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Abstract
As a research hotspot in the field of robotics, Simultaneous localization and mapping
(SLAM) has made great progress in recent years, but few SLAM algorithms take
dynamic or movable targets in the scene into account. In this paper, a robust new
RGB-D SLAM method with dynamic area detection towards dynamic environments
named GMSK-SLAM is proposed. Most of the existing related papers use the method
of directly eliminating the whole dynamic targets. Although rejecting dynamic objects
can increase the accuracy of robot positioning to a certain extent, this type of algorithm
will result in the reduction of the number of available feature points in the image. The lack
of sufficient feature points will seriously affect the subsequent precision of positioning
and mapping for feature-based SLAM. The proposed GMSK-SLAM method innovative-
ly combines Grid-based Motion Statistics (GMS) feature points matching method with K-
means cluster algorithm to distinguish dynamic areas from the images and retain static
information from dynamic environments, which can effectively increase the number of
reliable feature points and keep more environment features. This method can achieve a
highly improvements on localization accuracy in dynamic environments. Finally, suffi-
cient experiments were conducted on the public TUM RGB-D dataset. Compared with
ORB-SLAM2 and the RGB-D SLAM, our system, respectively, got 97.3% and 90.2%
improvements in dynamic environments localization evaluated by root-mean-square
error. The empirical results show that the proposed algorithm can eliminate the influence
of the dynamic objects effectively and achieve a comparable or better performance than
state-of-the-art methods.
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1 Introduction

In recent years, Simultaneous Localization and Mapping (SLAM) technology has become a
fundamental prerequisite in many applications [7, 38], such as robots, driverless cars, VR, 3D
reconstruction, and so on. Because of its ability to conduct navigation and perception
simultaneously in an unknown environment, SLAM has attracted the attention of many
scholars and gradually become a research hotspot over the past decades [7]. The framework
of the modern visual SLAM system is quite mature, which consists of several essential parts:
feature extraction front-end, state estimation back-end, loop closure detection, and so forth
[40]. Visual SLAM, the main sensor of which is the camera, can be parted to monocular slam,
RGB-D slam, and stereo slam based on camera types. The monocular camera has practical
advantages on size, power, and cost, but also has several disadvantages, such as scale
ambiguity, complex initialization, and weak system robustness. However, the absolute scale
of the system can be obtained by using stereo or RGB-D cameras, and the stability of the
system can be enhanced at the same time [19]. In order to reduce the error caused by the scale
estimation, the RGB-D camera with depth information or the stereo camera that can calculate
the depth are more popular in experiments and scientific research.

Most indoor SLAM methods are based on the assumption that the environment is static. In
other words, the geometric distribution of objects in the scene is assumed to be stationary in the
process. However, this is unrealistic in real life. The environment in which people live is
dynamic, and there will be many variable factors in the scene such as lighting, dynamic targets,
occlusion, etc. Aiming at these problems, many scholars at home and abroad have also carried
out rich and detailed research. In order to improve the environmental adaptability of the
positioning system, this paper mainly focuses on the research of dynamic targets in the scenes.
Most state-of-the-art dynamic environment positioning methods using vision-only are neural
network-based and image-based. With the development of artificial intelligence, more and
more people are introducing neural networks into SLAM. These methods designed various
types of convolutional neural networks to try to segment the target information in the image.
The camera pose estimation accuracy is improved by removing the target. The more classic
and efficient target detection algorithm is the YOLOv3 [28]. Many papers use YOLOv3
algorithm for target detection, and divide them into dynamic targets or static targets based on
the types of targets. Although the CNN-based method can accurately segment the target in the
scene, due to the limitation of the training dataset, its detection accuracy will be constrained by
the test dataset, so the purpose of removing dynamic targets cannot be well achieved. Image-
based dynamic environment detection algorithms are more inclined to traditional image
processing algorithms, such as [38]. This type of algorithm also has a good performance in
dynamic target segmentation, which improves the stability and adaptability of the positioning
algorithm in the environment to a certain extent. Although these algorithms have improved the
camera’s positioning accuracy in a dynamic environment, they have poor environment
adaptability. These methods tend to classify all objects in a class of tags, such as people and
cars, as dynamic, and then remove these areas directly from the images, which will not only
reduce the system’s ability to understand the environment, but also lose most of the feature
points of the image. This is a fatal flaw in feature-based SLAM algorithms. In this paper, the
GMSK-SLAM system is proposed, which not only detects dynamic regions in the images
rather than the dynamic targets but also improves the localization accuracy in a dynamic
environment. In order to eliminate the influence of dynamic objects on posture estimation
results, the usual methods discard all feature points on dynamic objects, which is a rough way
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for the whole system. In this case, even if the person in the scene does not make any posture
changes,these methods still detect this person as dynamic and eliminate all feature points on
this person. However, in our method, this person will be detected as a static object, the feature
points will be kept and used to estimate the camera pose. The overview of this paper is shown
in Fig. 1. The main contributions of this paper are identified as followed:

1. A complete dynamic SLAM system in changing environments is proposed based on
ORB-SLAM2 [25], which could reduce the influence of dynamic objects on camera pose
estimation. The effectiveness of the system is evaluated on TUM RGB-D dataset [35].
The results indicate that GMSK-SLAM outperforms ORB-SLAM2 significantly regard-
ing accuracy and robustness in dynamic environments.

2. Put a dynamic area detection in an independent thread, which combining the GMS (Grid-
based Motion Statistics)feature points detection algorithm [4] with k-means cluster algo-
rithm [22] to filter out a dynamic portion of the scene, like walking people. Different from
other methods, this paper innovatively proposes the concept of dynamic area, and focuses
on dynamic regions rather than dynamic objects. The application of dynamic regions
eliminates the limitation of the algorithm and is applicable to both rigid targets and
deformable targets. Thus, the performance of the localization module is improved in
respect of robustness and accuracy in dynamic scenarios.

3. GMSK-SLAM creates a separate thread to detect dynamic areas, which greatly improves
the operating efficiency and robustness of the system. The proposed system could run the
tracking thread and the dynamic area detection thread in parallel, thus allowing our system
to read read-time performance.

Fig. 1 The overview of GMSK-SLAM
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The rest of this paper is organized as follows. First, visual SLAM and SLAM in dynamic
environment related work are discussed in Section 2. The main work is described and
demonstrated in Section 3 in detail, and a series of evaluation results and dataset test are
presented in Section 4. Finally, the conclusion is made in Section 5.

2 Related work

2.1 Visual SLAM

Simultaneous Localization and Mapping (SLAM) [22] has been developed for about thirty
years and has become a crucial technology in the field of robotics, automation, and computer
vision. Recent years, researchers have proposed many effective open-source SLAM methods,
such as Catragrapher [39], Hector SLAM [34], Gmapping [14], Karto SLAM [16], which are
based on laser sensor SLAM and monoSLAM [6], ORB-SLAM [26], LSD-SLAM [9], RGB-
D SLAM [8],DSO [10], and SVO SLAM [12], which are based on visual slam.

Especially for visual SLAM, visual SLAM has drawn the attention of researchers because
of its low cost and small size. In 2007, Davison A. J. proposed Mono-SLAM [6] for the first
time to implement a monocular real-time slam system. This work extends the range of robotic
systems in which SLAM can be usefully applied but also opened up new areas. Subsequently,
the PTAM [15] (Parallel Tracking and Mapping) is proposed by Klein, which firstly divided
front-and-end in SLAM into two threads: one thread is mainly responsible for estimating
camera posture, another mainly for restoring 3D information of feature points, which called
mapping. At the same time, during the mapping and tracking processes, PTAM adopted
keyframes strategy, used keyframes to estimate camera pose, which improved the accuracy
of mapping and tracking. In 2014, the LSD-SLAM [9] proposed by Engel firstly achieved
semi-dense scenes reconstruction in ordinary CPU, and operated directly on image pixels.
Meanwhile, Forster proposed a fast Semi-direct monocular Visual Odometry (SVO) [12],
which combined the feature point and direct tracking optical flow methods. Later, frameworks
such as DSO [10] and VINS-Mono [37] have been proposed on after another. In two
algorithms of extracting feature points of SLAM, the feature method also has its advantages.
On the one hand, feature extraction and matching can ensure the accuracy of pose estimation in
the SLAM tracking process. On the other hand, the feature method can extract more effective
information from visual images, such as semantics, object recognition, feature localization, etc.
In general, feature-based SLAM is more respected by scholars. There are also some excellent
SLAM methods based on feature tracking. ORB-SLAM uses ORB (Oriented FAST and
rotated BRIEF [5]) feature points [31] to match two consecutive frames and calculate camera
pose, back-end use bundle adjustment method to optimize pose and map points, loop closing
module transfer images to words by bag of words, and use the optimization method to make
global optimization. The ORB-SLAM2 [25] framework is the successor of the classic SLAM
thread model. It can work with monocular, stereo, and RGB-D three types of sensors. It
follows most of the ideas in PTAM and adds initialization module, loop closing detection
module, loop closing rectification module, and relocation module. However, these methods are
unable to distinguish the features in static and dynamic objects, which leads to the deterioration
of SLAM systems because of erroneous data association and faults in motion estimation.
Therefore, it is necessary to make further exploration for it still has many shortcomings in
dealing with dynamic environment problems.
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2.2 SLAM in dynamic environments

A basic assumption of most current SLAM methods is that the environment is static. Never-
theless, active objects like humans and cars, always exist in many real-world scenes. Therefore,
these methods originally to perform SLAM in a static environment cannot work well in
complex dynamic environments. To solve this problem, we need to recognize moving areas
or objects from the environment and exclude these objects or areas before pose estimation.

For dynamic environment problems, in recent years, researchers have proposed different
methods to reduce camera pose errors. There are two main categories of methods, one is based
on various convolutional neural networks, such as FCN (Full convolutional network) [20],
SegNet [1] and YOLO [29], etc., the other is based on the traditional image process, such as
optical flow technique. Optical flow is generated if movements exist in the image, so static
background and moving target could be distinguished by computing the inconsistency of
optical flow. Seungwon Oh [27] proposed the Dynamic Extended Kalman Filter SLAM based
on the independence of the dynamic landmarks. Jia-Ning Li [18] proposed a scalable dense
frame-to-frame model SLAM system based on KinectFusion algorithm. Fang [11] used
optimum-estimation and uniform sampling methods to detect dynamic objects. In 2017, Sun
[36] proposed an improving RGB-D SLAM method, which acted as a pre-processing stage to
filter out data that were associated with moving objects. In 2018, Bahraini [2] proposed an
approach to segment and track multiple moving objects by using Multi Level-RANSAC. Kajal
Sharma [33] proposed a novel approach to mapping and localization which is based on
detecting stable and invariant landmarks in consecutive RGB-D frames of the robot dataset.
Muhamad [32] surveyed the problems of visual SLAM and Structure from Motion (SfM) In
dynamic environments. Zhang [41] integrated a deep CNN model to improve the accuracy of
terrain segmentation and make it more robust against wild environments. In 2019, Sang Jun Lee
[17] presented a sampling-based method that improved the speed and accuracy of the existing
Visual Bag of Words models. They first proposed sampling of image features considering their
density to speed up the quantization. In the same year, RunzhiWang [38] proposed a newRGB-
D SLAM with moving object detection for dynamic indoor scenes, which is based on
mathematical models and geometric constraints and can be incorporated into the SLAMprocess
as a data filtering process. Mu [23] proposed a novel features Selection algorithm in a dynamic
environment, which is merged into MSCKF based on trifocal tensor geometry.

3 Methodology

This section mainly describes the details of the proposed method. Firstly, the architecture chart
of the framework of GMSK-SLAM is presented in Fig. 1. Secondly, we briefly explain the
GMS feature matching algorithm used in this paper. Subsequently, the k-means clustering
algorithm that is used for distinguishing dynamic areas from the image is introduced. Finally,
the dynamic area rejection method is demonstrated, which combines the area detection and the
moving consistency check to filter out dynamic feature points.

3.1 Framework of GMSK-SLAM

In practice, the two critical factors to evaluate autonomous robots are accurate pose estimation
and its reliability in harsh environments. In recent years, ORB-SLAM2 is very popular in
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visual-only SLAM and has excellent performance. However, ORB-SLAM2 is still facing
some problems, such as it not expressive enough in dynamic environment. Hence, we propose
an enhanced robust system based on ORB-SLAM2, which can not only enhance environment
adaptability but also improve the positioning accuracy. GMSK-SLAM combines the GMS
feature matching algorithm with the k-means cluster algorithm, which can perform pose
tracking on dynamic scenes and with the better positioning accuracy.

As shown in Fig. 1, four threads run in parallel in GMSK-SLAM: tracking, dynamic area
detection, local mapping, and loop closing. RGB images and Depth images are captured by a
RGB-D camera in the scenes. The raw RGB images are processed in the tracking thread and
dynamic area detection thread simultaneously. The tracking thread extracts ORB feature points
by ORB feature matching, then checks moving consistency of feature points and saves the
potential outliers. Then the tracking thread waits for the image that has been detected by
dynamic area detection thread. In the dynamic area detection thread, GMSK-SLAM uses the
GMS feature matching algorithm to match feature points and the sliding windows model to
count filled-matching points, then adopts the k-means cluster algorithm to distinguish the
dynamic area and static area. After the detection result arrives, the ORB feature points outliers
located in moving objects will be discarded. Finally, the camera pose matrix is calculated by
matching the rest of the stable feature points.

3.2 Feature matching by GMS

In the dynamic area detection thread, the system uses the GMS feature matching algorithm to
enhance matching results which is an efficient and real-time feature matching algorithm. The
limitation of the classical feature matching algorithms (SIFT [21], SURF [3], Hamming
Distance, Brute Force Matcher, FANN [24], ORB[13, 30]) is that the algorithm with strong
robustness has low matching speed, while the algorithm with high matching speed has poor
robustness. However, compared to traditional algorithms, the advantage of GMS is that the
algorithm has better performance in terms of time and accuracy.

GMS algorithm is an evaluation method based on matching to the support of neighborhood
feature points. It mainly filters the feature matching after ORB feature extraction and BF
matching. Figure 2 shows the matching schematic diagram of the two images. For image pairs
{Ia, Ib}, they have {N, M} features respectively, and χ = {x1, x2⋯, xi,⋯, xj,⋯, xN} is the

Fig. 2 Schematic diagram of GMS neighborhood feature point support principle
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matching set from Ia to Ib, where xi = (ai, bi). GMS method separates χ into the sets of true and
false matches by analyzing the local support of each match. Let region pairs {a, b} which each
with {n,m} additional features respectively are respective regions of {Ia, Ib}, and fa with
correct matching probability t denotes one of n supporting features in regions a. GMS method
assumes that there are M possible locations of fa’s nearest neighbor matching lying. Then we
can get:

p f baj f f
a

� � ¼ βm=M βϵ 0; 1ð Þ ð1Þ

Where f ba denotes that fa ‘s nearest neighbor is a feature in region b, f
b
a denotes that fa matches

wrongly, and β is a weighting factor that is added to accommodate a violation of the

assumption by having a repeating structure. Let Pt, Pf denote the probability of f ta and f f
a

respectively.

Pt ¼ t þ 1−tð Þβm=M ð2Þ

P f ¼ β 1−tð Þ m=Mð Þ ð3Þ

Then, it can be approximated that the distribution of Si which is a neighborhood support
measurement of match xi has a couple of binomial distribution:

Si∼
B n; ptð Þ if xi is true

B n; pf

� �
if xiis false

(

ð4Þ

Thus, it can be separated true and false matches by the score of S and an appropriate threshold.
Due to the large area of motion smoothing, a more generalized score can be given in (5):

Si ¼ ∑K
i¼1 χaibij j−1 ð5Þ

Where K refers to the number of adjacent disjoint grids in the grid region. And the distributions
of Si are as follows:

Si∼
B Kn; ptð Þ if xi is true

B Kn; pf

� �
if xi is false

(

ð6Þ

The mean value and variance of Si are as follows:

mt ¼ Knpt; st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Knt 1−ptð Þ

pn o
if xi is true ð7Þ

mf ¼ Knpf ; s f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Knt 1−pf

� �r� �
if xi is false ð8Þ

Grid framework is adopted to make score computing independent of feature numbers.
According to prior knowledge, the image is divided into G = 20 × 20 overlapping cells. In
order to improve the robustness, grouping cell-pairs based on a smooth lateral motion
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assumption shown in Fig. 3 are used. Making a grid selection by rotation the potential on all
potential scales and choosing the best result can solve the problem of image rotation and scale
changing, the desired threshold can be given as:

τ ¼ mf þ αs f ð9Þ
Where α is an adjusting parameter. In practice, the number of mf is small, while the value of α
is large. Thus, the number of τ can be approximated to:

τ≈αs f ≈α
ffiffiffi
n

p ð10Þ

The algorithm to match feature points is shown in Algorithm 1. Significantly, the input of
Algorithm 1 is a pair of images Ia and Ib, while the output is the set of properly matched feature
points, inliers. Additionally, G denotes the number of grids, |χik| and |χij| represent the matched
quantities of the grid, Si and τ can calculated by Eqs. (6) and (10).

Algorithm 1 feature matching by GMS

Input: One pair of images ,

Initialization: 
1: Detect feature points and calculate their descriptors

2: For each feature in , find its nearest neighbor in 

3.3 Dynamic area detection algorithm

In this sub-section, the principle and pipeline of dynamic area detection method is introduced.
Recently, people gradually combine semantic recognition with SLAM to make robots under-
stand surrounding. Many researchers use the neural network to detect every object in the scene,
which greatly limits the range of application. Those papers roughly define people or cars as
dynamic depends on the test environment, which is partly speculative. It can be assumed that
the test environment is in a crowded street, although using the convolution neural network can
detect every pedestrian accurately, all these objects are regarded as the dynamic objects and
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eliminated out of images. Additionally, these methods often have an assumption that there are
enough feature points in the image, and the distribution of feature points is even, which are
actually untenable. The dynamic area detection method proposed by this paper ignores these
assumptions, breaks through the limitation of target types and realizes dynamic region
segmentation without classification.

GMSKmethod combines GMS feature matching with the k-means cluster method to detect
dynamic areas for the first time. GMS feature matching method can improve matching stability
and reduce the probability of false matching, while k-means cluster method can automatically
divide a bunch of unlabelled data into categories, ensuring that the same kind of data have
similar characteristics. Inspired by these advantages, the GMSK dynamic region detection
algorithm is proposed.

Given a set of d-dimensional real vector data {x1, x2,⋯, xn}. K-means clustering perform
partitioning tasks of the n observation into K(<n) set S = {S1, S2,⋯Sk} to minimize the within-
cluster sum of distance functions of each point in the cluster to K-center. The formula below
shows the K-means function:

argmin∑k
i¼1∑x∈Si x−μik k2 ð11Þ

In the feature-based SLAM system, two consecutive frames of the images are generally used
for feature matching to perform system initialization and pose tracking. However, in order to
better represent the algorithm, in this section, we select two discontinuous images for
algorithm simulation. As can be seen from the first row of the Fig. 4, dense feature points
were extracted from the image. It can be seen from the figures that the distribution of feature
points is dense and uneven. Then the GMS algorithm is used to match the feature points of the
image pair. The second row of the Fig. 4 show the matching results of feature points. In the
figures, the feature points that match successfully are displayed in red, and the feature points
that failed to match are displayed in green. Feature points on moving objects will cause
inaccurate estimation of camera pose in the back-end system, so these points need to be pre-
processed by algorithms to reduce the impact on the system. It can be found from the second
row of the Fig. 4 that on the back of the man in the plaid shirt, there are significantly more
green points than red points, the same thing happens in the man’s face on the left. Through the
above analysis, it can be considered that in these regions, the probability of failure of feature
point matching is greater than the probability of success.

Fig. 3 The basic motion kernel
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After detecting and matching all feature points in the images, then we use the sliding
windows to statistics the number of unmatched feature points. Firstly, according to prior knowledge,
we use 400 grids to divide the images evenly, which aims to divide the whole image into multiple

Fig. 4 Steps of dynamic area detection algorithm
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grids to easily distinguish the dynamic area and static area. We use the sliding window model to
realize the statistics of the number of unmatched feature points in every grid. According to the

formula (5), Sl is used to represent the score of an unmatched feature point pair in the grid, and X i

represents the number of unmatched feature point pairs in the grid.

Sl ¼ jX ij−1 ð12Þ
In every grid, δ can be calculated by using the sliding window model:

δi ¼ Nun

Nm
� 100% ð13Þ

Here, Nun denotes the number of unmatched feature points in the grid, Nm denotes the number
of matched feature points in the grid. Through the distribution of feature points in the images,
we can roughly distinguish the dynamic region and the static region of the images.

The next step, adopt the k-means cluster algorithm to cluster the number of unmatched
feature points in the image. By using the grid to segment the images, it can be known that δ in
each grid is representative. In this paper we use the K-means cluster algorithm to divide the
dynamic grids and static grids. In the K-means algorithm, assuming that input samples S = X1,
X2, …, Xm, then chose K category center, u1, u2, …, uk. For every sample Xi, define labeli as:

labeli ¼ arg min
1≤ j≤ k

X i−uj
		 		 ð14Þ

Then, updating each category center to the mean of all samples belonging to that category. At
last, repeat until the change in the category center is less than a certain threshold. In this paper,
since the feature points need to be divided into dynamic regional feature points and static
regional feature points, we set K as 2.

K-means algorithm divides the number of unmatched feature points into two parts,
one part represents the static grids of the image, another part represents the dynamic
region of the image. The third row of the Fig. 4 show the detection results, it can be
seen that parts of the two experiments in the image are divided into a single category,
and distinguished from the static environment. As shown in the figures, the area in
the red box is defined as the dynamic region, which focuses on the people in the
images. It can be seen from the raw input figures, there are two experimenters in the
pictures. The sitting experimenter has no major posture changes in the two images,
while another posture changes greatly. In response to this difference, the proposed
algorithm cleverly uses the relationship between the number of feature matches to
detect part of the experimenter’s body structure with obvious posture changes in the
picture as a dynamic area, while retaining other parts. This region-based segmentation
algorithm has not been considered and implemented by other algorithms.

The algorithm to detect dynamic area is shown in Algorithm 2. Significantly, the
output of Algorithm 2 is a pair of images Ia and Ib, while the output is the dynamic
areas groups. Additionally, G of the Step4 denotes the number of grids, Num and Nm

represents the quantities of unmatched feature points and matched feature points of
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each grid, respectively. The value of δi can be calculated by Eq. (13), K denotes that
the data will be clustered into two categories, μk represents the centre of mass, which
starts with a random number.

Algorithm 2 dynamic areas detection by GMSK

Input: One pair of images , 

Initialization: 
1: Detect feature points and calculate their descriptors

2: Match feature points by GMS algorithm

3: Divide two images by G grids respectively 

4: for =1 to do
5:   Statics unmatched feature points ;  

6:   Statics matched feature points ;

7:   Calculate ;

8: end for
9: Set K as 2; 

10: Randomly select K data from as the center of mass 

11: for = 1 to do
12:  for = 1 to do
13:    distance ( ) = ( [ ]. − ) + ( [ ]. − )

14:   end for
15:  if (distance (1) < distance (2))

16:        Divide to the first group 

17:   else
18:      Divide to the second group     

19:   end if
20: end for
Output: the first group, the second group

3.4 Dynamic area rejection

In this sub-section, we combine dynamic area detection results and moving consistency check
results to complete the establishment of dynamic area: the area is moving or not moving, and at
the same time, remove the feature points of the dynamic area. If there are a certain number of
dynamic points produced by moving consistency check fall in the contours of a segmented
object, then this area is determined to be moving.

After confirming the dynamic area, the next important problem to be solved is the
elimination of feature points among the dynamic areas. The proposed strategy is that if the
area in the image is determined to be moving, then remove all the feature points located in the
moving area. In this way, outliers can be eliminated precisely. Figure 5 demonstrate the results
of dynamic region rejection, the first row of the figures show the distribution of the feature
points extracted by the ORB algorithm, the second row show the images after the outliers have
been removed. In the images, people in black T-shirt and people in checked shirt belong to
dynamic objects. Most of the papers directly remove this part of the feature points. But in the
green box area of the figures, the person’s legs did not move and should not regard as moving
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targets. Therefore, the maintenance of feature points in these parts will greatly increase the
number of available feature points. The areas selected by the red box represent the moving
parts of the dynamic targets. Removing these feature points can effectively reduce the impact
of dynamic objects in the scene for camera pose estimation.

4 Results and discussion

In this section, experimental results and related discussion would be presented to demonstrate
the effectiveness of the proposed method. Firstly, the symbols used for the experiment are as
follows:

& ‘GMSK-SLAM’ denotes the proposed method in this paper.
& ‘ORB-SLAM2’ denotes the traditional Simultaneous localization and mapping method,

which is described in [25].
& ‘The latest method’ denotes the state-of-art method proposed by Wang. in 2019, which is

described in [38].
& ‘Truth’ denotes the ground truth obtained by an external motion capture system.
& ‘Difference’ denotes the difference between the estimated trajectory and the truth

trajectory.

Different dynamic environments’ sequences in the TUM data set are used to assess the
localization accuracy of the presented RGB-D SLAM scheme. Additionally, we evaluate our

Fig. 5 Comparison of dynamic regional feature points before and after removal
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presented framework by comparing it with other state-of-the-art SLAM system for better
illustrating the effectiveness of the proposed system. The TUM dataset is a scenic dataset of
the Technical University of Munich, including 50 laboratory and outdoor sequences. The RGB
and depth images were recorded at a frame rate of 30 Hz and a 640 × 480 resolution. Ground-
truth trajectories obtained from a high-accuracy motion-capture system are provided in the
TUM datasets. The proposed algorithm is operated on a laptop with an Intel i7CPU, 16G of
memory, and Ubuntu16.04. GPU acceleration was not adopted during the experiments. Firstly,
GMSK-SLAM was compared with the traditional method, ORB-SLAM2, on the TUM
fr3_walking_xyz sequence to verify the effectiveness and necessity of detecting dynamic
areas and removing outliers. Secondly, to demonstrate the characteristics of high precision
for different dynamic environments, the experiments are carried out on more TUM datasets.
Finally, compared GMSK-SLAM with a new method proposed by Wang. in 2019 to check if
the proposed method is more reliable in dynamic environments.

4.1 Evaluation using TUM RGB-D dataset

The TUM RGB-D dataset [35] provides several sequences in dynamic environments
with accurate ground truth obtained with an external motion capture system, such as
walking, sitting, and desk. The TUM dataset is divided into high-dynamic datasets
and low-dynamic datasets. The desk sequence describes a scene in which a person sits
at a desk in an office. In the sitting sequences, two persons sit at a desk with a little
gesture. These two scenarios can be considered lowly dynamic environments. In the
walking sequences, two persons walk through an office scene. Walking sequences can
be used to evaluate the robustness of the proposed method because it is in highly
dynamic scenes with quickly moving objects. Since some people walk back and forth
in the walking sequences, the walking sequences are mainly used for our experiments.
People in these sequences could be regarded as high-dynamic objects, and they are
the most difficult problem to deal with. The sitting sequences are also used, but they
are considered as low-dynamic sequences as the person in them just moves a little bit.

ORB-SLAM2 is recognized as one of the most outstanding and stable SLAM
algorithms at present, so a comparison made between ORB-SLAM2 and GMSK-
SLAM is of great significance. Figure 6 shows the trajectory comparison between
ORB-SLAM2 and GMSK-SLAM in high dynamic fr3_walking_xyz sequence. In Fig.
6, the blue lines represent the trajectory estimated by ORB-SLAM2 and GMSK-
SLAM algorithm, and the black represents the truth trajectory, while lines in red
show the difference between estimation and ground truth. The longer the red lines, the

Fig.6 a Global trajectory estimated by ORB-SLAM2, b Global trajectory estimated by GMSK-SLAM
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greater the trajectory error. As can be seen, in the same coordinate scale, due to
adding dynamic areas detection thread, the errors are significantly reduced in GMSK-
SLAM, the global estimated trajectory shows a tendency of convergence, and the
estimated trajectory is much closer to the true trajectory.

After the global trajectory comparison, we further compare the trajectory accuracy of each
axis. The ATE (Absolute Trajectory Error), which represents the difference between the
estimated trajectory and the ground-truth, is used as the evaluation metric. It directly indicates
the localization accuracy of the system. In particular, an easy-to-use open-source package evo
is employed for the evaluation (github.com/MichaelGrupp/evo). The Fig. 7 show the estimated
trajectories of GMSK-SLAM and ORB-SLAM2 on the highly dynamic datasets. The blue
lines and the green lines represent the trajectory of GMSK-SLAM and ORB-SLAM2,
respectively. The grey dotted lines represent the ground-truth of the trajectory reference. As
can be seen from Fig. 7, the coincidence degree of blue lines and grey lines is larger than that
of green lines and grey lines, which means the estimation accuracy of the proposed method
plays superior performance than the ORB-SLAM2 in every axe. We also use the evo tool to
plot the APE (Absolute Pose Error) of the fr3_walking_xyz sequence in the TUM dataset (Fig.
8). Figure 8 shows the APE distribution of the GMSK-SLAM and ORB-SLAM2 system
throughout the tracking. As we can see in the green line of Fig. 8, when there are pedestrians in
the field of view of the camera, the APE values increase dramatically. However, the APE
values of the blue line at those same moments are greatly reduced, because the influence of
pedestrians has been eliminated with our algorithm. In addition to ATE and APE. We also use
RMSE to value the positioning accuracy of the whole GMSK-SLAM system.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

t¼1 Pi−Tið Þ2
r

ð15Þ
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Fig. 7 The trajectory of ORB-SLAM2 and GMSK-SLAM

31743Multimedia Tools and Applications (2021) 80:31729–31751

http://github.com/MichaelGrupp/evo


RMSE can evaluate the degree of change in the data, the smaller the RMSE value is, the
more accurate the prediction model can be in describing the experimental data. We compute
the RMSE of ATE to test the accuracy of the algorithm. In the presented GMSK-SLAM
system, the RMSE of ATE of X-axis is only 1.8365 × 10−4m, Y-axis is 0.0017 m and the Z-
axis is 1.9623 × 10−4m. While, the RMSE of ATE X-axis is 0.2686 m, Y-axis is 0.0156 m, and
the Z-axis is 0.04 m with ORB-SLAM2. The above experiments show that the applicability of
the GMSK-SLAM algorithm in dynamic environment is greater than that of ORB-SLAM2. To
further test the applicability of GMSK-SLAM in different environment, a variety of dynamic
environments are selected for testing. The quantitative comparison results are shown in
Tables 1 and 2, where xyz, static, rpy, and half in the first column stand for four types of
camera ego-motions, for example, xyz represents the camera moves along the x-y-z axes. We
present the values of RMSE, Mean Error, and Standard Deviation (S.D.) in this paper, while
RMSE and S.D. are more concerned because they can better indicate the robustness and
stability of the system. The S.D. values in the tables are calculated as follows:

S:D: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 xi−μð Þ2
r

ð16Þ

Where μ denotes the mean of x1, x2, …xN. The Mean Error in the tables is calculated as
follows:

Mean ¼ 1

N
∑N

i¼1 xi−μð Þ ð17Þ

The values of improvement of GMSK-SLAM compared to the original ORB-SLAM2 are also
calculated. The improvement is calculated by the following formula:

η ¼ αORB−αDMSK

αORB
� 100% ð18Þ

Where η denotes the value of improvement, αORB denotes the value of ORB-SLAM2 and
αDMSK denotes the value of GMSK-SLAM.

Fig. 8 The Absolute Pose Error results of GMSK-SLAM and ORB-SLAM2
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As can be seen from Tables 1 and 2, GMSK-SLAM can make the performance in most
high-dynamic sequences get an order of magnitude improvement. In terms of ATE, the RMSE
and S.D. improvement values can reach up to 98.8% and 97.5% respectively. The results
indicate that GMSK-SLAM can improve the robustness and stability of the SLAM system in
high-dynamic environments significantly. Therefore, from tables, it can be found that the
accuracy of GMSK-SLAM is significantly greater than ORB-SLAM2, which demonstrates
that it is necessary to detect and remove moving objects in dynamic environments. The
estimation of camera pose mainly depends on the extraction and matching of feature points
for ORB-SLAM2, so optimizing the feature points in dynamic environments would greatly
increase the accuracy of attitude and position.

For practical applications, real-time performance is a crucial indicator to evaluate the
SLAM system. We test the time required for some major modules to process. The results
are shown in Table 3. The average time in the main thread to process each frame is 57.3ms,
including dynamic area detection, visual odometry estimation, pose graph optimization.
Compared with previous non-real-time methods to filter out dynamic objects, such as [36],
GMSK-SLAM is more satisfied with the needs of the real time.

It can be seen from the above analysis, in a variety of complex and changing scenarios, the
proposed method in this paper still can maintain high positioning accuracy. Compared with
traditional ORB-SLAM2, the RMSE accuracy are all improved almost 90% in different
environment. Experiments in various scenarios prove that the proposed algorithm has high
accuracy and good stability when dealing with different complex dynamic environments.
Therefore, the algorithm in this paper is more suitable for the environment perception and
location in the actual dynamic scene.

4.2 Comparison with other method

In this section, the proposed method is compared with a state-of-the-art method, which was
proposed by Wang [38] in 2019. This method clustered the filled depth images and used them
to segment moving objects. The latest method treats people as dynamic in any situation, even

Table 2 RESULTS OF ABSOLUTE TRAJECTORY ERROR(ATE)

Sequences ORB-SLAM2 GMSK-SLAM Improvements

RMSE(m) Mean(m) S.D.
(m)

RMSE(m) Mean(m) S.D.
(m)

RMSE Mean S.D.

Fr3_walking_xyz 0.7521 0.6492 0.3759 0.0360 0.0270 0.0605 95.2% 95.8% 83.9%
Fr3_walking_static 0.3900 0.3554 0.1602 0.0270 0.0280 0.0491 93.1% 92.1% 69.3%
Fr3_walking_rpy 0.8705 0.7425 0.4520 0.0100 0.0160 0.0110 98.8% 97.8% 97.5%
Fr3_walking_half 0.4863 0.4272 0.2290 0.0590 0.0431 0.0698 87.86% 90.0% 69.5%
Fr3_sitting_static 0.0087 0.0076 0.0043 0.0009 0.0008 0.0013 89.6% 89.4% 69.7%

Table 3 TIME EVALUATION

Module ORB feature extraction Moving consistency check Dynamic area detection

Thread Tracking Tracking Dynamic area detection
Time(ms) 9.132587 25.56298 40.57496
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the person is in a static state. However, the proposed GMSK-SLAM innovatively detects
dynamic areas rather than dynamic objects, determining dynamic or static area depends on the
number of matching feature points. Such a method is more realistic. The GMSK-SLAM
algorithm maintains the static feature points in dynamic objects effectively, which greatly
increases the number of useful feature points. A qualitative comparison between the proposed
GMSK-SLAM algorithm and the latest method for dynamic environment is provided in Fig. 9.
These quantitative evaluations were carried out using the TUM RGB-D datasets.

It can be seen by comparing Figs. 7 and 9 that removing dynamic objects feature points
indeed can effectively improve the accuracy of trajectory. As is showed in Fig. 9, although the
latest method reduces the difference between the ground truth and estimated trajectory to some
extent, due to removing all feature points in dynamic objects, instead, it also reduces the
number of feature points available. Figure 9 clearly demonstrates that the trajectory estimation
results of the detecting dynamic region are better than that of the dynamic objects.

The RMSE of ATE in three axes are calculated as follows. As can be seen in Table 4, the
proposed GMSK-SLAM has a more reliable performance than the latest method [38]. The
comparison shows that the GMSK-SLAM gives greatly better results than the latest method.

In order to better illustrate the effectiveness of our algorithm, we also compare the APE
with the latest method. Figure 10 shows the APE distribution of the GMSK-SLAM and the
latest method throughout the tracking. As can be seen from the Fig. 10, the proposed method’s
accuracy in the Fr3_walking_xyz is better than the latest SLAM system.

Fig. 9 The trajectory of The Latest method and GMSK-SLAM

Table 4 RESULTS OF ABSOLUTE TRAJECTORY ERROR(ATE)

Fr3_walking_xyz RMSE-X
(m)

RMSE-Y
(m)

RMSE-Z
(m)

The latest method 9.8994×10−4 0.0816 0.0021
The proposed method 1.8365×10−4 0.0017 1.9623×10−4

Improvements 81.45% 97.92% 90.66%
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Finally, a global comparison is made among the three algorithms in Fig. 11. It can
be seen from Fig. 11, compared with the ORB-SLAM2, the position error of the
GMSK-SLAM and the latest method are reduced to a certain extent. However, the
latest method directly eliminates all feature points in dynamic target, which in turn
reduces the number of feature points reliable. Therefore, the accuracy of the latest
method is lower than the GMSK-SLAM’s.

Fig. 10 The Absolute Pose Error results of GMSK-SLAM and the latest method

Fig. 11 The comparison of GMSK-SLAM, ORB-SLAM2 and the latest method
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5 Conclusion

In this paper, a new complete robust dynamic area detection SLAM (GMSK-SLAM) system is
proposed, which could greatly reduce the influence of dynamic objects on pose estimation.
The proposed method has third innovations. First, adopting moving consistency check into the
proposed method, which greatly increase the accuracy of dynamic objects detection. Second,
using the GMS algorithm to match feature points and k-means algorithm to distinguish
dynamic environments and static environments. Thirdly, adding a dynamic area detection in
an independent thread, which greatly improves the operating efficiency and robustness of the
system. The proposed system could run the tracking thread and the dynamic area detection
thread in parallel, thus allowing our system to read read-time performance.

In the experimental section, the proposed GMSK-SLAM is qualitatively evaluated with the
public benchmark data set TUM. On the one hand, the GMSK-SLAM is compared with the
mainstream VIO system, which validly proofs that detecting dynamic area can improve the
environmental applicability and stability of the algorithm. All tests show that the trajectory
accuracy of the GMSK-SLAM is 90% better than the ORB-SLAMmethod. On the other hand,
a series of experiments are conducted between GMSK-SLAM and the latest method proposed
in 2019. Experiments effectively demonstrate that removing dynamic areas rather than dy-
namic objects significantly eliminates the interference of dynamic factor to the system. Above
all, we can conclude that the proposed GMSK-SLAM algorithm has better performance than
the traditional method and latest method.

In the future, we plan to consider other environmental disturbance elements, such as
environmental brightness, weather conditions, and dynamic target density, etc. Besides, we
intend to combine our moving areas detection method with a lightweight deep learning method,
to achieve robust results of moving areas detection in challenging dynamic environments.
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