð Þ

h2 � ∇
I i

0
; j
0

k−1 i; jð Þ in a simpler form where ∇I i
0
; j
0

k−1

� �2

Gρ

i; jð Þ represents the Gaussian filter result of

squared difference gradient domain at (i, j).
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Finally, the proposed MGDID is expressed as follows:

Ik i; jð Þ ¼ I k−1 i; jð Þ þ h
0

C
0
i; jð Þ þ θ

∑
i0 ; j0ð Þ∈N0 i; jð Þ

e−
∇I i

0
; j
0

k−1

� �2

Gρ
i; jð Þ

h2 ∇I i
0
; j
0

k−1 1≤k≤Kð Þ ð14Þ

In fact, by contrasting (14) and (7), an important advantage of MGDID can easily be found.
That is, the simplicity of the computation compared to the classical NLM (7). The denoising
process of MGDID can be more easily implemented by matrix calculation. Since the optimi-
zation way of matrix calculation has been very mature, the computation time of the proposed
scheme (14) can be reduced dramatically. Section 3 will verify this by running the related
methods in the Matlab software.

2.4 Parameters for the proposed MGDID

In MGDID, the size of the filter windows including Gaussian kernel (similar window) and
search window, standard deviation ρ of Gaussian kernel, h, h′, θ and iteration number K need
to be determined. An intuition is that algorithms should be equipped with almost same
parameters for images with the similar structure. The idea has been successfully used in
[20]. So, in practice, to determine the parameters under different cases for different images,
one image can be taken as test image. This is because that each of natural images consists of
many features such as homogeneous domains, edges and details and etc. The optimal
parameters of other images can be roughly considered as the vicinity of optimal parameters
of the taken image. Based on which, one can determine the parameters of other images by
hand in the tests. In the test, the Lena image is taken to determine the parameters.

For each iteration step of the proposed method involves the contributions of more pixels
compared to the traditional four-direction gradient domain, the less iteration number is needed. In
the test, because of simplicity, K = 2 is selected. For this, the proposed algorithm is a two-stage
algorithm in essence. The flowchart of algorithm is shown in Fig. 4. In the first stage (step), noise
is removed roughly. In the second stage (step), noise is removed deeply and carefully.

In term of the above guidance of determining the parameters. to better preserve the edges,
the sizes of the search and similar windows and the standard deviation of Gaussian kernel are
smaller in the second step. Let the search window size and the similar window size vary in [3,
5, 7, 9, 11,13,15]. The standard deviation ρ of Gaussian kernel is in [1, 3, 5, 7, 9,11,13,15].
The h′ ranges in [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5]. In term of [20], the
noise variance is aσ2 (a = 2) in the gradient domain. In practice, a can be set be bigger so that
noise can be removed better (in this test, a is taken as 2.2). Assume h is set to be h1 in the first

step, and then h is set to be h2 ¼
ffiffiffiffiffiffiffiffiffiffi
a−h21

q
σ in the second step. In this way, it is expected that

The nonlinear remedied factor is ado

First step Second step

Noisy multidirectional filter multidirectional filter

image the direction window the direction window

of size 11 11 is used of size 3 3 is used

pted to modify the denoising amount at each step.

Denoised 

image

Fig. 4 The flowchart of the proposed MGDID
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the noise can be completely eliminated. As for θ, it varies with 0.005λ(λ ∈ Z). It is noted that
the other parameters of the first step are presented first by experience for some θ. And then, the
other parameters of the second step is determined carefully when the high PSNR are get. And
then, it is found that search window size, h′ and h in two steps have been optimized relatively.
Therefore, one adjusts θ by reducing similar window size and the standard deviations ρ of
Gaussian kernel. The adjustment is repeated so that the good PSNR result is get.

After a series of tests, the parameters achieving the high peak signal-to-noise ratio (PSNR)

is as follows. h1 is 0.70σ and h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:2−h21

q
σ in turn. And then h′ is 0.90 and 0.60 by hand in

turn. Here, in the second step, the larger h will remove the noise located in image features such
as edges deeply. In fact, the role of h has been displayed in Fig. 3. At the same time, smaller h′
is used so that the noise can not be removed excessively. This is because that excessive
removal of noise at feature points will destroy image information more seriously such as
boundary, texture and so on if h is inappropriate but large. The search window sizes are 11 and
3 in turn. The similar window sizes (Gaussian kernel size) are 13 and 5 in turn. The standard
deviations ρ of Gaussian kernel are 5 and 1 in turn from the first step to the second step.

And then, after other parameters is determined, for θ, it is found that the good results
are obtained by taking α = 0.015with λ = 3. The influence of the parameter θ is shown in
Fig. 5. In Fig. 5, the noisy Lena image (σ = 20) is processed. With the change of θ from
0 to 1, PSNR first increases and then decreases. The optimal θ is taken when the highest
PSNR is obtained. The computational error changes the denoising contribution of
different pixels so that the proper θ brings the good performance. The computation error
behavior is very complex so that it is not possible to provide a more rigorous explanation
for the successful use of θ and other parameters. Although other parameter sets are tried,
the results with more gains are not obtained.

Fig. 5 The role of the nonlinear remedied factor θ for the denoising performance
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3 The experimental results

The proposed method is applied to several test images corrupted with simulated noises at five
different power levels σ ∈ [5, 10, 15, 20, 25]. The test set comprises images from the well-
known images such as Lena, House, Boat, Barbara, Peppers and Cameraman of size 256 ×
256. Comparisons of restoration performance in terms of quantitative and visual comparisons
have been made among the proposed MGDID, GRAD [2], NLM [1] (the center weight is
taken as zero), NLM-SAP [3], NLM-LJSCPW [17] and LALWF [20]. For NLM-SAP, NLM-
LJSCPW and LALWF, the parameters are set according to the value given by their authors in
the corresponding paper. Only for LALWF, the iterative number (IN) is taken so that the
highest PSNR is achieved. For GRAD, Gaussian kernel size and standard deviation are 3 and
1, respectively. The diffusion function is the exponential function proposed by Perona and
Malik in [2]. The gradient threshold is 0.30σ. The iteration number is taken so that the best
results are obtained. For NLM, the center weight is taken as zero. And other parameters are
taken according to its Matlab code [10]. For the proposed method, the parameters are taken
according to Section 2.4. Restoration performance is quantitatively evaluated by peak signal-
to-noise ratio (PSNR) and mean structural similarity (MSSIM) [16] which are defined as

PSNR in dBð Þ ¼ 10log10
2552

1

PQ
∑
P

i¼−1
∑
Q

j¼−1
Ei; j−Fi; j
� �2 ð15Þ

MSSIM E; Fð Þ ¼
∑
R

ij¼1
SSIM x; yð Þ

R
ð16Þ

SSIM x; yð Þ ¼
2μxμy þ C1

� �
2σxy þ C2

� �
μ2
x þ μ2

x þ C1

� �
μ2
x þ μ2

x þ C2

� � ð17Þ

respectively. In (15)–(17), PQ represents the image size;E and F denotes the original image
and the denoised image, respectively. x and y are the image contents at the ij-th local window
in the original and the denoised image, respectively. R is the total number of local windows in
the image; μx and μy are the mean intensity of x and y; σx and σy are the standard deviation; σxy
is covariance between of x and y; C1 = (k1L)2 and C2 = (k2L)2 are two variables. L is the range
of the pixel values. The default k1 and k2 values are 0.01 and 0.03, respectively.

3.1 Comparison of PSNR and MSSIM values

Table 1 lists the PSNR and MSSIM values of three iterative methods including GRAD,
LALWF and the proposed MGDID. The iteration number (IN) of three methods is also
presented. The proposed method always outperforms the GRAD in PSNR and MSSIM. In
most cases, the proposed MGDID also obtains the higher PSNR and MSSIM compared to
LALWF. For example, under thirty cases in PSNR, the result with the proposed method is
inferior to LALWF only in two cases. Under thirty cases in MSSIM, the result with the
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proposed method is inferior to LALWF only in five cases. Furthermore, the iteration number
of the proposed method is fixed. The iteration number of LALWF has also some changes for
different cases. That of GRAD has great changes for different cases. In practice, the iterative
number is hard to manipulate. The proposed method avoids this problem. It is robust in PSNR
and MSSIM, and can be implemented easily.

Table 2 lists the PSNR and MSSIM values of NLM, NLM-SAP, NLM-LJSCPW and the
proposed method. Obviously, the MGDID method is more stable in terms of PSNR and
MSSIM compared to other evaluated methods. It can be seen that the MGDID method is
always better than NLM both in PSNR and MSSIM. For Lena, House and Peppers, the
MGDID always obtains the highest PSNR and MSSIM. For House, Barbara and Cameraman,
the proposed method does not always achieve the best results compared with NLM-SAP and
NLM-LJSCPW. But the proposed MGDID is very close to the best results on average. NLM-
LJSCPW has usually the bigger difference from the best results. For House, Barbara and
Cameraman, the proposed method and NLM-SAP is very close in PSNR and MSSIM. But the
proposed method always wins NLM-SAP for Lena, House and Peppers by bigger gains. For
example, MGDID wins NLM-SAP 0.72 dB for Lena at σ = 25.

In a word, in terms of PSNR and MSSIM from Tables 1 and 2, the proposed method is
stable and good in performance. Table 3 presents the comparison of LALWF, NLM and the
proposed method. For Barbara image with the rich repetitive texture feature, the proposed
MGDID outperforms NLM from 0.33 dB to 1.66 dB in PSNR. For Barbara image, NLM
usually wins the local adaptive layered Wiener filer (LALWF) based on nonlinear diffusion
Scheme 0.44 dB at least in PSNR. Only for Barbara at σ = 5, the proposed method is slightly
inferior to LALWF in PSNR. In MSSIM, the proposed method almost always also outper-
forms LALWF and NLM under all kinds of cases. This shows that the proposed method is the
successful development of NLM and nonlinear diffusion methods.

3.2 Comparison of visual performance

Figure 6 shows the denoised results of all the evaluated methods applied to the noisy Barbara
image with σ = 20. The observation from Fig. 6 shows that the NLM and NLM-LJSCPW
methods cannot suppress noise effectively. The NLM-SAPmethod leads to the over-smoothing
effect near the edges and in the textural areas. In the result with the GRAD, there is a lot of
speckles and noise. In the result with LALWF, there are the blurred textures and many spurious
blocks. By comparison, the proposed MGDID method provides the best restoration results
because it can suppress noise effectively while preserving image details no matter in smooth
regions or detail regions. Figure 7 shows the denoised results of all the evaluated methods
applied to the noisy Lena image with σ = 10. Compared to NLM and NLM-SAP methods, the
proposed method better processes the details. For example, see the hair in the square domain in
Fig. 7h. Compared to Fig. 7a, the details of hair are preserved well. But the details of hair in Fig.
7d with NLM and Fig. 7f with NLM-SAP are almost not invisible. The processed results with
other methods produce some artifacts or have more residual noises. In a word, the proposed
method better processes the noisy image from Figs. 6 and 7.

3.3 Comparison of computational time

The computational burden of the filters is measured as CPU time provided those are filtering
the same image in Matlab on the same computer. Table 4 presents the computational time by
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Comparison of the restoration results from the different methods. Zoom into file for a better view. (a)
original Barbara (256 × 256) image. (b) noisy image (σ =20). (c-h) shows restored Barbara images using GRAD,
NLM, NLM-LJSCPW, NLM-SAP, LALWF and Proposed, respectively
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Fig. 7 Comparison of the restoration results from the different methods. Zoom into file for a better view. (a)
original Lena (256 × 256) image. (b) noisy image (σ = 10). (c-h) shows restored Lena images using GRAD,
NLM, NLM-LJSCPW, NLM-SAP, LALWF and Proposed, respectively
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different methods. The proposed method takes more times compared to GRAD and LALWF.
However, the proposed method achieves the overall improvements in performance. Further-
more, the iteration number of the proposed method is fixed. The iteration number of GRAD
and LALWF varies with images. More importantly, the proposed method saves more time
compared to NLM, NLM-SAP, and NLM-LJSCPW when achieving good results. Therefore,
the proposed MGDID is very efficient.

4 Conclusion

A new approach has been presented for performing high quality image denoising. It is the new
development of LALWF. The proposed MGDID operates in multidirectional gradient domain.
Inspired by NLM and LALWF, the parameters of the proposed MGDID are designed effec-
tively. Experimental results demonstrate the proposed approach outperforms the state-of-the-art
gradient domain and NLM methods in both objective and subjective quality. Especially
compared to NLMmethods, the proposed method is very efficient. Future research in this field
includes optimization of the related parameter and selection of more effective pre-filter.
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