
https://doi.org/10.1007/s11042-021-11121-6

FSFN: feature separation and fusion network for single
image super-resolution

Kai Zhu1 ·Zhenxue Chen1,2 ·Q. M. JonathanWu3 ·NannanWang2 · Jie Zhao1,4 ·
Gan Zhang1

Received: 2 September 2020 / Revised: 5 January 2021 / Accepted: 3 June 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In recent years, image super-resolution (SR) based on deep learning technology has made
significant progress. However, most methods are difficult to apply in real life because of
their large parameters and heavy computation. Recently, residual learning has been widely
applied to the problem of super-resolution. It can make the shallow features extracted from
the input image act on each middle layer through long and short connection. Therefore,
residual learning can be focused on processing high-frequency feature information, which
significantly improves the SR performance of the network. However, with the improve-
ment of network depth, the features that can be effectively utilized are still the shallow
ones extracted from the input image. In this paper, we propose the feature separation and
fusion network(FSFN). We further enrich the high-frequency feature information by sep-
arating and fusing the extracted and unextracted features in the internal shallow layer of
each feature separation and fusion module. As the depth of the network increases, the shal-
low features extracted from the input image can be updated in a direction closer to those
extracted from the real high-resolution image. A large number of experimental results show
that this method has a strong performance compared with the existing SR algorithm with
similar parameters and computation.

Keywords Super-resolution · Feature separation · Feature fusion · Residual learning ·
Deep learning · CNN

1 Introduction

Single image super-resolution (SISR) aims to reconstruct a low-resolution image into a
high-resolution image, which is a low-level visual recovery task in computer vision [5, 13].
Since the reconstruction of a high-resolution image from a low-resolution image is not just a
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one-to-one mapping, single image super-resolution (SISR) is a seriously ill-posed problem.
Various SISR methods have been proposed and achieved amazing results, among which the
most notable ones are some methods based on deep learning [2, 7, 8, 20, 33, 38, 40].

With the development of a convolutional neural network, single image super-resolution
has been granted significant attention by researchers, who have achieved state-of-the-art
performance on various benchmarks of SR. Dong et al. [7] first applied the convolutional
neural network to the super-resolution task.Then, they proposed the FSRCNN [8], which
can directly learn the low-resolution inputs and then up-sample the features at the end of the
network. In order to improve the performance of the model, Kim et al. proposed the VDSR
[15] by increasing the depth of the network model. Inspired by the image classification
problem [9], a lot of work has been done to apply residual learning to SR problems. As
a result, many models with good performance have relatively large parameters. In order
to reduce the parameters of the model, the recursive network model is applied to the SR
problem. The recursive model decomposes the complex SR problem into a series of simple
and easily solved problems by sharing parameters. Many researchers have taken a recursive
network as their basic network architecture, such as DRCN [16], DRRN [28], and MemNet
[29]. All of these models guarantee better performance with fewer parameters (Fig. 1).

With the improvement of computing performance, many super-resolution networks [20,
33, 38, 40] have large network parameters and large computing overhead. it is difficult to
apply this process in real life. Currently, there are many ways to design lightweight SR
networks. Recursive networks can achieve better SR performance with fewer model param-
eters, but they require huge computational overhead. The CARN network [2] adopts the
local and global cascading modules, which make full use of the feature information at all
levels but can’t avoid information redundancy. Network structure search [6] can give full
play to the performance of each module, although the model based on network structure
search does not improve the performance of SR very much, as it is limited in terms of search
space and search strategy. After learning that the residual network improves the performance
of SR [20], we noticed that the residual block promoted the performance of SR by inte-
grating the extracted features with the original features that are not extracted. Because the
original features can reach all hierarchical structures of the network through short or long
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Fig. 1 Trade-off between performance and number of parameters on the Urban100×2 dataset. The orange
circle represents the method we proposed, and the blue circle represents the other methods
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connections, the incremental features extracted from the input image account for a large
part of the original features that can be used repeatedly. This also limits the network’s SR
performance. In order to make better use of the feature information, we adopt the feature
separation technology to separate the extracted features and the unextracted features and
then merge them to continuously update the original features information at different lev-
els. Therefore, we propose a feature separation and fusion module, which reduces feature
information redundancy. Our network is of great significance in the design of lightweight
network models. We can learn from VDSR [15] that increasing the network depth can
improve the SR performance of the network, so we adopt the idea of partitioning. As shown
in Fig. 2, several feature separation and fusion modules and a convolutional layer consti-
tute our feature residual learning module, and several feature residual learning modules
and a convolutional layer constitute a global residual learning module. So our network can
integrate and learn features at different levels to increase the richness of the features.

In this work, we propose a feature separation and fusion network for SISR. Compared
to networks with similar model parameters and multi-adds, our network showed better SR
performance. The contributions of this paper can be summarized as follows:

• We propose a feature separation and fusion module, which separates the original fea-
tures into extracted features and unextracted features, and then extracts the unextracted
features in the next step to increase the diversity of features. Finally, we use a 1x1
convolution to adaptively select fusion features. This makes the fusion feature more
representative, which means the image reconstruction quality can be greatly improved.
The experimental results show that the proposed feature separation and fusion module
improves the performance of SR.

• We adopt the idea of partitioning, which increases the depth of the network and enables
us to better integrate and learn the characteristics of other modules. This approach
further improves the SR performance of our network.

• An extensive experimental evaluation of several publicly available datasets shows that
the proposed FSFN model performs better than most existing methods.

Fig. 2 Network architecture of our feature separation and fusion network (FSFN)
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2 Related works

In the early stage, in order to solve the problem of image super-resolution, we mostly
adopted interpolation technology based on sampling theory [3, 19, 42]. With the develop-
ment of deep learning technology, the problem of image super-resolution is now mostly
solved. Therefore, our main research focus is on the application of deep learning technology
in image super-resolution.

2.1 Single image super-resolution

By using a variety of deep learning-based techniques, we have been able to find a solu-
tion to the SR problem experienced in the extensive literature on this topic [12, 14, 18,
21, 25, 26, 33–35, 41]. Dong et al. proposed SRCNN [7], which was the first success-
ful attempt to use convolution to solve the problem of image super-resolution. Then, they
came up with FSRCNN [8], which had better SR performance. In contrast to the shallow
network architecture, Simonyan et al. proposed VDSR [15], which has a deeper hierarchi-
cal structure. Kim et al. proposed a deep recursive convolutional network named DRCN
[16], which, by designing a repeatable convolution unit, enables the model to maintain bet-
ter SR performance with fewer parameters. Inspired by the success of DenseNet [10] in
the image classification architecture, Tong et al. proposed the SR-DenseNet [31], which
achieved higher flexibility and richer feature representation through the densely connected
CNN layer. Zhang et al. proposed the RDN [40] by introducing local and global residual
connections. Then they proposed RCAN [38] by introducing a channel attention mecha-
nism in each local residual block, which improved the performance of SR significantly.
Ahn et al. proposed CARN [2], which allows the feature information of each residual
block to flow between different levels through a large number of short connections. This
model performs well in lightweight networks. Liu et al. proposed a residual feature aggre-
gation network (RFANet) [22] consisting of an RFA framework and a powerful ESA
block. The RFA framework groups several residual modules together and directly for-
wards the features on each local residual branch by adding skip connections. This work
also effectively improves the SR performance of the network. Due to the uncertainty
of image degradation, Zhang et al. [37] proposed an end-to-end trainable unfolding net-
work which leverages both learning-based the methods and model-based methods. And
it can handle the classical degradation model via a single model. This work expands
the data processing scope of the network beyond the limitation of bicubic interpolation
degradation.

2.2 Residual learning

Residual learning is now widely used in various computer vision tasks. It was originally pro-
posed to avoid gradient disappearance and make it possible to design very deep networks. In
the case of SR, residual learning mainly deals with the high-frequency information between
the input and the ground truth. The processing of high-frequency features information will
be an important factor affecting the SR performance. Lim et al. proposed EDSR [20] by
modifying the ResNet architecture for image classification. They greatly improved the SR
performance of the model by removing the batch normalization layer. In order to further
improve SR performance, we will separate and fuse the high-frequency feature information
in the residual block to improve the hierarchical and richness of the high-frequency features.
Our network also showed better SR performance.
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3 Proposedmethod

In this section, we describe our proposed feature separation and fusion network (FSFN) in
detail.

3.1 Network structure

As shown in Fig. 2, our feature separation and fusion network is mainly composed of three
parts: the shallow feature extraction module, the global residual learning module, and the
up-sampling reconstruction module. Given an input LR image ILR and its corresponding
target HR image IHR . super-resolution image ISR can be obtained by

ISR = FFSFN(ILR) (1)

where FFSFN(·) is our FSFN. Like most previous studies, our shallow feature extraction
module only uses a convolution layer, described as

sf = FSFEM(ILR) (2)

where FSFEM(·) is represented as our shallow feature extraction module and sf represents
the shallow features extracted from the input ILR . Shallow features (sf ) are used as inputs
to the global residual learning module to generate more refined features (rf ). As such,

rf = FGRLM(sf ) (3)

where FGRLM(·) denotes our proposed global residual learning module. Finally, rf is
used as the input of the up-sampling reconstruction module (URM) to generate the
super-resolution image ISR . So

ISR = FURM(rf ) (4)

where FURM(·) denotes our proposed up-sampling reconstruction module, which consists
of the upscale module and a convolution layer. As narrative ESPCN [27] institutes, we
choose to sub-pixel convolutional as our upscale module. This has been proved to be the
most effective option.

Finally, FSFN is optimized using L1 loss function, just like in other networks [2, 20, 41].
Given a training set {I i

LR, I i
HR}Ni=1 that has N LR-HR pairs, the loss function of our FSFN

network can be expressed as follows:

L(θ) = 1

N

N∑

i=1

∣∣∣
∣∣∣FFSFN(I i

LR) − I i
HR

∣∣∣
∣∣∣
1

(5)

where θ represents the updated parameters in the training process of our model and ||·||1 is
the l1 norm.

3.2 Global residual learningmodule(GRLM)

In this section, we will describe the core module of the network in detail, which is the global
residual learning module referred to as the GRLM (see Fig. 2). The GRLM consists of N

feature residual learning modules (FRLM), a convolutional layer, and a long connection.
This was inspired by the EDSR [20], which allows the network to centralize the processing
of the high frequency parts of the feature. Similar to the RCAN [38], our FRLM module
is divided into M feature residual learning modules, a convolutional layer, and a short con-
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nection. This enables the shallow feature (sf) extracted by the shallow feature module to be
applied at a deeper level. The GRLM module can be described by the following formula:

rf =Fconv(ffn) + sf

ffj =FFRLMj
(ffj−1) (j = 1, 2, ..., n)

ff0 =FFRLM0(sf )

(6)

In the formula, Fconv(·) represents a convolutional layer, rf represents a refined feature,
and ffj represents the output of the ith feature residual learning module(FFRLMj

), which is
defined as the fusion feature. The FRLM can be described as follows:

ffj+1 =Fconv(fm) + ffj

fi =FFSFMi
(fi−1) (i = 1, 2, ...,m)

f0 =FFSFM0(ffj )

(7)

where fi represents the input features of the (i −1)th feature fusion module(FFSFMi−1 ) and
the output features of the ith feature fusion module(FFSFMi

). We will discuss the FSFM in
more detail in the next section.

3.3 Feature separation and fusionmodule (FSFM)

We can learn from the residual block proposed by EDSR [20] that focusing on the pro-
cessing of high-frequency features will lead to a strong SR performance. As we can see in
Fig. 3, the processing of high-frequency characteristics only uses two convolutional layers.
In view of the limited feature extraction capability of a single convolution, we propose a
feature separation and fusion module. We will retain the feature information extracted by
the first convolution and the feature information not yet extracted. Then, we re-extract the
unextracted features. We define this module as a local feature extraction module (LFEM)
which is shown in Fig. 4. This module can be described as follows:

eufi = FLFEM(ufi) (8)

In the formula, ufi represents unextracted features and eufi represents features of extracted
ufi . So, our feature separation module (FSM) can be expressed as

efi, eufi =FFSM(fi)

=Fconv(fi), FLFEM(fi − Fconv(fi))
(9)
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Fig. 3 The structure of the residual blocks
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where fi represents the input feature of the ith FSFM. eufi and efi will be combined
adaptively by the feature fusion module (FFM). Therefore, our FSFM can be expressed as

fi+1 =FFSFM(fi)

=FFFM(FFSM(fi)) + fi

(10)

where FFSFM(·) denotes our proposed feature separation and fusion module. Compared
with the residual block proposed by EDSR [20], our FSFM behaves like a residual block
which means that the associated path is disconnected assuming that LFEM is not effective.
We can understand that the residual block is a special case of FSFM. Since our FSMmodule
uses only a 1×1 convolutional layer, the increase in network volume can be ignored. As
shown in Figs. 5 and 6, the number of indistinctive feature maps accounts for more than
half among the unextracted feature maps. This fully shows that our network can effectively
reduce feature redundancy.

Fig. 5 extracted features in the first feature separation and fusion module
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Fig. 6 Unextracted features in the first feature separation and fusion module

4 Experiments

4.1 Datasets andmetrics

The DIV2K dataset [1] has been widely used for many image restoration tasks. Like these
networks [2, 20, 38], we used DIV2K as our FSFN training dataset which contained 800
RGB images. Five commonly used datasets, Set5 [4], Set14 [36], BSD100 [23], Urban100
[11], and Manga109 [24], were used to evaluate network SR performance. To gauge the
SR results, we applied two objective image quality assessment criteria: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) [32], All criteria were calculated on the Y
channel of transformed YCbCr space.

4.2 Implementation details

The HR image patch with a size of 192×192 was randomly cropped from the HR image
in the DIV2K dataset as the input of our model. The LR image was obtained from the HR
image by using the bicubic interpolation according to the scaling factor (2×,3×,4×). And
the mini-batch size is set to 16. We set filter size f = 3. The number of filters for FSFN SP
is set to 32 and for FSFN to 48. We train our FSFN with an ADAM optimizer [17] by setting
β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate is initialized to 10−4 and halved at
every 2 × 105 minibatch update. We use a PyTorch framework to implement our proposed
FSFN network with a Titan Xp GPU.

4.3 Model analysis

In this section, we will delve into the model parameters and calculations, the effectiveness
of FSFM, and the superiority of the idea of block processing (BP).
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4.3.1 Model parameters and calculations

As we mentioned in Section 3.2, our core module GRLM is composed of N FRLM, and
each FRLM is composed of M FSFM which is the smallest indivisible unit of our network.
In our proposed FSFN network, we setN to be 3 andM to be 6. In contrast to most networks
[2, 20, 39], in our proposed network, the number of feature maps is 48. This greatly reduces
the parameters of the model. At the same time, we also proposed a small version of FSFN
named FSFN N2M4. In FSFN N2M4, we set N to 2 and M to 4. Then, the number of fea-
ture maps is 32. In order to further enhance the performance of the small version of FSFN,
we proposed FSFN SP, which changed the number of output feature maps of convolution
of LFEM in FSFM to 64. In this way, the SR performance of the model is further improved
at the cost of a small parameter increase (Table 1). Table 2 shows the comparison of models
under different amounts of FRLM and FSFM. It can be seen that all the models we selected
can show better SR performance under the condition of limited number of parameters. In
order to enhance the quality of the SR images, we adopt the self-ensemble strategy. This
strategy can be summarized as follows. We flip and rotate the input image ILR to gener-
ate augmented image I

n,i
LR = Ti(I

n
LR) for each sample, where Ti represents eight geometric

transformations, including indentity. Then, we’ll use augmented images as input to our net-
work to generate super-resolved images I

n,1
SR , ..., I n,8

SR . We then apply inverse transform to

those super-resolved images to get the original geometry Ĩ
n,i
SR = T −1

i (I
n,i
SR ). Finally, we aver-

age the transformed outputs to get the following self-ensemble results. In
SR = 1

8

∑n
i=1(Ĩ

n,i
SR ).

FSFN SP+ and FSFN+ are obtained by applying the self-ensemble strategy. As can be seen
in Fig. 1, our model performs best against other state-of-the-art algorithms on the parameter
scale of 500K and 1000K. We all know that recursive networks greatly increase the number
of model parameters by reusing modules, but they also increase the computational com-
plexity of the model. As we can see from Table 1, our FSFN SP has a significantly reduced
computation capacity but better SR performance when compared with DRCN [16], DRRN
[28] and MemNet [30].

4.3.2 Block processing (BP) and feature separation and fusion module (FSFM)

As discussed in Section 2.2, residual learning enables our network to focus on high-
frequency processing of features. EDSR [20] proposes a network architecture similar to that
shown in Fig. 12a, and its smallest modular processing unit is called the residual block (Res-
block). We call this structural framework the directly connected structure. The disadvantage
of this structure is that, as the network hierarchy deepens, the shallow primitive features that
can be utilized effectively will be ignored. To address this, Zhang et al. [39] put forward the
Residual in Residual (RIR) module similar to Fig. 12b. We call this structural framework
block processing (BP). Through short connection, the M smallest module processing unit
is synthesized into a large module, and then N such large modules are synthesized into a
larger module. This allows the original shallow features to be utilized effectively at differ-
ent levels. Therefore, we think that block processing is a better structural framework. As
we can see from Table 3. whether the smallest structural unit is Resblock or FSFM, when
block processing is adopted, the SR performance of the network is improved. EDSR S rep-
resents the structural framework with a direct connection structure, which contains eight
residual blocks. and EDSR N2M4 represents the structural framework with block process-
ing. We found that EDSR N2M4 is 0.023dB higher than EDSR S in PSNR. By comparing
EDSR S and FSFN S as well as FSFN N2M4 and EDSR N2M4, we found that, on the
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Table 2 PSNR results of the models with different numbers of FRLM and FSFM on Urban100 at 500 epochs
(with scaling factor × 4)

Method FSFN N2M3 FSFN N2M4 FSFN N4M4 FSFN N3M6

Params 226K 268K 1010K 1080K

PSNR/dB 25.293 25.411 25.900 25.928

same structural framework, our FSFM improved SR performance more significantly than
Resblock. By comparing EDSR N2M4 with FSFN S, we find that FSFM improves network
performance to a greater degree than block processing and that FSFN S achieves better
performance with fewer parameters. As described in Section 4.3.1, we obtained FSFN SP
through the Extended Local Feature Extraction Module. FSFN SP performs best on those
networks with parameters below 500K. Although the average running time of FSFN SP on
the Urban100 dataset was slightly increased compared to our base network EDSR S, we
chose FSFN SP as the smaller version of our FSFN network for better SR performance.

4.4 Comparison with the state-of-the-arts

In this section, several state-of-the-art methods will be compared with our proposed FSFN,
including SRCNN [7], FSRCNN [8], VDSR [15], DRCN [16], LapSRN [18], DRRN [28],
MemNet [30], FALSR [6], and CARN [2]. We will compare our FSFN with the above meth-
ods both mathematically and visually. The above methods are divided into two categories
according to the number of parameters: those that use about 500K, and those that use about
1000K. As can be seen in Table 1, when the number of parameters of the model is around
500K, the overall SRperformance of our proposedFSFN SP+network is better than that of all
other networks, especially at the scaling factor of ×2. When the number of parameters is
around 1000K, our FSFN+ network also performs better than its peer network models.When
the comparison criterion is structural similarity (SSIM), the SRperformance of our FSFN SP,
FSFN network is superior to all other networks, even without a self-integration strategy.

4.4.1 Visual comparison

Since our proposed FSFN can separate and fuse the shallow features of a single module, we
can imagine that the SR images generated by our FSFN network will have better detailed

Table 3 Investigations of FSFM, Block Processing (BP), and Extended Local Feature Extraction Module
(ELFEM)

Method EDSR S EDSR N2M4 FSFN S FSFN N2M4 FSFN SP

FSFM × × � � �
BP × � × � �
ELFEM × × × × �
PSNR/dB 31.166 31.189 31.230 31.256 31.382

Times/s 0.0161 0.0165 0.0211 0.0223 0.0279

Paras/K 195.9 214.4 212.6 231.1 313.3

We observe the best PSNR (dB) values on Urban100 (2×). Time is the average inference time per image in
Urban100 as measured on a Titan Xp GPU. The best results was bolded
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BicubicHR SRCNN FSRCNN DRCN

DRRN LapSRNVDSR CARN FSFN(ours)ppt3 from SET14

Fig. 7 Visual comparison for 4×SR on the Set14

FSFN(ours)

HR SRCNN FSRCNN DRCN

VDSR DRRN LapSRN8023 from BSDS100

Bicubic

CARN

Fig. 8 Visual comparison for 4×SR on the BSDS100

HR SRCNN FSRCNN DRCN

VDSR DRRN LapSRN FSFN(ours)img_011 from Urban100 CARN

Bicubic

Fig. 9 Visual comparison for 4×SR on the Urban100

HR Bicubic SRCNN FSRCNN DRCN

VDSR DRRN LapSRN CARN FSFN(ours)img_076 from Urban100

Fig. 10 Visual comparison for 4×SR on the Urban100
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HR Bicubic SRCNN FSRCNN DRCN

VDSR DRRN LapSRN CARN FSFN(ours)img_067 from Urban100

Fig. 11 Visual comparison for 3×SR on the Urban100

image features. Below we will show the image recovery effects of our network on each
dataset. We randomly select an image from the Set14 dataset, named PPT3 as shown in
Fig. 7. We can see that our network can show the words in the original image more clearly.
Figure 8 shows image 8023 from the BSDS100 dataset. We can see from this image that
our FSFN network is able to restore the detail of the bird’s wing with a scaling factor of
4. Figure 9 shows another image from the BSDS100 dataset named img 011. The hardest
detail to recover from this image is the vertical line at the left of the locally enlarged image
block. We can see that, unlike SR images generated by our FSFN network, SR images gen-
erated by other methods experience difficulty in showing the gap between vertical lines.
Since the BSDS100 dataset contains a large number of high-resolution images, we have
introduced a visual comparison of Figs. 10 and 11, and both images show better SR perfor-
mance in our network when the scaling factor is 4 and 3. All of the above visual comparisons
reflect the superior performance of our FSFN network framework (Fig. 12).

Fig. 12 Overall network
framework selection; (a)
represents a directly connected
structure, while (b) represents a
block processing structure

FSFM/

Resblock

FSFM/

Resblock

input

FSFM/

Resblock

FSFM/

Resblock

conv

conv

input

FSFM/

Resblock

FSFM/

Resblock

FSFM/

Resblock

conv

(a) (b)
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5 Conclusion

In this paper, we propose a lightweight feature separation and fusion network for single
image super-resolution. We adopt the structural framework of block processing so that our
network can enrich the features of different levels while making full use of the features of
different levels. We also propose a feature separation and fusion module as our smallest
module unit, which enhances the ability of our network to extract high-frequency features by
separating and fusing the shallow features extracted from the interior of the smallest module
unit. In this way, the SR performance of our network is improved significantly, especially in
the restoration of texture details of some images. Experiments show that our network model
offers better SR performance compared to other lightweight network models.
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