
A comprehensive analysis and prediction of earthquake
magnitude based on position and depth parameters
using machine and deep learning models

Rachna Jain1 & Anand Nayyar2 & Simrann Arora1 & Akash Gupta1

# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Earthquake is one of the major natural disasters that not only costs human lives but also
leads to financial losses, which affect the country’s economy. Earthquake Prediction is
one of the challenging research areas because its early prediction can save a lot of human
lives, helps in minimizing the financial losses to some extent. The objective of this
research is to develop an earthquake prediction model based on the position and depth
by using machine learning and deep learning algorithms. The dataset is split into seven
different csv files after thorough processing and a requisition of best-performing regres-
sion models is done to compute the results. These algorithms include Random forest (RF)
Regression, Multi-Layer Perceptron (MLP) regression, and Support Vector Regression
(SVR). The method is applied for different radii around the target. The dataset for this
research is taken from the USGS website. The efficiency of algorithms is compared by
computing the deviation between actual and predicted outcomes by using the error
metrics. The results are evaluated using the Root Mean Square Error (RMSE) metric.
Considering the boundary values, the RMSE for RF Regression is 1.731, for MLP
regression the value is 1.647 and for SVR the RMSE achieved is 1.720, all for a
minimum radius value of 100 and similarly 0.436, 0.428 and 0.449 RMSE is achieved
for the respective algorithms on a maximum radius of 5000. The results demonstrate that
MLP Regressor is performing better than other algorithms as the error is least in the case
of this algorithm.

Keywords Earthquake prediction . USGS . RF regression . SVR .MLP regressor . RMSE .

Catastrophic destruction

https://doi.org/10.1007/s11042-021-11001-z

* Anand Nayyar
anandnayyar@duytan.edu.vn

1 Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering,
New Delhi, India

2 Graduate School, Faculty of Information Technology, Duy Tan University, Da Nang 550000,
Vietnam

Multimedia Tools and Applications (2021) 80:28419–28438

Received: 13 September 2020 /Revised: 28 December 2020 /Accepted: 4 May 2021 / 
Published online: 4 June 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-11001-z&domain=pdf
mailto:anandnayyar@duytan.edu.vn


1 Introduction

Earthquake is one of the major catastrophes, and around 76 million people from about 39
states and provinces are still at risk of earthquakes [9]. Considering the recent cases, more than
377 earthquakes of magnitude greater than 5.3 have occurred across the world till now in 2020
and United States alone has witnessed 37,307 earthquakes in the past 365 days which is
accounts for the largest number of earthquakes with magnitudes ranging from 3.8 to 7.8 and
has caused numerous fatalities [51]. This has been the main reason to carry out this research for
the United States as it is the most affected region and has faced a lot of earthquakes [34]. If this
disaster predicts in advance, it can save a lot of human lives [43]. It can’t be denied that the
seismologists still had not been successful in the development of an earthquake prediction
model. Some people believe it is impossible to predict an earthquake in advance, while some
researchers utilize their efforts to construct an earthquake prediction model [1]. Hence, this is
one of the significant research challenges, and many researchers work on this [47].

There are various reasons exists which makes the earthquake magnitude prediction difficult
for the seismologists [55]. The absence of technology to monitor multiple parameters,
including stress, pressure, and temperature changes, is also one of the primary reasons that
make the prediction process difficult [15]. This is the reason for the unavailability of data
regarding seismic features [19]. The gap among the seismologists and researchers for discov-
ering the new aspects of the research for this problem statement is also one of the primary
reasons, making it even more difficult [5]. Western states and provinces of the United States,
including Alaska, California, Oregon, Hawaii, andWashington, are more prone to earthquakes
[10]. Its effects can also be seen in the mountain regions, eastern seaboard (especially in South
Carolina) and New Madrid Seismic Zone, which is located in the central US. Earthquake-
prone areas of the United States are represented in Fig. 1 [16].

As the earthquakes are a huge threat to the lives and economy of a country [18], the main
focus of this study is to prescience the magnitude of earthquakes beforehand by utilizing a
fusion of best performing machine and deep learning regression models and computing the
error values to validate the accuracy and the performance of these algorithms.

Initially, earthquake prediction problem is considered as a time series prediction [37].
Various researches show that seismologists had been used different earthquake prediction
mechanisms in the past. Various trends were observed corresponding to the earthquakes in the
prediction methods of various researches [11]. These trends involved sub-soil radon gas
emission [24], total electron content of ionosphere [33], the magnetic field of the earth [45],
etc. This proposed work aims to develop a prediction model to estimate the earthquake
magnitude of the United States region by using the position and depth parameters for various
radius values. Three regression models, namely Random Forest Regression, MLP Regression,
SVR, are used in this research. At last, all the proposed algorithms are empirically compared
by analyzing it via RMSE evaluation. The objectives of the paper are as follow:

& To split the entire dataset on basis of various radius values and carry out a detailed
exploratory data analysis on different datasets and study the effect of the parameters such
as latitude, longitude, depth and their impact and share in causing an earthquake of a
certain magnitude.

& To use to various supervised learning algorithms and predict the magnitude and thus the
severity caused by earthquakes depending on the radius values and the aforementioned
parameters.
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& To analyse the impact caused by earthquakes of certain magnitudes and detailed analysis
on the Root Mean Square Error value for each algorithm which depicts the error in actual
and predicted results.

The rest of the paper’s organization is as follows: Section 2 gives a detailed review of the
various research that takes place in the world for earthquake prediction in advance. Section 3
discusses the methodology, Algorithms or techniques used, evaluation metrics used, and the
proposed model of this research. After that, Section 4 deals with the experimental results,
including the analysis of dataset and all the models individually, along with the empirical
comparison of all the models followed by the RMSE calculation and analysis. At last,
Section 5 provides the conclusion and suggest future areas of research.

2 Literature survey

Many types of research are being done on the prediction, scales, and harms caused by
Earthquakes. The prediction of such parameters becomes extremely crucial as earthquakes
cause widespread damage and loss. Knowing the severity, potential areas, and harms caused
by earthquakes is a big step towards better management of such calamities.

G. Lanzano et al. worked on revising the framework of ground agitation for trifling the
crustal earthquakes that are taking place in Italy, tapered in the 4.0 to 6.9 magnitude range. It
utilizes durable-motion data that is measured up to the 2009 L’Aquila Sequence. Further, in
this, the new collection of data allows us to extend the range of the magnitude exceeding 6.9,
including vibration periods of up to 10 s. The ground agitation variability is broken down
within components amidst event and site to site to form the model, which is suitable for the
assessment of non-governable probabilistic seismic hazard [31].

G. F. Panza et al. presented an extended development of assimilation of seismological as
well as geodetic instruction, showing the benefaction of geodesy to the realization and
prognosis of earthquakes [41]. P. kundu et al. proposed a probabilistic accession for the

Fig. 1 Earthquake hazards in the United States [16]
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estimation of the expected rebound time of an earthquake of a particular magnitude, within an
anchored life span of structure succeeded by the determination of the peak grounded acceler-
ation at the site of structure in Chilean area based on the Gutenberg Richter Law. The data here
is held from the USGS (United States Geological Survey), and the procedure here can be
applied even before the construction of structure at a site to appease the death toll caused due
to the collapse of the structure [28].

Q. Wang et al. employed a deep learning approach called LSTM (Long short-term
memory) networks to apprentice the Spatio-temporal relation amidst earthquakes in varied
regions and make foresight by taking the benefit of that particular relationship. The outcomes
show that these networks with 2-D input can exploit the correlations that are Spatio-temporal
to make far better predictions [54]. B. Idini et al. worked on a database of robust agitation
records for the Chilean subduction earthquake zones. They made a ground motion prescience
equation (GMPE) for apex ground acceleration along with a riposte spectral expedition with a
5% damping proportion for periods in between 0.01 and 10 s [22]. D. ju et al. proposed two
contemporary procedures for the evaluation of fault parameters of asperity frameworks for the
prognosis of tenacious ground agitations from crustal level earthquakes. One is for the long
strike-slip faults, and the other one is for lengthy antipode faults [12].

G. M. Molchan et al. analyzed the portentous seismicity methodology, also described as
pattern B, which is evaluated in 13 areas of the world. Its great demographic connotation is
assured. The mathematical accession advanced here is useful in the analysis of the harbinger of
earthquakes [36]. C. Papantonopoulos et al. used the unique element method to foretell the
earthquake counter of the multi-drum marble framework of a restrained column. The outcomes
are compared with the experimental data for a similar specimen under similar excitation. The
experiments and the numerical analysis both took place in 3D. The results tell that the distinct
element methodology can captivate the main features of the response [42].

V.G. Gitis et al. suggested a new technique to estimate the constraints of in homogeneous
spatiotemporal marked point fields. It is built on the idea of adaptive weights smoothing
(AWS). In this paper, a wide variety of the AWS algorithm is constructed to calculate the
spatial and spatiotemporal fields of density, the mean values, along with the correlation
dimension. This algorithm is utilized to assess the seismic process criterion fields from certain
earthquake litanies. The AWS forecasting method surpassed the forecasting using kernel
estimation [17]. G. Asencio-Cortes et al. analyzed the effect of using various parameterizations
for inputs in the supervised learning algorithms through a new framework. Five varied
analyses were conducted, which involved the tweaking of training and testing sets for the
scheming of b-value and the tuning of collected gauges [2].

K.M. Asim et al. worked on the prediction of the magnitude of earthquakes using the
temporal arrangement of seismic wave activities, combined through various machine learning
classification algorithms. The prognosis was done on the foundation of eight seismic indicators
utilizing the catalog of earthquakes. In these four techniques, including recurrent neural
networks, pattern recognition neural networks, linear programming boost, and ensemble
classifier and random forest classifiers were used to calculate seismic parameters and further
occurrences of earthquakes [4]. J. R. Holliday et al. worked on the informatic pattern analysis
by using the complex eigenvectors and created the short-term forecast of hotspot maps that are
different from hotspot maps which are created by using real-valued data. They also suggested
various methods of analyzing differences and computing the information gain [21]. H. Cam
et al. worked on a feed-forward back propagation artificial neural network related to
Gutenberg-Richter relation, based on which b values are used in earthquakes is developed [8].
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After discussing the various researches, it is observed that most of these use the
seismic wave nature/activities and spatio-temporal features for prediction purpose but
exploring geological features for prediction has not been carried out in the aforemen-
tioned researches. Using these parameters for magnitude prediction has given relatively
less error and proves to be a decent approach for carrying out the prediction. This study
is focused on the prediction of the magnitude of earthquakes depending on the latitude,
longitude, depth factor, and radius of a given region. Different regression algorithms
have been applied for the analysis. This work considers minimizing the damage caused
by earthquakes by predicting its magnitude, taking the precautions beforehand, and
saving many lives along with the commercial properties.

3 Methodology

For analysing and predicting the magnitude of an earthquake, the United States dataset is
taken. After pre-processing of the dataset, various regression algorithms, including Random
Forest, Support Vector Regression, and MLP Regressor, are applied, which are also discussed
in this section. For measuring the performance, RMSE metrics are used in this research. This
section discusses about the proposed methodology in detail.

3.1 Proposed model

An overview of the proposed model encompasses the dissection of the bulk dataset into seven
datasets on the basis of radii values, followed by data cleaning and further processing. The
fresh datasets are then fissured until the apex accuracy (least RMSE value) of 1.647 in case of
minimum radius and 0.428 in case of maximum radius is achieved through a requisition of best
performing regression models. At last validation is carried out over an invariable magnitude
value which is followed by reckoning the error metrics to calculate the efficiency.

Figure 2 represents the proposed model of our research. Initially, datasets of different radius
values (100, 200, 500, 1000, 1500, 3000, 5000) are taken and pre-processed. Each of the
datasets is split into the training and test set. The model is then trained with the algorithms
including Random forest (RF) Regression, Multi-Layer Perceptron (MLP) regression, and
Support Vector Regression (SVR). The splitting and training continue until the maximum
accuracy is achieved. The main motivation behind the selection of these three algorithms for
this problem statement is as follows:

1. Since, the ensemble algorithms are widely utilized for solving real-time problems. Hence,
Random Forest is chosen to solve the earthquake prediction problem with the optimized
results.

2. Since SVR is quite popular to derive a function which maps the input domain values to
real numbers, hence SVR is also utilized in our proposed work.

3. Since the MPL Regressor has the capability to learn the models in real-time problems like
this earthquake prediction model using partial_fit parameter, hence it is also considered at
the time of designing the solution.

After the completion of the training, the models are then validated to predict a constant
magnitude of 4.4. Finally, results are evaluated using the RMSE metrics.
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3.2 Algorithms and techniques

In this paper, three regression models, namely, Random Forest Regression, Support Vector
Regression and the Multi-Layer Perceptron Regression are used to analyse the intensity of
earthquakes, along with the prediction of the magnitude of the earthquake.

3.2.1 Random forest regression

A Random Forest is a type of model using an ensemble approach to deliver good predictive
outcomes [23]. It is one of the approaches used to perform both regression and classification
tasks using multiple decision trees, and a technique known as Bootstrap Aggregation, or
bagging for the same process [50]. The basic idea behind this algorithm is to combine different
decision trees and arrive at a final result [59].

The mathematical formulation for the model is shown below in Eq. 1.

h xð Þ ¼ f 0 xð Þ þ f 1 xð Þ þ f 2 xð Þ þ f 3 xð Þ þ fn xð Þ ð1Þ
Where h(x) is the summation of base models, and the output is an ensemble of these models,
which are at the root level, with various decision tree models only [58]. Figure 3 below shows
an RF Regressor model [57].

The tree is formed in Decision trees by specifying the important variables as nodes,
but arbitrariness is added to the model as the tree grows in the case of Random Forest.
This model also helps save time, since in this case, very little time is spent in hyper-
parameter tuning.

3.2.2 Support vector regression

Support Vector Machine (SVM) is an algorithm which embraces both linear regressions
along with nonlinear regression [39]. As it seems in Fig. 4, the primary objective is to
accommodate as many cases between the lines as possible while restricting breaches of
the margins [13]. In this model, the idea of contravention is seen as epsilon (ε). The
Support Vector Regression thus finds the appropriate line or the hyperplane, if we
consider the higher dimensions [48].

3.2.3 Steps to build a Support Vector Regression Model

1. Assembling the training set.
2. Making selection of the kernel, the parameters, and the regularization if necessary.
3. The building of the correlation matrix, which is depicted in the below Eq. 2.

Ki; j ¼ exp
X

kθk xik � xjk

��� ���2� �
þ 2 �i:j ð2Þ

4. Training of your model, using the main part of the algorithm to get the contraction
coefficient and compute the coefficient value of k using Eq. 3.
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k �!¼ y! ð3Þ

5. Now, utilizing the co-efficient from the equation above and they* from Eq. 4 to create the
estimator as shown in Eq. 5.

y* ¼ �!� k! ð4Þ

Ki ¼ exp
X

kθk xik � x*k
�� ��2� �

ð5Þ

It deviates from Linear Regression in the way that the primary aim in linear regression [6] is to
abate the errors between both the estimated besides the actual data given while in SVR, the end
goal is to make sure that the errors don’t outstrip the threshold [53].

RMSE Calcula�on and Analysis

Empirical Comparison of Regression models by valida�ng it on a 
constant magnitude of 4.4

Bulding the Regression Models

RF Regressor SV Regressor MLP Regressor

Spli�ng of Dataset

Training Data (75%) Tes�ng Data (25%)

Input the 7 Datasets of Different Radius Values

100 200 500 1000 1500 3000 5000

Fig. 2 Proposed model using various regression algorithms
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3.2.4 Multi-layer perceptron regression

A neural network is made of a perceptron, which simply means that the input it receives is
multiplied by some weights and then made to pass through an activation function [29], and an
output is produced. The neural networks formed by the addition of layers of perceptron
together are known as multilayer perceptron model [38].

MLP Regressor does the training iteratively, as every time the partial derivatives of the cost
function are updated for the model parameters [35]. A regularization can also be added in this
case to shrink the model parameters and prevent overfitting [25]. Figure 5 below shows an
MLP Regression model [56].

The classic MLP Regressor is used for implementing an MLP which trains by using
backpropagation without any activation function in the output, or it can be perceived as using
the identity activation function. It exploits the square error as its loss function, and the result is
a set of incessant values.

The MLP Regressor uses the L2 regularization, which is useful in avoiding the overfitting
problem by penalizing the weights with huge magnitudes.

3.3 Evaluation metrics

After the evaluation of the data distribution in the csv files, we find out that the Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) are the perfect fit for this problem
statement instead of other available evaluation metrics. Hence, we utilized these two evalua-
tion metrics in our research. These metrics are discussed in detail below:

3.3.1 Mean Square Error (MSE)

This is obtained by calculating the square mean, which is the difference between the initial
sample data and the approximate values taken [46]. This error shows the regression line ‘s
effectiveness, and the smaller MSE error value shows that the fit is better because the error
magnitude is minimal [52]. The error function below is expressed by Eq. 6.

Fig. 3 Random forest regression model [57]
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MSE ¼ 1

N

Xn

i¼1
ðY i � bY iÞ2 ð6Þ

Where N is the total number of observations,Y iis the actual value, and bY i is the predicted value.
The difference between them is calculated, squared, and the summation is performed over
them to achieve the final loss [27].

3.3.2 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is the normal distribution of residuals (prophecy errors).
Residuals are the extent of how far these data points are from the regression line, and they are a
measure of how those residuals are spread out . Equation 7 illustrates that error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1
ðY i � bY iÞ2

r
ð7Þ

Where N is the total number of observations,Y i is the actual value, and bY iis the predicted value
[26]. The difference between them is calculated, squared, and the summation is performed
over them to achieve the final loss [32]. Finally, the root is taken over this while calculating the
accuracy [30].

4 Experimental result and analysis

This section provides the experimental results of the proposed model. All the seven datasets
are randomly split into training and test set. Around 3/4th of the data is utilized for training the
model, and 1/4th is utilised for testing the model. The model is repeatedly trained and tested
until the maximum accuracy is achieved with each proposed model. Finally, after the
completion of the training and testing of data, all the models are validated for the prediction
of a constant magnitude of 4.4. Each model’s behaviour is analysed by validating it on all the

Fig. 4 Support Vector Regression Model [48]

28427Multimedia Tools and Applications (2021) 80:28419–28438



seven datasets used in this research and by plotting the corresponding graphs between the
earthquake magnitude and radius around the target earthquake. An empirical comparison of all
the proposed models is performed after individual algorithm analysis, and RMSE is calculated
and analysed.

4.1 Dataset

The data for this research is taken from the USGS website (https://earthquake.usgs.gov/data/)
and is exported in the form of CSV files. Various datasets are used in this research. These
datasets consist of features and magnitude values for different radius values (100, 200, 500,
1000, 1500, 3000, and 5000) around the target earthquake. Datasets are pre-processed by
eliminating the unnecessary attributes and dropping the null values in the fields. The final
features consist of position parameters (i.e., latitude and longitude) and depth for the prediction
of earthquake magnitude. Table 1 represents the sample dataset for a radius value of 5000.

4.1.1 Data analysis

The distribution of the features, along with the correlation between each possible pair of
datasets, is analysed. The distribution plots are shown by the histograms, while the correlation

Fig. 5 MLP regression model [56]

Table 1 Sample dataset for radius 5000

S. No Latitude Longitude Depth Magnitude

1 -39.4322 176.0322 47.62 4.4
2 -6.0575 147.7634 170.62 4.2
3 -15.7539 -173.858 59.82 4.6
4 -6.5595 143.2629 10 4.5
5 -14.1584 166.5733 25.81 4.7
6 -3.4844 145.5947 10 4.6
7 -4.8637 153.3243 71.2 4.5

28428 Multimedia Tools and Applications (2021) 80:28419–28438
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Fig. 6 Distribution and correlation plots among all possible pairs

Fig. 7 Correlation matrix on a scale of 0 to 1 using the seaborn heatmap
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plots are demonstrated by the scatterplots. The distribution and correlation plots among all
possible pairs are represented in Fig. 6.

The correlation of these variables is also analyzed using the heatmap of the seaborn library
of python [14], which provides the correlation values among these pairs on the scale of 0 to 1
[7]. The correlation matrix using the seaborn heatmap is shown in Fig. 7.

As can be analysed from Fig. 7, the magnitude depends on the position compared to the
depth of the target area. Longitude and latitude are highly correlated with each other. The
depth parameter also shows some sort of correlation with the latitude.

4.2 Regression model analysis

4.2.1 Random forest regressor

The Random Forest model is repeatedly trained and tested by changing the number of
estimators (i.e., no of decision trees) until the minimum RMSE is achieved [44]. The
maximum efficiency of the Random Forest model is achieved by selecting 200 estimators.

Fig. 8 Radius vs. Magnitude plot for Random Forest Regression

Fig. 9 Radius vs. Magnitude plot for Support Vector Regression
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After completion of the training, the model is validated to predict an earthquake magnitude of
4.4 for all the available datasets of different values of the radius. Figure 8 represents the
magnitude values predicted by the Random Forest model for different radius. The actual
magnitude value considered here is 4.4, which is represented by a green dashed line.

4.2.2 Support vector regressor

The Support Vector Regression model is also repeatedly trained and tested until the minimum
RMSE is achieved [40]. The ‘rbf’ kernel is used for the training of the model. After completion
of the training, the model is validated to predict an earthquake magnitude of 4.4 for all the
available datasets of different values of the radius. Figure 9 represents the magnitude values
predicted by the Support Vector Regression model for different radius. The actual magnitude
value considered here is 4.4, which is represented by a green dashed line.

4.2.3 Multi-layer perceptron regressor

The MLP Regressor network is repeatedly trained and tested by increasing the number of
hidden layers until the minimum RMSE is achieved [49]. The minimum value of RMSE is
achieved by selecting 200 hidden layers. After a further increase in the number of hidden
layers, the value of RMSE starts increasing again [20]. The activation function is chosen as
‘tanh,‘ and the solver is taken as ‘sgd’ in training the model [3]. After completion of the

Fig. 10 Radius vs. magnitude plot for support vector regression

Table 2 Predicted magnitude values of the proposed regression models

Radius Real magnitude RF MLP SVR

100 4.4 3.895 4.134 4.299
200 4.4 4.3 4.36 4.13
500 4.4 4.485 4.465 4.358
1000 4.4 4.4565 4.5332 4.4423
1500 4.4 4.4665 4.4793 4.4482
3000 4.4 4.2595 4.4913 4.426
5000 4.4 4.6415 4.4692 4.5996

28431Multimedia Tools and Applications (2021) 80:28419–28438



training, the model is validated to predict an earthquake magnitude of 4.4 for all the available
datasets of different values of the radius. Figure 10 represents the magnitude values predicted
by the MLP Regressor model for different radius. The actual magnitude value considered here
is 4.4, which is represented by a green dashed line.

4.3 Empirical comparison of algorithms applied

Table 2 represents the predicted magnitude values for different values of radius for all the three
proposed models.

The corresponding plots for all the three algorithms for each radius value when the actual
magnitude is taken as 4.4, are shown in Figs. 11, 12, 13, 14, 15, 16 and 17.
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Figure 18 provides the empirical comparison of all the three proposed algorithms by
plotting a simultaneous magnitude vs. radius curve. As can be seen from the graph, the
MLP Regressor shows the maximum similarity points with the actual magnitude compared
to other proposed algorithms.

4.4 RMSE analysis

The RMSE values for all the three regression models for each value of radius are shown in
Table 3. As can be analysed from Table 3, the MLP Regression model of Deep Learning
shows the minimum RMSE values for all the radius values. Hence, it can be concluded from
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this analysis that the MLP Regressor is the best algorithm among all other proposed algorithms
for the earthquake magnitude prediction.

5 Conclusion and future scope

This research aims to develop an earthquake prediction model based on the position (latitude
and longitude) and depth by using various machine learning and deep learning algorithms,
namely Random forest, MLP, and Support Vector Regression and along with this exploratory
data analysis is also carried out on the basis of the above-mentioned parameters. To begin with,
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4.4

28434 Multimedia Tools and Applications (2021) 80:28419–28438



each of the proposed algorithms is individually analysed by predicting an earthquake magni-
tude of 4.4 for all the available datasets of different values of the radius. After that, the
predicted magnitude values by all the proposed algorithms are compared empirically. At last,
RMSE values are calculated for all the three algorithms and analysed. The RMSE values for a
minimum radius of 100 comes out to be The RMSE values for a minimum radius of 100
comes out to be 1.731, 1.647 and 1.720 for RF, MLP and Support Vector regression and on a
similar note the values for maximum radius 5000 are 0.436, 0.428, 0.449 respectively for the
three algorithms .Both of the Empirical Comparison and RMSE analysis shows that the MLP
Regressor is the best algorithm among other algorithms for the earthquake magnitude predic-
tion as the error/deviation from the actual value is the least in this case.
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Fig. 17 Comparison of predicted magnitude value for Radius value 1500 when the actual magnitude is taken as
4.4

Fig. 18 Simultaneous magnitude vs. radius plot for all the three proposed algorithms
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Future investigations can be further applied by incorporating various other data mining
techniques like J48, AdaBoostM1, CNB, GBRT, and XGBoost, etc. in the research model or
incorporating an amalgamation of the algorithms that give the least error, which can possibly
increase the model efficiency.
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