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Abstract
Three dimensional (3D) hand pose estimation is the task of estimating the 3D location of
hand keypoints. In recent years, this task has received much research attention due to its
diverse applications in human-computer interaction and virtual reality. To the best of our
knowledge, there has been limited studies that model self-attention in 3D hand pose esti-
mation despite its use in various computer vision tasks. Hence, we propose augmenting
convolution with self-attention to capture long-range dependencies in a depth image. In
addition, motivated by a recent work which uses anchor points set on a depth image, we
extend anchor points to the depth dimension to regress 3D hand joint locations. Validation
experiments using the proposed approaches are performed on various hand pose datasets,
and we obtain performances that are comparable to other state-of-the-art methods. The
results demonstrate the potential of these approaches in a hand-based recognition system.
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1 Introduction

Estimation of 3D hand pose is useful in many human-computer interaction applications such
as recovery progress for hand rehabilitation systems [22], social robotics [33], user authen-
tication [18] and virtual reality games [48]. With the availability of affordable depth sensors
and high-quality hand pose datasets in recent years [25, 34, 35, 37, 45, 46] and advances in
convolutional neural networks (CNNs) [16, 19, 21], there has been significant progress in
3D hand pose estimation. However, the task remains a challenge due to severe finger self-
occlusion, poor quality of depth images, variations in viewpoint and complex hand shapes [44].

Discriminative methods for 3D hand pose estimation regress 3D hand joint coordinates
directly or output heatmaps from a depth image using 2D CNNs [5, 15, 24, 28, 37]. But these
methods do not fully exploit the 3D spatial information in the depth image which is intrin-
sically 3D data [44]. To address this shortcoming, several works have studied 3D methods
for hand pose estimation [7, 10–12, 14, 26, 32, 40]. In a recent work, Xiong et al. [42] pro-
posed a novel anchor-based approach named Anchor-to-Joint (A2J) regression network to
regress 3D joint coordinates from depth images. In the anchor proposal procedure, anchor
points that are densely set on the depth image are assigned weights to discover informative
anchor points for a certain joint.

The introduction of the Transformer neural network [38], which replaces recurrence
with self-attention to learn long-range dependencies, has led to the wide adoption of self-
attention in natural language processing tasks and the increasing use of self-attention in
computer vision tasks in recent years. While there are works that employ other attention
mechanisms for 3D hand pose estimation [14, 41], studies that model self-attention for the
task are limited.

In this work we propose to extend A2J [42] by augmenting convolution with self-
attention [2] for 3D hand pose estimation. Moreover, we extend anchor points to the depth
dimension in an attempt to better model the 3D spatial geometric characteristics in the depth
image. Using the proposed approach, we developed a prototype system for real-time esti-
mation of hand joint angles. This system can be used to assess the range of hand motion
in patients with certain disorders that lead to impairment of the hand, such as stroke or
rheumatoid arthritis [4].

To summarize, the contributions in this work are as follows:

1. Anchor points that are set in three-dimensional space are used to regress 3D hand joint
locations,

2. Self-attention is modelled for 3D hand pose estimation, and
3. A novel user interface is developed to evaluate the range of motion of the hand in

clinical practice.

The rest of the paper is organized as follows. Section 2 briefly summarizes related
work in the area of hand pose estimation and attention. Section 3 details the proposed
approaches which utilize self-attention and 3D anchor points for 3D hand pose estimation.
Section 4 reports the details of the experimental results and Section 5 describes the proto-
type system for rehabilitation. Finally, Section 6 concludes this paper with a summary of
the contributions and limitations of the work.
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2 Related work

Deep neural networks are commonly used in 3D hand pose estimation to regress 3D joint
locations or heatmaps encoding probability distributions of hand joints. One drawback is
that the depth image is treated as 2D data and that spatial information in the depth image is
under-utilized. To address this problem, several works converted the depth image into 3D
data structures such as points [10, 12] or voxels [7, 14, 26]. Ge et al. [12] processed point
clouds directly to obtain point-wise estimations of hand joint locations. Moon et al. [26]
used a 3D CNN to estimate the per-voxel likelihood for each hand joint and achieved per-
formance that surpassed existing approaches by a large margin. However, 3D CNN methods
incur high memory and computational costs. Other methods have been proposed to capture
spatial representations with 2D CNNs [11, 32, 40]. Ge et al. [11] projected the depth image
into three orthogonal planes with each projection fed into a 2D CNN to regress a heatmap.
The heatmaps were then fused to produce 3D hand joint coordinates. Ren et al. [32] incor-
porated spatial-aware representations that are based on 3D offsets into a 2D CNN consisting
of multiple stacked regression modules. In a recent work, Xiong et al. [42] proposed A2J
regression network which uses anchor points that are densely set on a depth image to extract
global-local spatial context information for 3D hand and body pose estimation.

The attention mechanism was first proposed in Bahdanu et al. [1] in a neural sequence-
to-sequence model for neural machine translation. With the advent of the self-attentional
Transformer by Vaswani et al. [38], self-attention has now become an integral component in
natural language processing tasks. In self-attention, attention is applied to a single context
[33]. By attending to all input positions and computing the contextual information of each
output, self-attention captures the dependencies between different positions in the input in a
single layer. In contrast, convolutional layers are limited by a restricted receptive field and
impose translation invariance through weight sharing [2]. Capturing long-range interactions
is a challenge with convolution and the global context of images is typically ignored.

The ability of self-attention to encode long-range dependencies and its parallelizability
has led to rapid advances in natural language processing tasks such as machine translation
[23]. Although convolutional neural networks have been widely used in computer vision
tasks, self-attention models are gaining in popularity in various visual tasks including action
recognition [13], video object segmentation [36], semantic segmentation [17] and image
generation [29, 47]. Bello et al. [2] combined convolution and self-attention in a visual dis-
criminative task by concatenating convolutional feature maps with a set of convolutional
maps produced via self-attention, using multi-head attention to attend to distinct represen-
tations of an input. This method achieved competitive results on image classification tasks,
obtaining higher accuracy than the ResNet-50 baseline on ImageNet. Ramachandran et al.
[31] proposed a fully attentional vision model for image classification, using self-attention
layers entirely in place of convolution layers. Thus we hypothesize that the attention mecha-
nism proposed in Bello et al. [2] could improve the accuracy of the 3D hand pose estimation
task.

3 Methods andmaterials

In this section, we first discuss the self-attention mechanism. Next we introduce the pro-
posed approaches which utilize self-attention and 3D anchor points for 3D hand pose
estimation.
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3.1 Self-attention

In self-attention, an input tensor of shape (H, W,Fin) is flattened to a matrix X ∈ R
HW×Fin

where H , W and Fin refer to the height, width and number of input filters respectively.
Attention is performed using the matrix and the output of an attention head h is computed
as follows [2]:

Oh = Sof tmax

⎛
⎜⎝

(
XWq

)
(XWk)

T

√
dh
k

⎞
⎟⎠ (XWv) (1)

where dh
k refers to the depth of keys/queries of the attention head and dh

v refers to the depth

of values of the attention head. Wq , Wk ∈ R
Fin×dh

k and Wv ∈ R
Fin×dh

v are learned linear
transformations and map X to queries Q = XWq , keys K = XWk and values V = XWv .
In multihead attention, the self-attention mechanism is replicated with multiple attention
heads. Each attention head focuses on a different part of the input using different query, key
and value matrices. The outputs from all heads are concatenated and projected as follows
[2]:

MHA (X) = Concat
[
O1, ...,ONh

]
Wo (2)

where Nh and dv refer to the number of heads and depth of values respectively in multi-
head attention and Wo ∈ R

dv×dv is a learned linear transformation. MHA (X) is reshaped
to return a tensor with the original spatial dimensions (H, W,Fin). To enable translation
equivariance, relative position encoding is implemented by independently adding relative
height information and relative width information. The strength of attention between pixel
i = (

ix, iy
)

and pixel j = (
jx, jy

)
is computed as [2]:

li,j = qT
i√
dh
k

(
kj + rW

jx−ix
+ rH

jy−iy

)
(3)

where qi is the query vector for pixel i, kj is the key vector for pixel j , rW
jx−ix

is the learned

embedding for relative width jx − ix , and rH
jy−iy

is the learned embedding for relative height
jy − iy . The attention head h with relative positional embeddings is [2]:

Oh = Sof tmax

⎛
⎜⎝QKT + Srel

H + Srel
W√

dh
k

⎞
⎟⎠ V (4)

where Srel
H , Srel

W ∈ R
HW×HW are matrices of relative positional embeddings for each pixel

pair that satisfy Srel
H [i, j ] = qT

i rH
jy−iy

and Srel
W [i, j ] = qT

i rW
jx−ix

. Lastly, the convolutional
operator and output from multihead attention are concatenated as follows [2]:

AAConv (X) = Concat [Conv (X) , MHA (X)] . (5)

υ = dv

Fout
is the ratio between the number of attentional channels and number of output

filters in the original convolution operator while κ = dk

Fout
is the ratio between the key

depth and number of output filters in the original convolution operator. In this work, the
hyperparameters υ and κ are set to 0.1 and 0.65 respectively.
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3.2 Proposed approaches

The A2J regression network proposed in Xiong et al. [42] uses anchor points that are densely
set on a depth image and it consists of a ResNet-50 backbone pretrained on ImageNet.
Three branches extend from the backbone: an in-plane offset estimation branch, a depth
estimation branch and an anchor proposal branch. The common trunk of the ResNet-50
backbone passes a feature map to the anchor proposal branch while a feature map from the
regression trunk of the backbone is forwarded through the in-plane offset estimation branch
and depth estimation branch.

The two proposed approaches in this work involve modifications to A2J. In the first
approach, the self-attention mechanism in Bello et al. [2] is incorporated into A2J and this
modified network is named AA-A2J. It has the same framework as A2J, except that its
three branches are modified to augment convolution with self-attention (Fig. 1). The depth
estimation branch regresses the depth position of the hand keypoints following A2J.

In the second approach, aside from incorporating self-attention into A2J, anchor points
are extended to the depth dimension. The new network, referred to as AA-3DA2J, has a
framework similar to AA-A2J except that it has a depth offset estimation branch instead
of depth estimation branch. Figure 2, adapted from Xiong et al. [42], shows the framework
of AA-3DA2J. As 3D anchor points are now utilized, the depth offset estimation branch
is used to predict the depth offset with respect to a certain joint from each anchor point.
The branches in AA-3DA2J and AA-A2J share the same design (Fig. 1). In addition, the
ResNet-50 backbones in both AA-A2J and AA-3DA2J are pretrained on ImageNet.

To determine the individual contribution of self-attention and 3D anchor points to the
performance of 3D hand pose estimation, a separate regression network named 3DA2J is
also investigated in an ablation study. The 3DA2J network is produced by extending anchor
points in A2J to the depth dimension.

The anchor proposal branch in AA-A2J, AA-3DA2J and 3DA2J discovers informative
anchors for each joint by assigning weights to the anchor points. These weights are used to

Fig. 1 Architecture of the in-plane offset estimation branch, depth estimation/depth offset estimation branch
and anchor proposal branch in AA-A2J and AA-3DA2J
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Fig. 2 Framework of AA-3DA2J [42]. The regression network consists of a ResNet-50 backbone which is
connected to three branches. The in-plane offset estimation branch and depth offset estimation branches are
used to predict the offsets between the anchor points and ground truth while the anchor proposal branch helps
discover informative anchor points for a certain joint

predict the contribution of the anchor points to a specific joint. The weights are normalized
using the softmax function [42]:

P̃j (a) = ePj (a)

Σa∈AePj (a)
(6)

where A is the anchor point set and Pj (a) is the response of anchor point a ∈ A towards
joint j . The estimated in-plane position, estimated depth position and loss functions in AA-
A2J are defined according to A2J in Xiong et al. [42].

Next, the estimated in-plane position, estimated depth position and loss functions of
the networks which utilize 3D anchor points, AA-3DA2J and 3DA2J, are defined. The
estimated in-plane position Ŝj is formulated as:

Ŝj = Σa∈AP̃j (a)
(
Si (a) + Oi

j (a)
)

(7)

where Si (a) and Oi
j (a) are the in-plane position of anchor point a and predicted in-plane

offset towards joint j from anchor point a respectively. The estimated depth position D̂j is
as follows:

D̂j = Σa∈AP̃j (a)
(
Sd (a) + Od

j (a)
)

(8)

where Sd (a) and Od
j (a) are the depth position of anchor point a and predicted depth offset

towards joint j from anchor point a respectively.
The regression loss function for the in-plane and depth positions is as follows:

loss1 = αΣj∈J Lτ1

(
Σa∈AP̃j (a)

(
Si (a) + Oi

j (a)
)

− T i
j

)

+Σj∈J Lτ2

(
Σa∈AP̃ (a)

(
Sd (a) + Od

j (a)
)

− T d
j

) (9)

where α is assigned 0.5 according to [42]. Different from A2J and AA-A2J, both the in-
plane position and depth position contribute to the informative point surrounding loss in
AA-3DA2J and 3DA2J. The informative point surrounding loss is defined as:

loss2 = Σj∈J Lτ1

(
Σa∈AP̃ (a) Si (a) − T i

j

)

+Σj∈J Lτ1

(
Σa∈AP̃ (a) Sd (a) − T d

j

) (10)

where T i
j and T d

j are the ground-truth in-plane position of joint j and ground-truth depth
position of joint j respectively. τ is the smooth L1-like loss and is defined as follows [42]:

τ =
{ 1

2τ
x2, f or |x| < τ

|x| − τ
x
, otherwise

(11)
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where τ1 is set to 1 and τ2 is set to 3 as in [42]. The two loss functions are combined in
end-to-end training as follows:

loss = λloss1 + loss2 (12)

where λ is set to 3 following [42].

4 Experiments and results

Center points are used to crop the hand region from the depth image, following the approach
of other works [26, 42]. The cropped image is resized to 176 x 176 and passed as input to the
ResNet-50 backbone of the proposed approaches after performing data augmentation. The
networks are trained end-to-end under the supervision of two loss functions: joint position
estimation loss and informative anchor point surrounding loss.

4.1 Datasets

Experiments are conducted on four public hand pose datasets: NYU dataset, ICVL dataset,
MSRA dataset and HANDS 2017 dataset.

NYUDataset [37] The NYU dataset consists of 72K training and 8.2K testing depth images.
In each image, 21 joints are annotated. The dataset has a diverse range of hand poses. In
line with previous works [5, 15, 26, 42], 14 joints are used during training and testing.

ICVL Dataset [35] The ICVL dataset has 330K training depth images with in-plane rotation
augmented frames. There are 6.5K testing depth images and 16 joints are annotated.

MSRA Dataset [34] The MSRA dataset consists of 76.5K images from nine different sub-
jects and 21 joints are annotated. The leave-one-subject-out cross validation method is used
for evaluation and the results are averaged over the nine subjects.

HANDS 2017 Dataset [45] The dataset consists of 957K training and 295K testing depth
images sampled from BigHand2.2M dataset [46] and First-Person Hand Action datasets
(FHAD) [9]. It is the largest hand pose dataset that is available and provides annotations for
21 hand joints. There are five subjects in the training set and ten subjects in the test set. Five
subjects in the test set are seen in the training set.

4.2 Evaluationmetrics

We evaluate the performance of our approaches with two standard metrics.

Average 3D distance error This is the average Euclidean distance between the predicted
3D joint coordinates and the ground truth.

Percentage of successful frames This metric measures the fraction of test samples that
have all predicted joints below a given maximum Euclidean distance from the ground truth.
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4.3 Implementation

The networks are implemented in PyTorch. Data augmentation is performed according
to Xiong et al. [42], including rotation, scaling and addition of random gaussian noise
to depth values. The images in the NYU, ICVL and HANDS 2017 datasets are normal-
ized using the mean and standard deviation values provided in the A2J GitHub repository
at https://github.com/zhangboshen/A2J. A2J is not trained on the MSRA dataset and we
normalize images in this dataset separately for each subject by computing the mean and
standard deviation values of images from the same subject. Weights are updated by the
Adam optimizer and the learning rate is set to 0.00035 with a weight decay of 0.0001 for
all datasets. A batch size of 16 is used for the NYU dataset with the learning rate decreased
by a factor of 0.2 every 7 epochs for 35 epochs. A batch size of 64 is used and the learn-
ing rate is decreased by a factor of 0.2 every 5 epochs for the ICVL dataset, MSRA dataset
and HANDS 2017 dataset. The networks are trained for 10, 50 and 16 epochs on the ICVL
dataset, MSRA dataset and HANDS 2017 dataset respectively. All networks are trained and
validated on a Tesla V100 GPU.

4.4 Comparison with state-of-the-arts methods

We compare AA-A2J and AA-3DA2J with the state-of-the-art 3D hand pose estimation
methods [3, 5–8, 10, 12, 15, 20, 24, 26, 27, 30, 32, 34, 35, 39, 40, 42–44, 49] on the four
public datasets. Figure 3 shows the performances of various methods on the NYU dataset,
ICVL dataset and MSRA dataset.

On the NYU dataset, both approaches achieve better performances than baseline A2J.
Moreover, AA-3DA2J achieves a mean 3D distance error of 8.37 mm, lower than other
methods except SRN [32] (Table 1). The approaches also produce higher percentages of
frames with a mean error under 20 mm, as compared to other methods (Fig. 3). On the ICVL
dataset, AA-A2J obtains superior performance to other methods except V2V [26]. Similarly,
AA-3DA2J achieves better performance compared to other methods except P2P [12], AA-
A2J and V2V [26] (Table 2). On the MSRA dataset, AA-A2J and AA-3DA2J obtain mean
errors of 8.08 mm and 8.16 mm respectively and achieve comparable performances to other
methods (Table 3). Both approaches outperform other methods on the HANDS 2017 dataset,
with AA-3DA2J achieving a mean 3D distance error of 8.13 mm (Table 4).

The runtime speeds of different methods are shown in Table 5. AA-A2J is found to have a
faster runtime speed than all other methods except SRN [32] while AA-3DA2J has a slower
runtime speed compared to AA-A2J, SRN [32], CrossInfoNet [20] and CrossingNets [39].

4.5 Ablation study

To ascertain the individual contribution of self-attention and 3D anchor points to per-
formance, we perform experiments using the NYU dataset, a challenging dataset with a
diversity of hand poses.

Self-attention AA-A2J, which utilizes self-attention, demonstrates better performance
than baseline A2J as shown in Table 6. Compared to 3DA2J which utilizes 3D anchor points
but not self-attention, AA-3DA2J which incorporates both self-attention and 3D anchor
points achieves a lower mean error. These results show that self-attention improves the
performance of 3D hand pose estimation.
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Fig. 3 Evaluation on hand pose datasets. Left: 3D distance errors per hand joint. Right: Percentage of
successful frames over different 3D distance error thresholds

3D anchor points A2J and 3DA2J have similar performances as shown in Table 1 and
Table 6. In contrast, AA-3DA2J produces superior performance to AA-A2J (Table 6). This
suggests that 3D anchor points offer negligible performance advantage over anchor points
set in the depth image in the absence of self-attention.

4.6 Runtime analysis

AA-A2J and AA-3DA2J have runtime speeds of 151.06 fps and 79.62 fps respectively on a
Tesla V100 GPU (Table 7) whereas A2J has a higher runtime speed of 164.44 fps (Table 7)
on the same GPU.
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Table 1 Performance of different methods on NYU dataset

Method Mean error (mm)

DISCO [3] 20.7

Hand3D [7] 17.6

DeepModel [49] 17.04

JSTC [8] 16.8

Global-to-Local [24] 15.60

Lie-X [43] 14.51

REN-4x6x6x [15] 13.39

REN-9x6x6x [15] 12.69

DeepPrior++ [27] 12.24

POSE-REN [5] 11.81

SHPR-Net [6] 10.78

HandPointNet [10] 10.54

DenseReg [40] 10.21

CrossInfoNet [20] 10.08

MURAUER [30] 9.47

P2P [12] 9.05

A2J [42] 8.61

AA-A2J (Ours) 8.45

V2V [26] 8.42

AA-3DA2J (Ours) 8.37

SRN [32] 7.78

Incorporating self-attention to the network leads to a small increase in the number of
trainable parameters and decreases runtime speed marginally (Table 7). For instance, AA-
A2J has 1.05 times as many trainable parameters as A2J and a slightly slower runtime
speed.

Using 3D anchor points increases the number of trainable parameters by a large extent
which in turn reduces runtime speed (Table 7). 3D-A2J has 3.68 times as many trainable
parameters as A2J and its runtime speed is 0.50 times that of A2J. Similarly, AA-3DA2J
has 3.56 times as many trainable parameters as AA-A2J and its runtime speed is 0.53 times
that of AA-A2J.

5 Real-time 3D hand pose estimation

Real-time hand pose estimation is useful in assessing the degree of hand impairment for
rehabilitation purposes. A real-time 3D hand pose estimation system is implemented using
two depth cameras Intel RealSense SR300 and Intel RealSense D415 (Fig. 4). Owing to its
faster inference time compared to AA-3DA2J, AA-A2J is used in the system for 3D hand
pose estimation. Depth images from both cameras are passed into AA-A2J which has been
trained on the HANDS 2017 dataset to estimate the joint locations and the range of motion in
terms of flexion. Predicted angles from both cameras are averaged to improve the accuracy.
Figure 5 shows the predicted joint locations in the real-time system. Depth images from both
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Table 2 Performance of different methods on ICVL dataset

Method Mean error (mm)

LRF [35] 12.58

DeepModel [49] 11.56

Hand3D [7] 10.9

CrossingNets [39] 10.2

Cascade [34] 9.9

JTSC [8] 9.16

DeepPrior++ [27] 8.1

REN-4x6x6x [15] 7.63

REN-9x6x6x [15] 7.31

DenseReg [40] 7.24

SHPR-Net [6] 7.22

HandPointNet [10] 6.94

POSE-REN [5] 6.79

CrossInfoNet [20] 6.73

A2J [42] 6.46

AA-3DA2J (Ours) 6.39

P2P [12] 6.33

AA-A2J (Ours) 6.30

V2V [26] 6.29

cameras are retrieved and processed simultaneously. The HANDS 2017 dataset annotates
the center of the wrist (W), metacarpal phalangeal joint (MCP), proximal interphalangeal
joint (PIP), distal interphalangeal joint (DIP) and tip joint (TIP). The annotations are used
to compute the flexion hand angles as follows:

M̃CPx = arcos
(−−−−−−−−→
MCPx − W

)
.
(−−−−−−−−−−→
PIPx − MCPx

)
(13)

Table 3 Performance of different methods on MSRA dataset

Method Mean error (mm)

CrossingNets [39] 12.2

REN-9x6x6x [15] 9.79

POSE-REN [5] 8.65

HandPointNet [10] 8.51

AA-3DA2J (Ours) 8.16

AA-A2J (Ours) 8.08

CrossInfoNet [20] 7.86

SHPR-Net [6] 7.76

P2P [12] 7.71

V2V [26] 7.49

DenseReg [40] 7.23
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Table 4 Performance of different methods on HANDS 2017 dataset

Method Mean error (mm)

Vanora [44] 11.91

THU VCLab [5] 11.70

Oasis [10] 11.30

RCN-3D [44] 9.97

V2V [26] 9.95

A2J [42] 8.57

SRN [32] 8.39

AA-A2J (Ours) 8.27

AA-3DA2J (Ours) 8.13

Table 5 Runtime of different methods

Method FPS

SRN [32] 263.1

AA-A2J (Ours) 151.06

CrossInfoNet [20] 124.5

A2J [42] 105.06

CrossingNets [39] 90.9

AA-3DA2J (Ours) 79.62

Global-to-Local [24] 50

HandPointNet [10] 48

P2P [12] 41.8

Hand3D [7] 30

DeepPrior++ [27] 30

DenseReg [40] 27.8

V2V [26] 3.5

Table 6 Effect of self-attention and 3D anchor points on performance on NYU dataset

Model Mean error (mm)

AA-A2J 8.45

3DA2J 8.59

AA-3DA2J 8.37

Table 7 Number of trainable parameters in different methods

Method No. of parameters FPS

A2J 44736424 164.44

AA-A2J 46809304 151.06

3D-A2J 164522664 83.03

AA-3DA2J 166595544 79.62
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Fig. 4 Setup of depth cameras Intel RealSense D415 and Intel RealSense SR300

P̃ IPx = arcos
(−−−−−−−−−−→
PIPx − MCPx

)
.
(−−−−−−−−−−→
DIPx − PIPx

)
(14)

D̃IPx = arcos
(−−−−−−−−−−→
DIPx − PIPx

)
.a

(−−−−−−−−−→
T IPx − DIPx

)
(15)

Fig. 5 Real-time hand pose estimation
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where for each digit x, MCPx is the angle between W , MCPx and PIPx, DIPx is the
angle between MCPx , PIPx and DIPx , and DIPx is the angle between PIPx , DIPx and
T IPx .

The processing speed of the system is 12.2 fps on a 2070 Super GPU.

6 Conclusion

In this work, two networks are proposed to recover 3D hand poses from a single depth
image. The first network, AA-A2J, uses a self-attention mechanism for 3D hand pose esti-
mation whereas the second network, AA-3DA2J, utilizes 3D anchor points in addition to
self-attention. The two approaches AA-A2J and AA-3DA2J obtain performances that are
comparable to the other state-of-the-art methods and are superior to the baseline A2J regres-
sion network. In addition, both AA-A2J and A2J have similar runtime speeds. Modelling
self-attention helps capture spatial context information from depth images and is beneficial
for 3D hand pose estimation. This advantage is demonstrated by the performances of AA-
A2J on the four hand pose datasets. The use of both self-attention and 3D anchor points
in AA-3DA2J further boosts performance over AA-A2J on the NYU dataset and HANDS
2017 dataset. However, this comes at the expense of runtime speed.

There are several limitations in our work. First, the approach with 3D anchor points, 3D-
A2J, is evaluated on the NYU dataset but not on the other hand pose datasets. In future
work, this approach should be evaluated on the other datasets to determine whether extend-
ing anchor points to the depth dimension has a marginal effect on performance across all
datasets. Second, a relatively small amount of data is used to train and evaluate the pro-
posed approaches. Future work includes evaluation on a bigger dataset comprised of normal
subjects and subjects with hand impairment due to stroke. This would enable further stud-
ies on the robustness of the proposed approaches in 3D hand pose estimation for stroke
rehabilitation.
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