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Abstract
Confidentiality, integrity, authenticity, non-repudiation and storing and transmitting images
over the unsecured channel has become a challenging task nowadays. In this scenario, a
robust image encryption technique over open network has grasped a great deal of atten-
tion. In this paper to meet this challenge, we have established a new multi-layer robust
color image encryption using random matrix affine cipher (RMAC), reality preserving two
dimensional discrete fractional Hartley transform (RP2DFrHT) and two dimensional Arnold
map. The first stage of encryption is designed through RMAC. RMAC provides security
in co-ordinate domain as well as in geometrical domain. So if a hacker has knowledge
about all the pixels of an image, but has no information about the mechanism of co-ordinate
domain he/she cannot steal any information. The second stage of encryption is obtained
incorporating the concept of RP2DFrHT. The reality preserving transform eliminates the
complex-valued coefficients and provides the real-valued coefficients of encrypted image.
The real-valuedness of data provides convenient platform for display, storage and trans-
mission in digital domain. The third stage of encryption is done using 2D Arnold map,
which not only enhances the security but also enlarges key space. Therefore, the proposed
technique provides security in geometrical, co-ordinate, frequency and time domains simul-
taneously. The security of our proposed technique depends upon the secret keys as well
as their correct arrangements. Simulation analysis provides the complete visual results of
all stages of encrypted and decrypted images. Sensitivity analysis validates that our pro-
posed technique is highly sensitive towards its secret keys and their arrangements. Statistical
analysis such as histogram analysis, MSE, PSNR, correlation coefficient, entropy analysis
and resistivity of classical attacks validates the effectiveness and feasibility of our pro-
posed work. Moreover, comparison analysis testifies that our proposed technique functions
significantly well as compared to existing similar techniques.
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1 Introduction

Internet is a valuable resource for us. In today’s world, we rely too much on the Internet. It
is very useful tool for work, education, shopping, personal entertainment, etc. Network and
communication technologies are the important modes of transferring images over the Inter-
net. Images are used in various fields such as engineering services, scientific experiments,
medical imaging, advertising, art exhibition and online education, etc. With the increas-
ing use of digital technologies for transmitting and storing images, secure transmission of
images is a major concern. Image data is highly sensitive and prone to abrupt by intrud-
ers. Also image has high redundancy and strong correlation between the pixels. To protect
sensitive data from an unauthorized access is a prime agenda nowadays. Therefore, secure
communication is required for transmission of images over the Internet. In respond to this
demand, cryptography and steganography are the two important security systems which
offered a convenient platform for secure data transmission. Steganography is an efficient
technique of hiding the fact that communication is taking place by hiding information in
other information. It is profitable in various applications like government services, business
communications, military services and medical services, etc. Abdulla [1] has contributed
a significant work on the basis of steganography. In his work, he has developed secure
and efficient image-based steganography approaches that enhance embedding efficient and
improve message un-detectability. Whereas, cryptography enables us to transmit images
over a public domain from a sender to a receiver in such a way that the opponent cannot
guess what is being transmitted. The public channel could be telephone line, computer net-
work, etc. The information that the sender wants to send to the receiver is called plaintext.
The plaintext could be images, English text, numerical data, or anything. The plaintext is
encrypted using a predetermined key and the resulting ciphertext is sent over the public
channel. The opponent cannot guess the plaintext from the ciphertext. The receiver decrypts
the ciphertext using the encryption key and reconstructs the plaintext. Image encryption
plays an important role in the field of information hiding. While dealing with image encryp-
tion techniques, intrinsic properties of images such as high redundancy, bulk data capacity
and strong correlation between the pixels must be considered. Due to intrinsic properties
of images, techniques based on classical cryptography are less efficient for digital images.
To overcome this issue, several methods have been proposed for secure transmission of
images over the unsecured channel. Refregier and Javidi [29] was the first one who proposed
optical image encryption using double random phase encoding (DRPE). This concept high-
lighted the encryption technique. DRPE was further extended from Fourier domain to the
fractional Fourier domain [5, 12, 25, 26], Fresnel domain [13, 15, 32], gyrator domain [6,
21], Hartley transform [3, 4, 20], fractional wavelet transform [7, 9, 23], fractional Mellin
transform [36, 43, 44], fractional Hartley transform [14, 27, 30, 31, 40, 42]. The afore-
mentioned image encryption techniques on the basis of fractional transform have provided
better performance and higher security. However the major drawback with these techniques
is the complex-valued coefficients of encrypted images. The complex-valued coefficients of
encrypted images not only make them inconvenient for display, but also increases the stor-
age, computational and communication complexities in digital domain. To overcome these
shortcomings, Venturini and Duhamel [37] proposed reality preserving fractional transform.
The reality preserving fractional transform eliminates the burden of complex-valued coeffi-
cients and provides the real-valued coefficients of encrypted image. The real-valued nature
of data is convenient for display and decreases the storage, computational and communica-
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tion complexities of the encrypted image in digital environment. On the basis of this method,
Guleria et al. [10] proposed a novel approach for security of multiple color images using
asymmetric RSA cryptosystem, reality preserving fractional discrete cosine transform and
Arnold transform.

Our contribution The concepts of RMAC, RP2DFrHT and 2D Arnold map are merged
to design a new multi-layer robust color image encryption. The major contributions of our
proposed encryption technique are as listed below.

1. Affine cipher is a well known and most commonly used encryption scheme. Earlier
developed techniques [30, 46] using affine cipher are secured in geometrical domain
only. However, in this paper the security system designed in the first stage of encryp-
tion through RMAC possesses security in co-ordinate domain as well as in geometrical
domain. So if a hacker has knowledge about all the pixels of an image, but has no
information about the mechanism of co-ordinate domain he/she cannot steal any infor-
mation. The main reason is that in co-ordinate domain only the positions of the pixels
are modified whereas the values of the pixels remain constant. In addition, arrangement
of RMAC is very sensitive.

2. To provide next layer of security RP2DFrHT is implemented. Its inherent characteristic
over other fractional transforms is the effective potential of real-valuedness which offers
the convenient medium for display, storage and transmission over the unsecured public
environment.

3. To provide extra layer of security in third stage of encryption Arnold map is used. The
existing techniques [2, 11, 22] have used periodic property of Arnold map in decryption
process, whereas in our proposed technique decryption process is done using inverse
Arnold map. Moreover, we have used the generalized Arnold map which is faster. The
encryption and decryption process require secret keys which enlarges our key space and
enhances the security system significantly.

To summarize this, our proposed encryption technique provides multi-layer secu-
rity in geometrical, co-ordinate, frequency and time domains. It provides convenient
medium for storage, display as well as transmission in digital domain. The security of
the proposed technique depends not only upon the secret keys, but their arrangements
also play a vital role. The secret keys and their arrangements are highly sensitive for
robustness.

Paper organization We have organized the remaining sections of the paper as follows:
Mathematical formulation of RMAC, RP2DFrHT and 2D Arnold map are explained in
Section 2. The whole procedure of implementation of presented technique are covered in
Section 3. In Section 4, simulation is provided. (i) Security analysis and (ii) Statistical anal-
ysis can be viewed through Sections 5 and 6 respectively. In Section 7, comparison analysis
is provided. Lastly, the proposed technique is concluded in Section 8.

2 Preliminaries

In this section, we give a brief introduction of RMAC, RP2DFrHT and 2D Arnold map
which are used in our proposed encryption technique.
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2.1 Randommatrix affine cipher (RMAC) [18]

Affine cipher is a well recognized mono-alphabetic substitution cipher mostly used for
encryption of textual data. In our proposed technique RMAC [18] is used which performed
better as compared to affine cipher. The proposed technique provides security in co-ordinate
domain as well as in geometrical domain. The algorithm of RMAC is demonstrated in Fig. 1.
The pixel intensity of m × n RGB image is given in matrix Y . The pixels of the image are
categorized in even and odd numbered rows and columns. Even and odd numbered rows
of the matrix Y are multiplied by the multiplicative parameters χ and η respectively. The
co-ordinates of even and odd numbered rows are shifted by the shift parameters α and β

respectively. The multiplicative parameters χ and η are coprime to n i.e gcd(χ, n) = 1
and gcd(η, n) = 1 and 0 < α �= β < n. Similar mechanism is adopted for even and odd
numbered columns. Even and odd numbered columns of the matrix Y are multiplied by the
multiplicative parameters λ and ω respectively. The co-ordinates of even and odd numbered
columns are shifted by the shift parameters γ and δ respectively. The multiplicative param-
eters λ and ω are coprime to m i.e gcd(λ, m) = 1 and gcd(ω,m) = 1 and 0 < γ �= δ < m.
The mathematical expression of RMAC on RGB image matrix Y is given as follows.

Y ′
even row, p ≡ χYeven row, i+α(mod n),

Y ′
odd row, q ≡ ηYodd row, i+β(mod n),

Y ′
k, even column ≡ λYj+γ (mod m), even column,

Y ′
l, odd column ≡ ωYj+δ(mod m), odd column. (1)

Fig. 1 Framework of RMAC for an RGB image of size m × n
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The inverse random matrix affine cipher (IRMAC) for decoding an RGB image Y ′ is
provided below.

Yeven row, i ≡ μY ′
even row, p+n−α(mod n),

Yodd row, i ≡ κY ′
odd row, q+n−β(mod n),

Yj, even column ≡ νY ′
k+m−γ (mod m), even column,

Yj, odd column ≡ σY ′
l+m−δ(mod m), odd column, (2)

where μχ ≡ 1(mod n), κη ≡ 1(mod n), νλ ≡ 1(mod m) and σω ≡ 1(mod m). The
matrix Y is an original RGB image whereas the matrix Y ′ is the matrix after using RMAC.
Shift parameters and multiplier parameters are used as secret keys.

2.2 Reality preserving two dimensional discrete fractional Hartley transform
(RP2DFrHT) [17, 45]

The elements of the N × N discrete Hartley transform (DHT) matrix H are as follows.

Hab = 1√
N

[
cos

(
2πab

N

)
+ sin

(
2πab

N

)]
, (3)

where 0 ≤ a, b ≤ N − 1.
Tridiagonal matrix S is given below.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 . . . 0 1

1 2cos
(
2π
N

)
1 . . . 0 0

0 1 2cos
(
4π
N

)
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2cos
[
2(N−2)π

N

]
1

1 0 0 . . . 1 2cos
[
2(N−1)π

N

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The eigen-decomposition of the N × N DHT matrix H [27] is given below.

H = UDU ′, (5)

where U is a matrix obtained from the eigenvector of the tridiagonal matrix S given in (4),
D is a diagonal matrix which consists of the eigenvalues of DHT matrix as its diagonal
entries and U ′ is the transpose of the matrix U .

The discrete fractional Hartley transform Hc is obtained by taking the cth power of the
matrix H as given below.

Hc = UDcU ′, (6)

where c is the fractional order.
The two dimensional discrete fractional Hartley transform (2DFrHT) for the N × N

matrix X is

Z = HcX(Hc)′. (7)

The encrypted image obtained using 2DFrHT is a complex-valued image, whereas the origi-
nal image is a real-valued image. To achieve real-valued encrypted image, reality preserving
two dimensional discrete fractional Hartley transform (RP2DFrHT) [17, 45] is used.
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The RP2DFrHT kernel matrix is given as

Rc
H =

[
Re(Hc) −Im(Hc)

Im(Hc) Re(Hc)

]
. (8)

The RP2DFrHT for the N × N matrix X is given as

E = Rc
H XRd

H , (9)

where c and d are the fractional orders.
The IRP2DFrHT for decoding the N × N matrix E is given as

X = R−c
H ER−d

H . (10)

2.3 2D Arnoldmap [33]

The two dimensional (2D) Arnold map is enormously utilized in image encryption algo-
rithms. It is used to dislocate the position of the pixels in an RGB image. The 2D Arnold
map is shown below. [

x′
y′

]
=

[
1 v

u uv + 1

] [
x

y

]
(mod n), (11)

The inverse Arnold map is given below.[
x

y

]
=

[
uv + 1 −v

−u 1

] [
x ′
y′

]
(mod n), (12)

where u and v are the Arnold keys, (x, y) are the original pixels, (x′, y′) are the pixels after
using 2D Arnold map and u, v ∈ Z

+, Z+ is the set of positive integers.

3 Proposedmethod

We design a new multi-layer encryption technique for color image security. In the proposed
technique, the concepts of RMAC, RP2DFrHT and Arnold map are merged. The proposed
technique is discussed in two phases. First phase is an encryption process and second phase
is a decryption process.

Phase 1: Encryption process Encryption is the phenomenon of converting plain image
(original) into an unintelligible format of image called encrypted image. The whole encryp-
tion process is diagrammatically represented in the form of flowchart in Fig. 2. Firstly,
three color components as red (R), green (G) and blue (B) are obtained by splitting the
RGB image. Secondly, each component of RGB image is processed separately. A detailed
description is given as below.

Stage-I (RMAC):- This stage involves the generation of the first stage encrypted image. The
RMAC is implemented on each component of the original RGB color image. Two types
of parameters are required in this stage. One is shift parameters and another is multiplier
parameters. The shift parameters and multiplier parameters are as given below.

1. For red component (R): The shift parameters are αR , βR , γR , δR and the multiplier
parameters are χR , ηR , λR , ωR .

2. For green component (G): The shift parameters are αG, βG, γG, δG and the multiplier
parameters are χG, ηG, λG, ωG.
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Fig. 2 Flowchart of Encryption process

3. For blue component (B): The shift parameters are αB , βB , γB , δB and the multiplier
parameters are χB , ηB , λB , ωB .

At the end of this stage, red, green and blue components of the first stage encrypted image
are obtained for red, green and blue components of the original RGB image.

Stage-II (RP2DFrHT):- The second stage encrypted image is obtained by using RP2DFrHT.
The RP2DFrHT is implemented on each component of the first stage encrypted image.
The implementation is done using the fractional orders. The fractional orders for each
component are as given below.

1. For red component (R): The fractional orders are cR and dR .
2. For green component (G): The fractional orders are cG and dG.
3. For blue component (B): The fractional orders are cB and dB .

At the end of this stage, red, green and blue components of the second stage encrypted
image are obtained for red, green and blue components of the first stage encrypted image.

Stage-III (Arnoldmap):- The complete encrypted image is obtained by scrambling the pix-
els of each component of the second stage encrypted image. The scrambling is done using
Arnold map. In this stage the Arnold keys are given as follows.

1. For red component (R): The Arnold keys are uR and vR .
2. For green component (G): The Arnold keys are uG and vG.
3. For blue component (B): The Arnold keys are uB and vB .

At the end of this stage, red, green and blue components of the third stage encrypted image
are obtained for red, green and blue components of the second stage encrypted image. By
combining red, green and blue components of the third stage encrypted image, we obtain
the complete encrypted image.
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Phase 2: Decryption process The process of converting an encrypted image into a plain
image (original) is called decryption. It is basically a reverse process of the encryption.
The whole decryption process is diagrammatically represented in the form of flowchart in
Fig. 3. The whole procedure is processed using correct secret keys as well as their correct
arrangements. A detailed description is given as below.

Stage-I (Reverse of Arnold map):- The complete encrypted image firstly segregated into
red, green and blue components. The inverse Arnold map is applied on each component R,
G, B of the encrypted image. At the end of this stage, scrambled pixels are converted into
unscrambled pixels. The red, green and blue components of the first stage decrypted image
are obtained for red, green and blue components of the complete encrypted image.

Stage-II (Reverse of RP2DFrHT):- In this stage IRP2DFrHT is applied to decrypt the image
obtained in the first stage. The inverse fractional orders for each component are as given
below.

1. For red component (R): The inverse fractional orders are c−1
R and d−1

R .
2. For green component (G): The inverse fractional orders are c−1

G and d−1
G .

3. For blue component (B): The inverse fractional orders are c−1
B and d−1

B .

At the end of this stage, red, green and blue components of the second stage decrypted
image are obtained for red, green and blue components of the first stage decrypted image.

Stage-III (Reverse of RMAC):- Lastly inverse RMAC is applied to decrypt the image
obtained in the second stage. The decryption keys involve in this process are as follows.

1. For red component (R): The inverse shift parameters are α−1
R , β−1

R , γ −1
R , δ−1

R and the
inverse multiplier parameters are μR , κR , νR , σR .

2. For green component (G): The inverse shift parameters are α−1
G , β−1

G , γ −1
G , δ−1

G and the
inverse multiplier parameters are μG, κG, νG, σG.

Fig. 3 Flowchart of Decryption process
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3. For blue component (B): The inverse shift parameters are α−1
B , β−1

B , γ −1
B , δ−1

B and the
inverse multiplier parameters are μB , κB , νB , σB .

As μRχR ≡ 1(mod N), κRηR ≡ 1(mod N), νRλR ≡ 1(mod N), σRωR ≡ 1(mod N),
μGχG ≡ 1(mod N), κGηG ≡ 1(mod N), νGλG ≡ 1(mod N), σGωG ≡ 1(mod N),
μBχB ≡ 1(mod N), κBηB ≡ 1(mod N), νBλB ≡ 1(mod N), σBωB ≡ 1(mod N). At the
end of this stage, red, green and blue components of the third stage decrypted image are
obtained. By combining red, green and blue components of the third stage decrypted image,
we obtain the complete decrypted image.

4 Simulation

In this section, simulation is done to examine the authenticity and feasibility of the proposed
encryption technique. For simulation, Lena color image of size 512 × 512 × 3 is taken as
shown in Fig. 4a. The first stage encrypted image obtained using RMAC is given in Fig. 4b.
The shift parameters and multiplier parameters used in this stage are as follows.

1. For red component (R): The shift parameters are αR=450, βR=170, γR=145, δR=371
and the multiplier parameters are χR=233, ηR=147, λR=313, ωR=291.

2. For green component (G): The shift parameters are αG=151, βG=71, γG=250, δG=300
and the multiplier parameters are χG=119, ηG=417, λG=505, ωG=215.

3. For blue component (B): The shift parameters are αB=399, βB=501, γB=192, δB=497
and the multiplier parameters are χB=451, ηB=273, λB=337, ωB=119.

Fig. 4 Encryption results for Lena color image a The original Lena color image b The first stage Lena
encrypted image c The second stage Lena encrypted image and d The complete Lena encrypted image
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Figure 4c represents the second stage encrypted image by incorporating RP2DFrHT. The
fractional orders used in this stage are as follows.

1. For red component (R): The fractional orders are cR=0.7, dR=0.3.
2. For green component (G): The fractional orders are cG=0.4, dG=0.5.
3. For blue component (B): The fractional orders are cB=0.9, dB=0.6.

Figure 4d represents the complete encrypted image obtained after using Arnold map. The
Arnold keys used in this stage are as follows.

1. For red component (R): The Arnold keys are uR=130, vR=160.
2. For green component (G): The Arnold keys are uG=97, vG=100.
3. For blue component (B): The Arnold keys are uB=99, vB=110.

The Fig. 5 represents the correct demonstration of decrypted image for each stage employ-
ing correct secret keys and their correct arrangements. The complete encrypted image is
given in Fig. 5a. The first stage decrypted image is obtained using inverse Arnold map as
shown in Fig. 5b. The second stage decrypted image is obtained using IRP2DFrHT as shown
in Fig. 5c. Lastly, Fig. 5d gives the complete decrypted image. This stage is obtained using
inverse RMAC. The inverse shift parameters and inverse multiplier parameters are as given
below.

1. For red component (R): The inverse shift parameters are α−1
R =62, β−1

R =342, γ −1
R =367,

δ−1
R =141 and the inverse multiplier parameters are μR=345, κR=411, νR=265, σR=139.

Fig. 5 Decryption results for Lena color image a The complete Lena encrypted image b The first stage
decrypted image c The second stage decrypted image and d The complete decrypted image
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2. For green component (G): The inverse shift parameters are α−1
G =361, β−1

G =441,
γ −1
G =262, δ−1

G =212 and the inverse multiplier parameters are μG=327, κG=97, νG=73,
σG=231.

3. For blue component (B): The inverse shift parameters are α−1
B =113, β−1

B =11, γ −1
B =320,

δ−1
B =15 and the inverse multiplier parameters are μB=235, κB=497, νB=433, σB=327.

5 Security analysis

The sensitivity analysis is done to validate the role of secret keys and their arrangements.
The proposed technique is highly sensitive towards its secret keys and their arrangements.
In other words, some simple modification in the secret keys or in the arrangements would
provide a distorted version of the original image. The sensitivity analysis is done in five
phases as given below.

Sensitivity analysis-I The sensitivity analysis-I is shown in Fig. 6. This stage is performed
with incorrect Arnold keys while all other secret keys and their arrangements are kept same.
The incorrect Arnold keys for each color component are taken as follows.

1. For red component (R): The Arnold keys are uR = 131 and vR = 160.
2. For green component (G): The Arnold keys are uG = 97 and vG = 101.
3. For blue component (B): The Arnold keys are uB = 100 and vB = 111.

Fig. 6 Results of Sensitivity analysis-I for incorrect Arnold keys a The complete Lena encrypted image b
The first stage decrypted image c The second stage decrypted image d The complete decrypted image
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The complete encrypted image is displayed in Fig. 6a. The outcome of the first stage
decrypted image with incorrect Arnold keys of inverse Arnold map is given in Fig. 6b.
The second stage decrypted image with correct decryption keys of IRP2DFrHT is given
in Fig. 6c. The complete decrypted image with correct parameters and arrangements of
IRMAC is shown in Fig. 6d. It is clear from Fig. 6 that the complete decrypted image is
totally different from the original color image. Hence, Arnold keys are very sensitive for the
proposed technique.

Sensitivity analysis-II This stage of sensitivity analysis is performed with approximate
fractional orders of RP2DFrHT. However, Arnold keys and parameters of IRMAC are kept
correct. The complete procedure is illustrated in Fig. 7. The approximate fractional orders
for each color component are as follows.

1. For red component (R): The fractional orders are cR = 0.7 and dR = 0.2.
2. For green component (G): The fractional orders are cG = 0.3 and dG = 0.5.
3. For blue component (B): The fractional orders are cB = 0.8 and dG = 0.5.

The complete encrypted is represented in Fig. 7a. The outcome of the first stage decrypted
image using accurate Arnold keys is shown in Fig. 7b. The outcome of the second stage
decrypted image with approximate keys of IRP2DFrHT is shown in Fig. 7c. The com-
plete decrypted image with correct parameters and the arrangements of IRMAC is shown in
Fig. 7d. It is clear from Fig. 7 that the complete decrypted image is entirely different from
the original color image. This stage shows that the fractional orders are highly sensitive.

Fig. 7 Results of Sensitivity analysis-II for approximate fractional orders a The complete Lena encrypted
image b The first stage decrypted image c The second stage decrypted image d The complete decrypted
image
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Sensitivity analysis-III This stage of sensitivity analysis is shown in Fig. 8. In this stage
the sensitivity analysis is done using incorrect inverse shift parameters while remaining
secret keys are kept same. The incorrect inverse shift parameters for each component are as
follows.

1. For red component (R): The inverse shift parameters are α−1
R =65, β−1

R =341, γ −1
R =360,

δ−1
R =100.

2. For green component (G): The inverse shift parameters are α−1
G =364, β−1

G =442,
γ −1
G =265, δ−1

G =211.
3. For blue component (B): The inverse shift parameters are α−1

B =110, β−1
B =16, γ −1

B =322,
δ−1
B =18.

The complete encrypted image is shown in Fig. 8a. The outcome of the first stage decrypted
image using accurate Arnold keys is given in Fig. 8b. The outcome of the second stage
decrypted image with correct IRP2DFrHT keys is given in Fig. 8c. The complete decrypted
image is obtained using incorrect inverse shift parameters whereas inverse multiplier param-
eters and arrangements of IRMAC are kept same. This stage is displayed in Fig. 8d. It is
clear from Fig. 8 that the complete decrypted image is completely different from the original
color image. The sensitivity analysis-III interferences that the shift parameters are highly
sensitive.

Sensitivity analysis-IV Sensitivity analysis-IV is done using approximate inverse multi-
plier parameters whereas inverse shift parameters, fractional orders and Arnold keys are not

Fig. 8 Results of Sensitivity analysis-III for incorrect inverse shift parameters a The complete Lena
encrypted image b The first stage decrypted image c The second stage decrypted image d The complete
decrypted image

27841Multimedia Tools and Applications (2021) 80:27829–27853



disturbed. The approximate inverse multiplier parameters for each color component are as
follows.

1. For red component (R): The inverse multiplier parameters are μR=347, κR=151,
νR=239, σR=459.

2. For green component (G): The inverse multiplier parameters are μG=239, κG=7,
νG=211, σG=381.

3. For blue component (B): The inverse multiplier parameters are μB=431, κB=507,
νB=143, σB=91.

The complete encrypted image is shown in Fig. 9a. The first stage decrypted image is dis-
played in Fig. 9b which is attained using accurate Arnold keys. The second stage decrypted
image is displayed in Fig. 9c with correct IRP2DFrHT keys. The complete decrypted image
is shown in Fig. 9d obtained using approximate inverse multiplier parameters whereas
inverse shift parameters and arrangements of IRMAC are kept correct. The complete
decrypted image is entirely different from the original image as shown in Fig. 9. Therefore,
in this stage we conclude that the multiplier parameters are very sensitive.

Sensitivity analysis-V Sensitivity analysis-V is done using incorrect arrangements of
IRMAC while other secret keys and their arrangements are kept correct. Incorrect arrange-
ments for each color component are taken as follows.

1. For red component (R): The inverse shift parameters are α−1
R =367, β−1

R =342, γ −1
R =141,

δ−1
R =62 and the inverse multiplier parameters are μR=345, κR=139, νR=411, σR=265.

Fig. 9 Results of Sensitivity analysis-IV for approximate inverse multiplier parameters a The complete Lena
encrypted image b The first stage decrypted image c The second stage decrypted image d The complete
decrypted image
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2. For green component (G): The inverse shift parameters are α−1
G =441, β−1

G =262,
γ −1
G =361, δ−1

G =212 and the inverse multiplier parameters areμG=97, κG=327, νG=231,
σG=73.

3. For blue component (B): The inverse shift parameters are α−1
B =320, β−1

B =113, γ −1
B =15,

δ−1
B =11 and the inverse multiplier parameters are μB=497, κB=327, νB=235, σB=433.

The complete encrypted image is shown in Fig. 10a. The first stage decrypted image using
correct Arnold keys is represented in Fig. 10b. The outcome of the second stage decrypted
image using correct IRP2DFrHT keys is displayed in Fig. 10c. The complete decrypted
image is obtained using incorrect arrangements of IRMAC whereas all other parameters are
kept same. This stage is displayed in Fig. 10d. The complete decrypted image is entirely
different from the original color image as displayed in Fig. 10. Hence, sensitivity analysis-
V ensures that not only the magnitude of parameters but their arrangements are also very
sensitive.

6 Statistical analysis

Visual differentiation between original and encoded/ decoded image is not possible. It would
be possible in statistical analysis. An ideal encryption technique should resist all types of
statistical attacks. To validate the effectiveness and feasibility of our presented encryption
technique, we have done a statistical analysis in this section.

Fig. 10 Results of Sensitivity analysis-V for incorrect arrangements of IRMAC a The complete Lena
encrypted image b The first stage decrypted image c The second stage decrypted image d The complete
decrypted image
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6.1 Histogram analysis

The statistical behaviour of input and output images are analyzed in histogram analysis. The
histogram analysis is a graphical representation of the number of pixels against different
intensity values found in an image. Figure 11a,b,c and d represent the histogram of the origi-
nal Lena color image, the first stage Lena encrypted image, the second stage Lena encrypted
image and the complete Lena encrypted image as given in Fig. 4a,b,c and d respectively.
After analyzing all encrypted images, we have found that not only the histogram of the com-
plete encrypted image, but also the histograms of different stages of the encrypted images
are different from the original image. This ensures that the information about the origi-
nal image cannot be leaked at any stage of the encrypted image. This also provides the
robustness against potential attack. The histogram of the decrypted image is also obtained.
Figure 12a,b,c and d represent the histogram of the complete Lena encrypted image, the
first stage decrypted image, the second stage decrypted image and the complete decrypted
image as shown in Fig. 5a,b,c and d respectively. The similarity between the histogram of
the complete decrypted image and the histogram of the original image demonstrates the
effectiveness of our proposed technique.

Fig. 11 Histogram results for encryption process a histogram of the original Lena color image b histogram
of the first stage Lena encrypted image c histogram of the second stage Lena encrypted image d histogram
of the complete Lena encrypted image
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Fig. 12 Histogram results for decryption process a histogram of the complete Lena encrypted image b his-
togram of the first stage decrypted image c histogram of the second stage decrypted image d histogram of
the complete decrypted image

6.2 Mean squared error (MSE)

The mean squared error between input RGB image and output RGB image for each red,
green and blue component are mathematically calculated as.

MSE = 1

N × M

N∑
n=1

M∑
m=1

|f (n,m) − f̂ (n,m)|2, (13)

where N and M are pixels of an RGB image, f (n, m) is the input image and f̂ (n,m) is the
output image. Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 represent the values of MSE between
original image and output image for each RGB component. The MSE values between com-
plete encrypted image shown in Fig. 4d and original image shown in Fig. 4a are given in
Table 3. This table shows that the MSE values for each component of the RGB color image
are very high. Higher values of MSE indicate that the original image is totally changed. The
MSE values between complete decrypted image shown in Fig. 5d and original image are
given in Table 6. This table shows that the MSE values for each component of RGB image
is zero which guarantee that the original image and the complete decrypted image are both
identical.
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Table 1 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Fig. 4b and a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.0515e+04 7.9126 0.0071

2. G 9.0633e+03 8.5579 0.0029

3. B 7.1484e+03 9.5887 -0.0014

Table 2 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Fig. 4c and a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 4.7990e+04 1.3193 -0.0167

2. G 2.5747e+04 4.0235 -0.0082

3. B 3.3421e+04 2.8906 -1.5674e-04

Table 3 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Fig. 4d and a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 4.7748e+04 1.3413 1.5167e-04

2. G 2.5633e+04 4.0428 -5.1979e-04

3. B 3.3412e+04 2.8918 7.5117e-04

Table 4 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 5b and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 4.7990e+04 1.3193 -0.0167

2. G 2.5747e+04 4.0235 -0.0082

3. B 3.3421e+04 2.8906 -1.5674e-04

Table 5 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 5c and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.0515e+04 7.9126 0.0071

2. G 9.0633e+03 8.5579 0.0029

3. B 7.1484e+03 9.5887 -0.0014

Table 6 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 5d and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 0 Inf 1

2. G 0 Inf 1

3. B 0 Inf 1
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Table 7 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 6d and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.0624e+04 7.8678 0.0032

2. G 9.0729e+03 8.5533 -0.0018

3. B 7.0812e+03 9.6297 0.0012

Table 8 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 7d and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.0693e+04 7.8397 -0.0033

2. G 9.0527e+03 8.5630 -6.6963e-05

3. B 7.0967e+03 9.6202 0.0022

Table 9 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 8d and Fig. 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 3.2444e+03 13.0194 0.3307

2. G 5.6516e+03 10.6091 -0.0211

3. B 2.2769e+03 14.5574 0.0142

Table 10 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 9d and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.1342e+04 7.5838 -0.0490

2. G 9.1742e+03 8.5051 -0.0210

3. B 7.0891e+03 9.6249 0.0113

Table 11 MSE(R,G,B), PSNR(R,G,B) and Correlation(R,G,B) of Figs. 10d and 4a

S.No. Image component MSE(R,G,B) PSNR(R,G,B) Correlation(R,G,B)

1. R 1.0574e+04 7.8882 -0.0021

2. G 9.0777e+03 8.5511 -0.0049

3. B 7.1170e+03 9.6078 0.0035
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6.3 Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio between input RGB image and output RGB image for each
RGB component are mathematically calculated as.

PSNR = 10 . log10
(255)2

MSE
. (14)

Tables 1–11 represent the values of PSNR between original image and output image for each
RGB component. The PSNR values between complete encrypted image shown in Fig. 4d
and original image shown in Fig. 4a are given in Table 3. This table shows that the PSNR
values for each component of the RGB color image are low. Lower values of PSNR indi-
cate that the original image is completely changed. The PSNR values between complete
decrypted image shown in Fig. 5d and original image are given in Table 6. This table shows
that the PSNR values for each component of RGB image is infinity which guarantee that
the original image and the complete decrypted image are both identical.

6.4 Correlation coefficient

To measure linear relationship between the pixels of two images, correlation coefficient (C)
is considered. The limiting value of C lies between -1 and +1 i.e. -1 ≤ C ≤ +1. If C is +1 it
means the strong positive correlation. If C is -1 it means the negative relationship between
two images. If C is 0 it means no relationship between two images. For the original image,
the value of C is close to +1, whereas for the encrypted image, the value of C is close to 0.

Tables 1–11 represent the values of correlation coefficient between original image and
output image for each RGB component. The values of C between complete encrypted image
shown in Fig. 4d and original image shown in Fig. 4a are given in Table 3. This table
shows that the values of C for each component of the RGB color image are tending to zero
which indicate that the original image is totally changed. The values of C between complete
decrypted image shown in Fig. 5d and original image are given in Table 6. This table shows
that the values of C for each component of RGB image are +1 which guarantee that the
original image and the complete decrypted image are both identical.

The results of the aforementioned statistical tools interference that without knowing
correct secret keys and their correct arrangements, unauthorized person cannot obtain any
information from the encrypted image. The ideal value of each statistical tool validates that
using correct secret keys and their correct arrangements the complete correct original image
has recovered. Tables 7–11 signify the sensitivity of secret keys and their arrangements
mathematically. We have also obtained correlation coefficients in horizontal, vertical and
diagonal directions which are given in Table 12.

6.5 Entropy analysis

To quantify the impulsiveness of the information, entropy analysis is done. The mathemati-
cal expression of entropy is given as follows.

H(s) = −
M∑

j=1

p(sj ) log2 p(sj ), (15)

where H(s) denotes the entropy of data s, p(sj ) is the probability occurrence of the case
sj and M is the total number of all possible occurrences. The ideal value of H(s) should
be 8 bits. The entropy estimation should be near to ideal value to provide invulnerability
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Table 12 Correlation coefficients in horizontal, vertical and diagonal directions

Data Component of color image H V D

Figure 4a Red component 0.9753 0.9871 0.9634

Green component 0.9748 0.9872 0.9630

Blue component 0.9532 0.9741 0.9334

Figure 4d Red component 0.0386 -0.0936 0.0083

Green component 0.1305 -0.0222 -0.0195

Blue component 0.0467 -00008 0.0059

from entropy attacks. The values of entropy estimation of red, green and blue components
of the original image, the first stage encrypted image, the second stage encrypted image,
the complete encrypted image and the complete decrypted image are listed in Table 13. It
is justified that our proposed encryption technique is more secure against entropy based
attacks.

6.6 Resisting classical attacks

While dealing with cryptanalysis, classical attacks are classified into four categories:
chosen-plaintext attack (CPA), known-plaintext attack (KPA), chosen-ciphertext attack
(CCA) and ciphertext-only attack (COA). In CPA, the cryptanalyst has tentative access to
the encryption system and he tries to find a ciphertext corresponding to the randomly cho-
sen plaintext. In KPA, the cryptanalyst has availability of both plaintext and ciphertext. The
cryptanalyst randomly receives these samples instead of selecting. In CCA, the cryptanalyst
has temporary access to decryption system to find comparative plaintext corresponding to
the arbitrarily picked ciphertext. In COA, the cryptanalyst has access to a certain number of
ciphertexts and have no information about the plaintext. Among them, chosen-plaintext is
the most remarkable attack. If encryption algorithm restricts chosen-plaintext attack then it
opposes other three attacks too. In this paper, our encryption technique is designed in such a
way that the security of the system depends not only upon the secret keys, but also upon the
correct arrangements of all secret keys. As the proposed technique has exceptionally huge
key size. Therefore, it is difficult for hackers to analyze accurate secret keys and appro-
priate arrangements of all hidden keys. In Section 5, we have demonstrated the sensitivity
analysis of our encryption technique. Therefore, owing to all these properties the proposed
technique is unaffected by above all four typical attacks.

Table 13 Entropy values for red, green and blue components of Lena color image

RGB image Entropy(R,G,B)

data R G B

Figure 4a 7.2634 7.5899 6.9854

Figure 4b 7.8185 7.9122 7.7568

Figure 4c 5.4262 5.7184 4.8725

Figure 4d 5.4262 5.7184 4.8725

Figure 5d 7.2634 7.5899 6.9854
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7 Comparison analysis

In this section, we have compared our proposed encryption technique with the existing
similar techniques [7, 8, 11, 16, 18, 19, 22, 24, 28, 34, 35, 38, 39, 41, 42, 46].

S.No. Existing techniques [7, 8, 11, 16, 18,
19, 22, 24, 28, 34, 35, 38, 39, 41, 42,
46]

Our proposed technique

1. The security of the techniques [7, 8,
19, 22, 35, 39, 46] depend upon secret
keys only.

The security of our proposed tech-
nique depends upon secret keys as
well as their correct arrangements.

2. The main secret keys of the tech-
niques [16, 42] are fractional order
and random phase.

The main secret keys of our
proposed technique are shift
parameters, multiplier param-
eters, fractional orders and
Arnold keys.

3. The techniques [8, 16, 18, 19, 35, 39]
provide one or two layer of security.

Our proposed technique provides
multi-layer security.

4. The techniques [11, 16, 22, 28, 38,
39, 46] possess security either in co-
ordinate domain, or in geometrical
domain, or in frequency domain, or in
spatial domain.

Our proposed technique maintains
security in co-ordinate, geometrical,
frequency and time domains.

5. The techniques [11, 16, 24, 28, 34,
35, 41, 42] provide complex-valued
coefficients.

Our proposed technique provides
real-valued coefficients.

6. In existing techniques [24, 28] the
mean squared error between correctly
decrypted image and original image
is almost zero.

In our proposed technique the mean
squared error between correctly
decrypted image and original image
is exactly equal to zero.

1. Chen and Zhao [7] proposed an encryption scheme in optical domain using fractional
wavelet transform (FWT). Two series of keys are used in their scheme. The security
of their scheme depends upon keys only.

2. Tao et al. [35] presented a cryptographic technique using multi orders of fractional
Fourier transform (FRFT). The security of their technique depends only upon the keys.
The nature of encrypted image is complex-valued. The security of their technique is
given in the frequency domain.

3. Lang [19] developed a technique using the concept of reality preserving multiple-
parameter fractional Fourier transform (RPMPFRFT). The security of his scheme
depends upon the parameters of RPMPFRFT.

4. Liu et al. [22] introduced a scheme for color image in which Arnold transform and
color-blend operation in discrete cosine transform domain play a vital role. The ran-
dom angle data in color blend operation and parameters of Arnold transform are taken
as a key. The security of their scheme depends in co-ordinate domain as well as in
frequency domain.
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5. Wu et al. [39] presented an encryption scheme using multiple-order discrete fractional
cosine transform (MODFrCT). The security of their scheme depends upon fractional
orders only. Their scheme provides security in frequency domain only.

6. Prasad et al. [28] introduced an encryption scheme using FRFT and wavelet trans-
form. Final encoded image obtained in their scheme is complex-valued. Their scheme
provides security in frequency domain only.

7. Zhu et al. [46] presented an algorithm for image security based on Arnold trans-
form and affine cipher. Their scheme is secure in co-ordinate domain as well as in
geometrical domain. The security depends upon secret keys only.

8. Kumar et al. [18] introduced their first encryption algorithm for RGB image using
discrete wavelet transform and random matrix affine cipher. Their scheme provides
two layers of security.

9. Zhao et al. [42] designed a scheme based on optical domain using two dimensional
fractional Hartley transform (FRHT). The random phase codes and fractional orders
are taken as keys. The final encrypted image is a complex-valued in their scheme.

10. Tao et al. [34] introduced double random amplitude encoding method using multiple-
parameter discrete fractional Hadamard transform (MPDFrHaT). The ciphertext
obtained in their scheme after encryption is complex-valued data.

11. Wu et al. [38] proposed a lossless cryptographic technique for color image utilizing
two dimensional discrete wavelet transform and six dimensional hyperchaotic system.
The system is secure in frequency domain as well as in spatial domain.

12. Mishra and Sharma [24] proposed an image encryption scheme utilizing random
matrix shift cipher (RMSC) and discrete fractional Fourier transform (DFrFT). The
secret keys as well as their arrangements are established for the immunity of the
system. The nature of encrypted image is complex-valued.

13. Chen and Zhao [8] proposed an optical image encryption in accordance with wave-
length multiplexing and lensless Fresnel transform holograms. The parameter of
Fresnel transform and random phase masks are taken as a key.

14. Joshi et al. [16] designed a technique for color image data based on FRFT. The frac-
tional order and random phase masks are taken as a key for the enhancement of
security of the system.

15. Zhang and Xiao [41] proposed an image encryption scheme based on optical domain
using discrete Chirikov standard map and chaos-based fractional random transform.
The encrypted image obtained in their scheme has complex coefficients.

16. Guo et al. [11] introduced a technique for color image data using discrete fractional
random transform (DFRNT) and Arnold transform (AT) in the intensity-hue-saturation
(IHS) color space. The encrypted image obtained in their technique has complex
coefficients.

8 Conclusions

In this paper, we have proposed a robust multi-layer color image encryption by merging
the concepts of RMAC, RP2DFrHT and 2D Arnold map. The encryption has been done in
three phases. Firstly, RGB image has been divided into its three components R, G, B. In
the first phase, RMAC has been employed to transform the pixels in co-ordinate domain
as well as in geometrical domain. In the second phase, RP2DFrHT has been used to trans-
form the pixels in frequency domain. RP2DFrHT provides real-valued encrypted image.
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The real-valuedness property of RP2DFrHT decreases the storage, computational and com-
munication complexities of the encrypted image in digital environment. In the final phase,
an additional layer of security has been provided using Arnold map. Arnold map provides
chaotic behaviour in our proposed encryption technique. For correct image encryption, we
have adopted the reverse steps of the encryption process. Moreover presented technique has
provided security in geometrical domain, co-ordinate domain, frequency domain and time
domain. Sensitivity analysis has been done to demonstrate the sensitivity of the secret keys
and their arrangements. Statistical analysis has been done to prove the resistance against all
types of statistical attacks.
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