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Abstract
Person re-identification is a challenging research issue in computer vision and has a broad
application prospect in intelligent security. In recent years, with the emergence of large-scale
person datasets and the rapid development of deep learning, many outstanding results have
been achieved in person re-identification researches, which mainly involves two critical
technologies: feature extraction and distance metric. Among them, feature extraction has been
well summarized in the current literature of person re-identification, but there is no systematic
analysis of the distance metric method in the current review literature. However, effective and
reliable distance metric is crucial to improve the accuracy of person re-identification. There-
fore, it is necessary to systematically review and summarize the metric learning methods in
person re-identification, so as to provide some references for the researchers of metric learning.
In this paper, we make a comprehensive analysis of metric learning methods in the past five
years, which can be summarized into three aspects: distance metric method, metric learning
algorithm, and re-ranking for the metric results. Then, we compare the performance of some
representativemetric learningmethods and discuss them in-depth. Finally, wemake a prospect
for the future research direction of metric learning in person re-identification.

Keywords Distancemetric .Classicalmetric learning .Deepmetric learning .Re-ranking .Person
re-identification . Survey

1 Introduction

Person re-identification is to establish the corresponding relation between persons in different
visual range, which is a typical image retrieval problem [9]. Person re-identification is related
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to multiple technical fields such as computer vision, pattern recognition, and machine learning.
Now, it has been widely concerned in academia and industry, and has become a research
hotspot in computer vision [45]. However, due to the complex interference factors such as
different camera resolutions, view angle and background changes, illumination variation,
occlusion, and person pose changes, person re-identification is facing numerous technical
challenges. More importantly, there is still a large gap between current person re-identification
technology and practical application.

The flowchart of person re-identification system is shown in Fig. 1. Among which person
detection and tracking [46] has become an independent research issue in computer vision, and
has gradually matured after years of development. Now, the study of person re-identification
mainly focuses on two aspects: (1) person feature extraction and description; (2) person feature
distance metric.

In 2003, the research on cross-view target matching is considered to be the origin of re-
identification [48], and “Person re-identification” was first proposed in CVPR 2006 [23]. With
the progress of computer vision, person re-identification technology has also achieved fruitful
results. In 2014, Bedagkar-Gala et al. [6] made the earliest review of person re-identification,
which summarized the definition, research status, main challenges, and main datasets of person
re-identification. With the deep neural network winning the ImageNet competition [31], image
recognition based on deep learning has attracted researchers’ attention rapidly. Meanwhile,
person re-identification based on deep learning is favored by many researchers. In 2018, Li
et al. [71] combed and summarized the development history, research status and typical
methods of person re-identification, which involved the analysis of some deep methods. In
2019, Luo et al. [42] made a comprehensive analysis of the person re-identification method
based on deep learning and the person datasets applicable to deep learning.

In Ref. [6, 42, 71], person feature extraction and description methods are mainly summa-
rized and analyzed, but there is less systematic analysis of feature distance metric method. In
addition, considering the key role of reliable metric in improving person re-identification
accuracy, we believe that it is necessary to summarize the metric learning methods in person
re-identification in recent years. Therefore, in this work, we focus on the comprehensive
analysis and review of metric learning methods in person re-identification.

At present, metric learning in person re-identification usually treats “metric” and “metric
learning” as a whole, but there are essential differences between them. Metric refers to the
calculation of distance or similarity between features in the embedded space, and the features
are obtained by mapping the original samples through the metric matrix. Metric learning
usually refers to the process of designing an objective function or a loss function to obtain the
metric matrix (mapping relation) by solving the optimization problem. The goal of metric
learning is to make the same class objects more compact and more separate between different

Fig. 1 Flowchart of person re-identification system
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class objects in the embedded space. Therefore, to better comb and analyze the progress of
metric learning method in person re-identification, in this paper, we discuss “metric method”
and “metric learning algorithm” separately.

In addition, considering that the metric results of person re-identification usually need to be
further optimized or re-ranked after distance or similarity calculation, in this paper, we
summarize “re-ranking algorithm” as an important part of metric learning method in person
re-identification.

In summary, in this paper, we summarize the research progress of person re-identification
methods based on metric learning in the past five years. These research results are divided into
metric method, metric learning algorithm and re-ranking algorithm. Then, the experimental
results of some representative methods are compared and analyzed. Finally, the possible future
research trends and hotspot issues of metric learning in person re-identification are discussed.
The organizational chart of this paper is shown in Fig. 2.

2 Metric methods in person re-identification

2.1 Distance metric

2.1.1 Mahalanobis distance metric

The Mahalanobis distance [16] is a classical method for measuring distance or similarity in
person re-identification. Assuming that the vector v = [x1, x2,⋯xn] represents the features of n
persons, the Mahalanobis distance between two features xi and xj is defined as:

Fig. 2 The organizational chart of the paper
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dM xi; x j
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where the positive semi-definite matrix M ∈ Rd × d is the Mahalanobis metric matrix to be
solved.

The classical Mahalanobis metric is easy to over-fit when the training samples is limited, to
overcome the overfitting problem, Qi et al. [49] proposed a regularized independent metric
matrix. Unlike the smooth regularization algorithm [58], the proposed method learned the
metric matrix separately in four color spaces, and then the regularized independent
Mahalanobis metric matrix was obtained by regularization of four metric matrices respectively.
Zhou et al. [85] constructed reference datasets based on three different principles and defined a
new reference constraint. Based on the constraint, an improved optimized Mahalanobis
distance metric matrix was defined. Apart from the classical Mahalanobis metric and improved
Mahalanobis metric methods, according to the practical difficulties of person re-identification,
some new metric methods or similarity functions are further proposed, the following four
sections describe them in detail.

2.1.2 Asymmetric distance metric

In person re-identification, the view angle change causes the problem of feature failure and
poor metric effect. To solve this problem, Chen et al. [10] proposed the asymmetric distance
metric. In this method, the RGB, HSV and YCbCr features are extracted, and then the
unmatched features of each person are transformed into a common space. In this space, the
cross-view discriminative features are extracted, and based on these features, the cross-view
and same-view distance functions are respectively defined:

d xpi ; x
q
j

� �
¼ UpTxpi −U

qTxqj
��� ���2

2
ð2� 1Þ

d xpi ; x
p
j

� �
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��� ���2

2
ð2� 2Þ

where Eq. (2-1) represents the cross-view distance and Eq. (2-2) represents the same-view
distance.Up, Uq are the asymmetric metric matrices for camera angle p and camera angle q. xpi
is the i-th sample under camera angle p. Based on the asymmetric metric matrix, the feature
loss and metric problems caused by the deformation of cross-view person images can be
effectively overcome.

To overcome the shortcoming of poor scalability of supervised person re-identification, Yu
et al. [73] proposed an unsupervised asymmetric metric. Similar to ref. [10], this method
transforms person images with different view angle into a common space through an asym-
metric mapping, in which the differences of samples from different view angle are alleviated.
Feng et al. [21] proposed an unsupervised cross-view metric based on the characteristics of
sample distribution, to solve the problem that common metric methods only consider the
shared features, but ignore the specific features and cause information loss. This method
combines the shared features and inconsistent features of persons through shared mapping and
asymmetric specific perspective mapping to improve the effect of cross-view person re-
identification.
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2.1.3 Distance metric based on sample sets

The high-order correlation between samples based on the hypergraph model can improve
the metric reliability, but beyond that, comprehensive utilization of the relationship
between sample sets can also effectively improve the effect of person re-identification.
In 2015, Li et al. [36] defined the difference between pairwise sample sets, and constructed
a local metric domain based on this difference, thus forming the sample set distribution of
intra-class compact and inter-class separation. Then, the set-to-set matching was realized
by using the set-level nearest neighbor modeling method. Tan et al. [57] divided the
pairwise image sequences into different groups (sets) and adopted the method of full
connection within groups and no connection between different groups to obtain the
individual different features of the set. Finally, the set feature was used to train the
Adaboost classifier to implement the matching of image sequences from different view
angles. Cho et al. [14] used the input image set to estimate the front, rear, left and right
postures of persons respectively, so as to realize the reliable correlation of person infor-
mation under different camera angles. Then, the person re-identification was transformed
into the set-to-set matching of persons under fixed pose. This method not only utilizes the
local neighborhood relation of the image set, but also introduces the pose constraint to
improve the accuracy of multi-view and multi-pose person re-identification.

The set-based metric method extends the paired samples matching to the paired sample sets
matching, which effectively uses relevant structure information and context information of the
local neighborhood of the sample set, overcomes the variability and sparsity of single person
image. This method alleviates the overfitting problem of traditional metric model and helps to
enhance the discriminability of metric model, which is helpful to improve the accuracy of
person re-identification.

2.2 Similarity metric

2.2.1 Similarity metric based on hypergraphs

The popular metric methods usually consider the pairwise similarity between the test
sample and the target sample, and it is easy to ignore the high-order correlation between
the test sample and the target sample. To address this problem, An et al. [2] proposed a
person matching scheme based on hypergraph. Through hypergraph learning to mine the
pairwise relationship and higher-order relationship between test samples and target
samples, the improved similarity score can be obtained and the person re-identification
effect is improved. The algorithm flowchart is shown in Fig. 3. Zhao et al. [78] proposed
a similarity metric based on multi-hypergraph joint learning. This method extracts the
features of gBiCov, HLCNL and LOMO for the input image pair, and constructs three
hypergraphs respectively. Then, the multi-hypergraph joint learning algorithm is used to
learn the correlation between features for the similarity metric. The algorithm framework
is shown in Fig. 4.

Hypergraph-based similarity metric not only considers the pairwise matching of image
pairs, but also comprehensively considers the high-order correlation between test data
and target dataset. It realizes the sufficient expression of different features and the
conveying of more information, it is a flexible and effective similarity metric method
for person multi-features.
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2.2.2 Similarity matching function

In addition to defining a new distance metric, researchers propose many effective similarity
metric functions from the perspective of paired person image matching. In 2016, Du et al. [75]
proposed the quadratic similarity function to strengthen the connection between similarity
function and person appearance features. The function not only describes the cross-correlation
of person image pairs, but also includes the autocorrelation of person image pairs, which can
effectively capture the appearance changes of the same person in different scenes. In the joint
optimization of deep network and metric learning, the translational invariance leads to the
infinite solutions in the low-level feature representation, which complicates the network
optimization. To overcome this problem, Chen et al. [7] proposed a weighted inner product
similarity function, which can reduce the training difficulty of network parameters and
enhance the discriminability of the learned features. Zhu et al. [87] extracted the deep features
of person image pairs using the deep convolutional network, and then calculated the absolute

Fig. 3 Person matching scheme based on hypergraph [2]
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Fig. 4 Multi-hypergraph joint learning framework for person re-identification [78]
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difference and product of person deep features respectively. Finally, the two metrics were
fused to obtain a mixed similarity function. Zhao et al. [79] proposed a new joint transfer
constraint to learn the similarity function by combining multiple common subspaces, each in
charge of a sub-region, which can solve the issue of person re- identification under inconsistent
data distributions.

In this section, we summarized and analyzed four aspects of the metric methods: (1)
The regularized constraint Mahalanobis metric to overcome the problem of overfitting;
(2) The asymmetric metric to solve the difficulty of cross-view metric; (3) Improving
person re-identification accuracy based on hypergraph similarity metric and set-to set
metric; (4) Defining or designing a new similarity matching function to strengthen the
correlation between similarity metric and person features. In order to better compare
these new metric methods, some metric and similarity calculation formulas are summa-
rized in Table 1.

The improvement of metric method is an important way to improve the performance of
person re-identification, but it is more difficult to propose novel metric. In addition, the
learning of metric matrix usually needs to be associated with specific objective function to
implement optimization operation, which results in a certain limitation in the generality of the
metric method. Therefore, compared with designing new metric method, in the metric learning
algorithm, designing a new objective function or loss function is more favored by researchers,
and more research results have been obtained.

3 Metric learning algorithms

Compared with designing new metric methods, the improvement of metric learning algorithm
is more favored by researchers. Considering the influence of deep learning, in this paper, we
divide the metric learning algorithms into “ classical metric learning algorithm “ and “deep
metric learning algorithm” to discuss separately.

3.1 Classical metric learning algorithm

The classical metric learning algorithm is to define an explicit objective function under certain
rule constraints, and then by solving the optimal objective function, the metric matrix with
strong discriminability and robustness can be obtained. Currently, the classical metric learning
algorithms in person re-identification include: Large Margin Nearest Neighbor (LMNN)
distance metric [64], and improved Fast-LMNN [63] and LMNN-R [17] algorithms; Infor-
mation theoretic metric learning (ITML) [15]; Keep it Simple and Straight Metric (KISSME)
learning algorithms [30]; Probabilistic relative distance comparison (PDRC) metric learning
[80, 81]; Local Fisher Discrimination Analysis (LFDA) metric learning [47]; Cross-view
Quadratic Discriminant Analysis (XQDA) distance metric learning [39]; Metric learning
Accelerated Proximal Gradient (MLAPG) [38] etc..

The above classical metric learning algorithms have been widely used in person re-
identification, but the learned metric matrix still faces problems such as overfitting,
weak classification ability and poor anti-interference ability. Therefore, the classical
metric learning algorithms have been improved, which are summarized into two aspects
in this paper:(1) improvement of metric learning objective function; (2) multi-metric
method fusion.
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3.1.1 Improvement of metric learning objective function

In order to solve the problem of poor robustness of current metric learning algorithms, in 2016,
Zhou et al. [83] improved LMNNobjective function from the perspective that different samples
and different local features contribute differently to recognition. In this method, the sample
instance weighting strategy is adopted to make the intra-class samples more compact and inter-
class samples more separated, and then the local feature weighting is used to further realize the
rewards and punishments for features of different importance. Tan et al. [56] implemented the
feature fusion of foreground and background regions by dividing dense areas and extracting
features of person images. Then, based on RankSVM framework [28], a ranking model was
designed to maximize the interval and minimize fusion feature error. The ranking model was
integrated into the objective function of RankSVM to help solve the optimal metric matrix.
Wang [61] and Zhou et al. [86] proposed the improved equidistance constrained metric learning
(ECML) respectively. The algorithmmaps the same class samples to the same vertex of feature
simplex andmaps different class samples to different vertices, and then the relationship between
different class samples is expressed by vertex distance. Based on this assumption, a metric
learning objective function that satisfies minimizing intra-class distance and maximizing the
minimum interval between different classes is defined. Liu et al. [41] proposed a joint
optimization strategy for view angle transformation and similarity metric, and defined a new
joint optimization objective function. This method reduces the difference between positive
sample pairs, increases the difference between negative sample pairs, and improves the
separability of the learned features and the robustness of the metric matrix.

To solve the problem of data imbalance in pair constraint metric learning, Ding et al. [89]
proposed a similarity metric learning algorithm based on distance centralization. In the training
dataset construction, the eigenvalues of the same class target groups were centralized. Then,
the distance between different classes was constructed by using the central eigenvalues, and
the intra-class distance still adopted the traditional calculation method. Finally, the metric
learning objective function adopted the logarithmic relative distance comparison model. After
centralization, the number of intra-class samples is close to the number of inter-class samples,
which can effectively alleviate the overfitting problem caused by class imbalance. Dong et al.
[18] proposed large margin relative distance learning (LMRDL). This method takes triples as
input to extract the color and texture features of different stripes. In the objective function
construction, the minimum inter-class distance is used to punish triples, and the logical loss
function is used to implement the relative distance comparison, which is helpful to learn more
effective metric matrix. The logical loss function is defined as follows:

LM xi; z j; zk
� � ¼ log 1þ exp ΔM xi; z j; zk

� �� �� �
; xi; z j; zk
� �

∈T ð3� 1Þ

ΔM xi; z j; zk
� � ¼ d2M xi; z j

� �
−minkd2M xi; zkð Þ þ δ ð3� 2Þ

where T is the triple sets, d2M �ð Þ is the Mahalanobis distance, minkd2M xi; zkð Þ is the penalty term
of minimum inter-class distance, δ is the minimum interval between positive sample and
negative sample.

To overcome the overfitting problem of traditional metric model, He et al. [25] proposed a
ring-push metric learning (RPML) algorithm. Unlike the metric learning strategy that punishes
too small inter-class distance, this method punishes both those with too small inter-class
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distance and those with too large inter-class distance. By using the generalized logic function
as the loss, the learning of ring-push metric is transformed into solving the convex optimiza-
tion problem. The learning objective function of ring-push metric is:

L Mð Þ ¼ 1

N
∑
N

i¼1
lp xi; zið Þ þ 1

N N−1ð Þ ∑i≠ j ln xi; z j
� � ð4Þ

where N is the number of sample pairs, lp xi; zið Þ ¼ 1=βð Þlog 1þ eβ D2
M xi;zið Þ−μ1½ �n o

is loss of

similar image pairs, ln xi; z j
� � ¼ 1=βð Þðlog 1þ eβ D2

M xi;z jð Þ−μ3½ �n o
þ log 1þ eβ μ2−D2

M xi;z jð Þ½ �n o
Þ

represents the loss of dissimilar image pairs, β is the smooth factor, D2
M �ð Þ is the Mahalanobis

distance, μ1 < μ2 < μ3 is three preset thresholds.
In order to compare and analyze the characteristics of these improved methods, Table 2

summarizes some new objective functions that improve the robustness of metric learning.
By adding different constraints to the classical metric learning objective function to generate a

new metric learning objective function, which can alleviate data imbalance and class imbalance,
and improve the generalization ability and robustness of the learned metric matrix. In addition,
these improvements are also conducive to the capture of sample features with stronger identifi-
cation ability, which improves the accuracy of person re-identification. Although the improve-
ment of the objective function improves the effect of person re-identification, it still cannot
overcome the dependence of metric learning algorithm on big training data. At the same time, due
to the complexity of the objective function, the convergence speed of the optimization algorithm
slows down and the solving efficiency of the optimal metric matrix decreases.

3.1.2 Fusion of multiple metric method

The new metric learning objective function mainly improves the performance of a single
distance metric matrix, but a single metric matrix is often unable to take into account the metric
of different visual features of different persons. Therefore, some multi-metric fusion algorithms
are proposed from the perspective of multi-feature subspace metric fusion. Wang et al. [35]
proposed the idea of learning different visual metrics based on different candidate datasets.
First, based on the visual similarity of the samples, the large-scale training sample sets were
divided into different candidate sets and given different weights. Then, several different
maximum interval metrics were obtained by the training based on different candidate sets.
Syed et.al [54] proposed an adaptive weighted multi-kernel method. First, the color and texture
features of the image pairs were extracted, and then these two features were mapped to
corresponding subspace by using different kernel functions. Then, Fisher discriminant analysis
was used to learn the weighted metric matrix in different kernel spaces, and metric matrix
fusion enhances the robustness of the metric to inter-class discrimination. Barman et.al [4]
adopted SDALF, SDC_knn, SDC_ocsvm and XQDA metric methods to calculate the distance
between image pairs, and then used weighted distance aggregation framework to realize multi-
metric fusion and improve the accuracy of person re-identification. Because the metric learning
based on feature fusion tends to ignore the difference between different features, and the
learned metric matrix cannot accurately express the similarity or difference between samples.
To solve this problem, Qi et.al [50] proposed a person re-identification algorithm based on
multi-feature subspace and kernel learning. This method maps features to different kernel
subspaces through kernel learning, and the similarity function in kernel space is as follows:
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S ki; k j
� � ¼ ki−k j

� �TM ki−k j
� � ð5Þ

where M is the metric matrix in kernel space, ki is the i-th nonlinear feature in kernel space.
Different similarity metrics can be learned based on different person features, and then the sum
of similarity in different subspaces can be calculated:

S ¼ αSC þ 1−αð ÞST ð6Þ
where SC, ST represent the similarity functions of different feature spaces, which corresponds to
different similarity metric matrices MC, MT.

In the multi-metric fusion method, the metric matrix is trained by using multiple features of
person images, which enriches discriminative training data and alleviates the dependence of
metric learning methods on big training data. In addition, the metric matrices learned by
different features usually have different advantages and metric ability, so the fused metric
matrix has stronger identification ability, generalization ability and robustness, which is helpful
to implement person image matching in complex situation. Finally, the multi-kernel mapping
is used to transform the original features into a high-dimensional nonlinear space, which helps
to overcome the non-linear interferences such as illumination changes, pose and view angle
changes, and further enhance the robustness of the metric model.

3.2 Deep metric learning algorithm

Deep metric learning is to extract features through deep network and construct corresponding
loss function based on the deep features. Then, the optimal parameter configuration of the
network model is obtained by optimally solving the loss function, so as to realize the essential
feature extraction and reliable classification. The loss function is a key factor affecting the deep
metric learning effect besides the deep network structure. In addition, most researchers usually
equate the design of loss function with the metric learning based on deep network. In this
section, we comb and analyze the construction methods of deep loss function in person re-
identification, and summarize the deep network loss as: classification loss, contrastive loss,
triplet loss, joint loss and cluster loss.

3.2.1 Classification loss function

Softmax function [32] is a classical loss in deep metric learning, which can ensure that the
learned deep features are well separated. However, when Softmax loss is directly used for
similarity comparison, the intra-class compaction and inter-class separation of deep features
cannot be achieved, which affects the parameter learning and re-identification accuracy. To
address the problem, Zhu et al. [88] combined center loss and Softmax loss to construct a new
loss function, which realized maximum inter-class separation and intra- class compactness. It
is conducive to convolutional network learning more discriminative features. Borgia et al. [8]
proposed the steering meta center term and the enhancing centers dispersion term, and then
combined the two loss items with Softmax loss to form a new loss function. Under the
supervision of new loss, the deep separate feature extraction was realized and the inter-class
interference was reduced. Feng et al. [20] proposed the concepts of cross-view European
constraint and cross-view center loss constraint to solve the challenge of intra-class feature
differentiation caused by view angle changes. Combining the two constraints with Softmax
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loss respectively, two new loss functions were defined. Based on the cross-view Euclidean
constraint, it is beneficial to realize the alignment of the deep features of different views, and
the center lossconstraint can narrow the gap between the features of different views.

Softmax loss can only implement the separation of deep features of different class samples,
but cannot guarantee the compactness of same class sample features. By introducing the center
loss, the inter-class separation is maintained and the intra-class distance is controlled. In
addition, to solve some specific problems in person re-identification, by introducing the
constraint penalty term into the loss function, the specific interference is alleviated to some
extent. In a word, the performance of Softmax loss function is improved effectively through
the center loss and special constraint penalty items, which is helpful for deep network
parameter optimization and metric performance improvement.

3.2.2 Contrastive loss function

Contrastive Loss [24] can effectively express the matching degree of sample pairs, and can
better supervise the training of deep feature extraction model, which is widely used in the
similarity comparison of person re-identification. Its definition is as follows:

L ¼ 1

2N
∑
N

n¼1
yd2 þ 1−yð Þmax margin−d; 0ð Þ2 ð7Þ

where N is the number of sample pairs, d = ‖an − bn‖2 is the Euclidean distance between the
two samples, the label y = 1 means that two samples are similar or matched, y = 0 means that
two samples are mismatched, margin is the threshold.

The contrastive loss function can be directly applied to person re-identification, but the
matching accuracy is low due to the interference of many complex factors. In this case, the
optimal parameter configuration of the deep network cannot be obtained. Therefore, based on
the original contrastive loss function, many improved contrastive loss functions are proposed.

In 2018, Wang et al. [62] extracted features based on component deep Siamese network,
and constructed an adaptive interval loss function consisting of similarity comparison item and
regularization item. This method minimizes the distance of same class samples and maximizes
the distance of different samples. Chen et al. [7] defined the weighted inner product distance.
Then, the logarithmic loss functions for the positive and negative sample sets were constructed
respectively, and these two losses were fused to form a joint contrastive loss. Zhu et al. [87]
proposed a weighted mixed similarity metric, based on this metric method, defined a mean
logarithmic contrastive loss with regularized term. The proposed method can reasonably
allocate the complexity of feature learning and metric learning in the deep network and
improve person re-recognition performance. Saquib et al. [51] defined a new extended
cross-nearest neighbor distance, which extended the distance metric between sample pairs to
the distance metric between cross-neighbor sets of sample pair. Then, a bidirectional contras-
tive loss function for neighborhood sets was proposed, which implemented the bidirectional
distance metric between test sample and training sample.

The contrastive loss function takes the image pair as the input. The optimization of network
parameters and similarity metric are implemented by minimizing the distance between same
class sample pairs and punishing the distance between different class samples less than the
margin threshold. Contrastive loss function plays an important role in person re-identification
based on deep metric learning, which usually combines with new distance metric method,
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regularized constraint item or person dataset to define new loss form. The improved contras-
tive loss greatly expands the application scope of contrastive loss function, which can not only
reduce the training difficulty of deep network parameters, but also effectively enhance the
ability of network to extract discriminative features and improve the re-identification effect.

3.2.3 Triplet loss function

In 2015, Schroff et al. [52] proposed the Triplet Loss in face recognition and clustering
analysis. The input triplet data consists of three samples, namely an anchor sample
randomly selected from the training sample set, a random sample with the same class as
the anchor sample and a random sample with class label different from the anchor sample.
The goal of triplet loss is to minimize the distance between anchor sample and positive
instances, to maximize the distance between anchor sample and negative instances.
Finally, the distance between negative sample pairs and the distance between positive
sample pairs are kept at a minimum interval. The objective function of the triple loss is
defined as follows:

L ¼ ∑
N

i
f xai
� �

− f xpið Þ�� ��2
2
− f xai

� �
− f xni

� ��� ��2
2
þ α

h i
ð8Þ

where xai ; x
p
i ; x

n
i

� �
is the triplet, xai is the anchor sample, xpi is the positive sample, xni is the

negative sample.N represents the number of triplet, f(·) is the network model, α is the
interval threshold.

The classical triplet losses usually compare the distance between a single positive and
negative sample, ignoring the samples of other classes. Therefore, it can only promote a greater
distance between the test sample and the selected negative sample, and cannot guarantee a
greater distance between the test sample and other unselected negative samples. For this
problem, the improved structural triplet loss is proposed. In 2018, Yang et al. [68] proposed
a new learning method for structural deep metric to solve the problems of slow convergence
speed, local optimality and insufficient attention paid to difficult positive samples in network
training. The algorithm divided training samples into many different small batches. In each
small batch training, the positive sample pairs were compared with all the negative sample
pairs, and a difficulty weight was adaptively assigned to the positive sample pairs. The
weighting strategy made the algorithm focus more on the learning of difficult positive samples,
reduced the distance variance of positive/negative sample pairs, and enhanced the generaliza-
tion ability of the loss function. Yu et al. [72] proposed to construct triplet input by using
positive sample pair, negative sample and negative kin sample. Then, the distance between
positive sample pair, the distance between negative sample pair, the distance between positive
sample and negative sample, the distance between positive sample and negative kin samples,
the distance between negative sample and negative kin sample were defined respectively, and
a new triplet loss was constructed by integrating regularization term. He et al. [26] proposed an
improved lifting structure loss function to supervise deep network learning better feature. This
method can solve the problems that the triplet loss cannot make full use of batch information
and it is difficult to select negative samples manually. Arindam et al. [53] proposed a batch
adaptive triplet loss function. In this strategy, the weights of the hardest samples were adjusted
adaptively according to their distances with the anchor. This method well overcomes the
influence of scale on person re-identification.

26868 Multimedia Tools and Applications (2021) 80:26855–26888



Unlike classical triplet loss, structural triplet loss function makes full use of the structure
information between person samples to learn more discriminative features. In the process of
parameter updating, the relationship between anchor sample and other negative samples is
considered, which promotes the distance between anchor sample and all other classes, and
greatly accelerates the convergence speed of the model. The lifting structural loss constructs
the most difficult triplet for each positive sample pair dynamically, and at the same time, all
negative samples are taken into account. It effectively improves the ability of optimizing
network parameters of triplet loss and contributes to the realization of strong classification
feature extraction and robust metric.

3.2.4 Joint loss function

In Sections 3.2.1-3.2.3, we introduce the classification loss, contrastive loss and triplet loss
respectively. The three loss functions show their own characteristics in different recognition
tasks. In order to integrate the advantages of different losses and further improve the accuracy
of person re-identification, the researchers proposed ideas such as multi-task learning and
multi-feature metric. In different learning tasks and feature metrics, different loss functions are
usually used to supervise the deep network. Therefore, joint learning of multiple loss functions
is widely used.

In 2016, McLaughlin et al. [44] used the Siamese network to extract person features and
adopted person verification, person recognition and multi-attribute recognition to form multi-
task learning objectives. Then the learning objective losses of different tasks were weighted
and fused to form a joint loss. The architecture of the multi-task joint learning network is
shown in Fig. 5, which improves the network’s comprehensive learning ability through joint
learning and multi-task loss fusion. Zhou et al. [84] extracted the features of multiple local
parts of person images, and then fused all local features together through the tandem method to

Fig. 5 Framework of multi-task joint learning [44]
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form a feature set. Based on the feature set, classification loss and relative distance loss (triplet
loss and contrastive loss) were calculated respectively, and then the three losses were fused to
form a joint loss. The distance metric function ensures that the network can obtain robust and
separable feature representation. Cheng et al. [13] calculated asymmetric triplet loss and
Softmax loss respectively by using triplet features, and then fused the two losses to obtain a
new joint objective function. The triplet loss can make the features of same person more
compact and the features of different persons separate. The Softmax loss helps the network
learn the discriminative features of persons. In 2019, Ling et al. [40] extracted the classification
features and attribute features through ResNet-50. In classification feature subnet, person
identification and person verification were realized based on Softmax loss and contrastive
loss respectively. In attribute feature subnet, Softmax loss and contrastive loss were used to
realize attribute recognition and verification. Finally, the four losses were combined to obtain
the total loss. The combined loss enhances the network’s ability to accurately identify persons.
Attribute feature is an effective complement of classification feature, and the combination of
person recognition and verification enhances the reliability of decision result.

3.2.5 Cluster loss function

With the increase of person samples, the local spatial distribution relation of the samples and
the interaction between the sample pair and other sample pairs show unique advantages in the
distance metric, which plays an important role in assisting person re-identification. In 2018, Li
et al. [37] defined the concept of positive and negative support neighborhood sets containing
context information and neighborhood structure for each anchor sample. Based on these
neighborhood sets, a new support neighborhood loss function was proposed:

L θð Þ ¼ Lspr θð Þ þ λLsqz θð Þ ð9� 1Þ

Lspr θð Þ ¼ − ∑
N

i¼1
log

∑
xp∈Pi

exp −σD xi; xp
� �� �

∑
xs∈Ki

exp −σD xi; xsð Þð Þ ð9� 2Þ

Lsqz θð Þ ¼ ∑
N

i¼1
max ∪

xp∈Pi

D xi; xp
� �� 	

−min ∪
xp∈Pi

D xi; xp
� �� 	� 	

ð9� 3Þ

where D(·) is the Euclidean distance, σis scale factor, xi is the anchor sample, Pi is the positive
neighborhood set, Ki is the union of positive and negative sample neighborhoods. ∪

xp∈Pi

D
xi; xp
� �

is distance set between the anchor sample and the positive sample neighborhood set. λ
is used to control the ratio of separation loss Lspr(θ) to aggregation loss Lsqz(θ). The loss
function can reliably separate the positive sample neighbor from the negative sample neighbor,
and the change in the positive sample neighborhood is minimized.

Yuan et al. [74] proposed a micro clustering loss. The method is to take similar samples as a
micro-cluster and then use it as a whole in training. Within each cluster, the maximum distance
between each sample is defined as the internal divergence, the minimum distance from the
external sample is defined as its external divergence. By limiting the external divergence to be
greater than the internal divergence, the method achieves a more compact micro-cluster
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structure and improves the generalization ability of the model. The loss function is defined as
follows:

Lmini ¼ ∑
P

a¼1
log

�
1þ exp

�
max

xi;x j∈Ca

f xið Þ− f x j
� ��� ��

2
− min

b ¼ 1; 2⋯P
b≠a

min
xk∈Ca

xl∈Cb

f xkð Þ− f xlð Þk k2

8><
>:

9>=
>;
��

ð10Þ

where (xi, xj, xk, xl) represents a tuple, xi, xj, xk are from the anchor micro-cluster, xl is from
other sample set. In each training batch, P tuples are used to generate a loss penalty.

In order to compare and analyze the loss functions of deep metric learning more clearly,
Table 3 summarizes some loss functions of deep metric learning.

The improvement of deep metric learning algorithm can be summarized into three aspects:
(1) The improvement of loss function. The main improvement is to introduce a new loss item
or regularization term for metric parameters. (2) Multi-task joint learning. It is to obtain the
comprehensive decision for person information through different task objectives (classification
or verification) to improve the discrimination accuracy. (3) Composite loss of sample cluster.
Based on the context information and neighborhood structure relation of the sample cluster, a
comprehensive loss function with stronger generalization is defined. Deep metric learning
shows great advantages in feature extraction and metric of person re-identification through
complex network architecture and optimal loss, which has become the mainstream method to
deal with various challenges in person re-identification. However, the effectiveness of deep
metric learning depends on the high quality requirements for the training data set. When the
training set contains complex noise, abnormal point, class imbalance, small sample and other
problems, its effectiveness is often not guaranteed. Therefore, the robustness and adaptability
enhancement of deep metric learning algorithm are the key difficulties to be solved urgently.

4 Re-ranking algorithm

The researches on metric method and metric learning algorithm have overcome many chal-
lenges in person re-identification, and the robustness and generalization of metric matrix have
been improved effectively, which provides effective supervision for extracting more discrim-
inative person features. However, the best person re-identification effect cannot be achieved
only by the improvement of metric method or metric learning algorithm. As a post-processing
method of person similarity metric or person matching, re-ranking provides important ideas for
further improving person re-identification accuracy. In this paper, we summarize and analyze
re-ranking as an important part of person re-identification based on metric learning. The
current re-ranking algorithms can be summarized into three categories: aggregate re-ranking,
graph model re-ranking, reward and punishment re-ranking.

4.1 Aggregate re-ranking

Aggregate re-ranking means that different initial person sorting results are aggregated by some
fusion algorithm to improve the final similarity sorting list. According to the different features
used to calculate the initial sorting results, the aggregate re-ranking is divided into two
categories: (1) the aggregate re-ranking based on the similarity of structural features; (2) the
aggregate re-ranking based on the similarity of multiple features.

26871Multimedia Tools and Applications (2021) 80:26855–26888



Ta
bl
e
3

So
m
e
lo
ss

fu
nc
tio

ns
of

de
ep

m
et
ri
c
le
ar
ni
ng

R
ef
er
en
ce

L
os
s
fu
nc
tio

n
E
xp
la
na
tio

n

[8
8]

L
¼

L s
þ
λ
L c

¼
−
∑m i¼
1
lo
g

eW
T y i
x i
þb

y i

∑C j¼
1
eW

T j
x i
þb

j
þ
λ
∑m i¼
1

x i
−c

yi
� �

� �2 2
L s
:S
of
tm

ax
lo
ss

L c
:C
en
tr
al
iz
at
io
n
lo
ss

λ
:P
ro
po
rt
io
na
l
co
ef
fi
ci
en
t

m
:S
ca
le
of

tr
ai
ni
ng

sa
m
pl
es

C
:N
um

be
r
of

ca
te
go
ri
es

c y
i:T

he
y i
th

de
ep

fe
at
ur
e
ce
nt
er

[8
]

L
¼

L s
of
tm
ax
þ
α
L S

M
C
þ
β
L E

C
D

¼
L s

of
tm
ax
þ
α
1 2

∑m i¼
1

x
g ið
Þ

i
−
∑ j¼
1

s i

c
jðÞ y i

� � � � �
� � � � �2 2

þ

β
1 2

∑m i¼
1

∑ j¼
1

s i

x
g ið
Þ

i
−c

jðÞ y i

� � �
� � �2 2

�
∑m

t
¼

1
t≠
i

∑ k¼
1

s t
1

x
g ið
Þ

i
−c

jðÞ y i

� � �
� � �2 2

2 6 6 6 6 4

3 7 7 7 7 5

L s
of
tm
ax
:S
of
tm

ax
lo
ss

L S
M
C
:S
te
er
in
g
m
et
a
ce
nt
er

te
rm

L E
C
D
:E
nh
an
ci
ng

ce
nt
er
s
di
sp
el
-
rs
io
n
te
rm

α
,β

:E
qu
ili
br
iu
m

fa
ct
or

m
:S
ca
le
of

tr
ai
ni
ng

sa
m
pl
es

s i:
N
um

be
r
of

vi
ew

an
gl
es

in
cl
as
s
y i

x
g ið
Þ

i
:I
np
ut

im
ag
e
of

ca
m
er
ag

i

c
jðÞ y i
:S
ub
-c
en
te
r
of

y i

[7
]

L
¼

∑ i;
j

ð
Þ∈
T

s ij
lg

eD
ij
þt

þ
1

�
� þ

1−
s ij�
� lg

et
−D

ij
þ
1

�
�

�
�

s ij
∈{

0,
1}
:S
am

pl
e
la
be
ls

t:D
ec
is
io
n
in
te
rv
al

T:
T
ra
in
in
g
sa
m
pl
e
se
t

D
ij:
In
ne
r
pr
od
uc
t
di
st
an
ce

[8
7]

J
Wð
Þ¼

ar
gm

in
W

1 K
∑K k¼
1
lo
g

1
þ
e−

y k
W

T
Z
k

�
�



� þ

1 2
α

W k
k2 2

�



α
:R
eg
ul
ar
iz
at
io
n
co
ef
fi
ci
en
t

K
:S
ca
le
of

tr
ai
ni
ng

sa
m
pl
es

y k
:S
am

pl
e
la
be
ls

Z k
:F
us
io
n
fe
at
ur
e
of

sa
m
pl
es

W
:N
et
w
or
k
pa
ra
m
et
er

[5
1]

L
p;
g i

ð
Þ¼

1 2M
∑M j¼
1
d
pN

j;
g i

�
� þ

d
g i
N

j;
p

�
�

(p
,g

i):
Im

ag
e
pa
ir

pN
j:T

he
j-
th

ne
ig
hb
or

of
ne
ar
es
t
ne
ig
hb
or

se
t
N
(p
,M

)
g i
N
j:T

he
j-
th

ne
ig
hb
or

of
ne
ar
es
t
ne
ig
hb
or

se
t
N
(g

i,M
)
M
:

N
um

be
r
of

ne
ig
hb
or
s

d(
·)
:D
is
ta
nc
e
be
tw
ee
n
tw
o
sa
m
pl
es

[7
2]

J
¼

d
hM i

;u
M k

�
� −d

ðh
M j
;u

M k
Þ

� � �
� � �2 F

−
dð
hM i

;u
M k
Þ−
dð
hM i

;h
M j
Þ

� � �
� � �2 F

þ
α
d

hM i
;h

M j

�
� −β

d
hM i

;h
M k

�
�

hM i
;h

M j

D
E :F

ea
tu
re
s
of

po
si
tiv
e
sa
m
pl
e
pa
ir

hM k
:F
ea
tu
re

of
ne
ga
tiv
e
sa
m
pl
e

uM k
:F
ea
tu
re

of
ne
ga
tiv
e
ki
n
sa
m
pl
e

26872 Multimedia Tools and Applications (2021) 80:26855–26888



Ta
bl
e
3

(c
on
tin

ue
d)

R
ef
er
en
ce

L
os
s
fu
nc
tio

n
E
xp
la
na
tio

n

[2
6]

L s
tr
uc
t
¼

1

2jb Pj
∑

i;kð
Þ∈b Pm

ax
0;
lo
g

1 jb T i;j
j

∑
i;kð

Þ∈
b Neα

−D
2 i;k
þ

∑ j;lð
Þ∈
b Neα

−D
2 j;l

0 @
1 A þ

D
2 i;
j

0 @
1 A

0 @
1 A

b T i;j:
N
um

be
r
of

ne
ga
tiv
e
sa
m
pl
e

b P:Po
si
tiv

e
sa
m
pl
e
se
t

b N:N
eg
at
iv
e
sa
m
pl
e
se
t

D
2 i;
j:E

uc
lid
ea
n
di
st
an
ce

of
sa
m
pl
e
pa
ir
{i
,j
}

α
:I
nt
er
va
l
th
re
sh
ol
d

[4
4]

L
¼

∑
xi 1
;x
i 2

ð
Þ∈X

ν
xi 1
;x

i 2
jyi
;w

�
� þ

∑ k
α
k
T

G
xi 1��

jli;
k 1
;w

�
� þ

∑ k
α
k
T

G
xi 2��

jli;
k 2
;w

�
�

T k
(·
):
L
os
s
of

ta
sk

k
v(
·)
:C
on
tr
as
tiv

e
lo
ss

of
ve
ri
fi
ca
tio
n

xi 1
;x

i 2

�
� ∈X

:I
m
ag
e
pa
ir
in

se
t
X

li,
k :
T
ru
e
la
be
l
of

on
e
ta
sk

α
k:
W
ei
gh
t
of

di
ff
er
en
t
ta
sk

lo
ss
es

G
(x
):
Im

ag
e
fe
at
ur
e

w
:N
et
w
or
k
pa
ra
m
et
er

[8
4]

L
=
α
L C
(X
,W

,b
)+

L S
(X
,W

,b
)
+
β
R
(W

,b
)

L C
(·
):
C
la
ss
if
ic
at
io
n
lo
ss

L S
(·
):
R
el
at
iv
e
di
st
an
ce

lo
ss

R
(·
):
R
eg
ul
ar
iz
at
io
n
ite
m

α
,β

:W
ei
gh
t
co
ef
fi
ci
en
t

[1
3]

ar
gm

in
W
L
¼

1=
T

ð
Þ
∑T i¼
1
Γ

t i;
W

ð
Þþ

λ
l
I j
;y

j;
W
;Θ

;c
�

�
Γ
(t i
;W

):
T
ri
pl
et
lo
ss

T:
N
um

be
r
of

tr
ip
le
s

l(I
j,y

j;
W
,Θ

,c
):
So

ft
m
ax

lo
ss

λ
:P
ro
po
rt
io
na
l
co
ef
fi
ci
en
t
of

tw
o
lo
ss
es

[4
0]

L
=
(L

IC
+
β
L I

V
)+

α
(L

A
C
+
β
L A

V
)

(L
IC
+
β
L I

V
):
Id
en
tit
y
lo
ss

(L
A
C
+
β
L A

V
):
A
ttr
ib
ut
e
lo
ss

α
:P
ro
po
rt
io
na
l
co
ef
fi
ci
en
t
of

tw
o
lo
ss
es

β
:B
al
an
ce

fa
ct
or

of
id
en
tif
ic
at
io
n
an
d
ve
ri
fi
ca
tio
n
lo
ss

26873Multimedia Tools and Applications (2021) 80:26855–26888



Aggregate re-ranking based on the similarity of structural features. In 2016, Wang et al. [60]
derived four image pairs from the original person image: full-scale, semi-scale, upper body region
and middle body region. Then, the corresponding convolutional network was used to extract the
features for the four image pairs, and the similarity matching score was calculated. Finally, the re-
ranking result was calculated through the weighted average of the four scores, the algorithm
flowchart is shown in Fig. 6. Zhang et al. [77] proposed a structured matching method for person
re-identification. In this method, the training samples are formed into codebooks by small area
division and clustering. Then, the codebooks are used to encode the person images into codewords
to form locally sensitive visual patterns. Finally, the weighted images of different sensitive areas
are matched to obtain re-identification results. By capturing local sensitive visual patterns and
weighting different sensitive areas, this method highlights the different contributions of structural
features. Zhang et al. [76] divided the input image pairs into different strip areas to preserve the
person structure information, then calculated the local similarity of each corresponding strip area to
form the initial metric vector. Finally, a discriminant subarea aggregation algorithmwas adopted to
fuse the local similarity score into the final global similarity score. Structural area division and
initial similarity fusion can not only effectively strengthen the rationality and reliability of metric
results, but also effectively alleviate the impact of person pose change and occlusion.

Aggregate re-ranking based on the similarity of multiple features. In this method, the multiple
features of persons are first extracted, then the similarity between corresponding multiple features
is calculated as the initial metric result, finally the initial metric results are fused and re-ranked. In
2018, Chen et al. [12] proposed a group constraint similarity learning method based on deep
conditional random fields, which extracted multi-scale features of the input image with deep
network, and calculated the similarity between the test sample and the target sample in different

-lnP(Wp|xp)

xp xgnxg2xg1

Input layer

CNN

fp

CNN CNN CNN

fg1 fg2 fgn

Embedding 

layer

Embeded 

feature

sg1 sg2 sgnSimilarity 

layer

Loss layer

Fig. 6 Flowchart of multiple similarity weighted fusion [60]
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scales. Then a continuous conditional random fields algorithm is used to fuse the “group
similarity”, the optimal group similarity is obtained to realize person re-identification. Junior
et al. [29] used deep global network and convolutional network to extract the foreground/
background information of person images and adopted them together as person feature descrip-
tions. The person polynomial feature map is constructed based on these feature descriptions, and
the similarity between test sample and target sample is calculated by matching the polynomial
features, as shown in Fig. 7. Finally, the DCIA algorithm [22] is used to implement the
aggregation and re-ranking to improve the accuracy of person re-identification

4.2 Graph model re-ranking

The graph model re-ranking maps the initial metric results of person re-identification into a graph
model, and then optimizes the graph model to obtain the optimal re-ranking results. In 2016, Xie
et al. [66] proposed a multi-metric fusion method based on graph model to solve the problem that
the single specific metric can easily lead to overfitting of metric results, as shown in Fig. 8. Firstly,
the metric between test sample and gallery samples was calculated in many ways, then the initial
metric results were expressed as different graph models. Finally, the complementary re-ranking
results were obtained by multi-graph joint ranking. Barman [5] proposed the fractional distance
graph for person re-identification. The similarity scores between test sample and gallery samples
were calculated, then the gallery sample was expressed as graph model vertex, the similarity
scores were expressed as the connection strength of the edges in the graph model. Finally, the
greedy algorithm and the ant colony algorithm were used to optimize the graph model. Xie etc.
[67] proposed specific sample sorting algorithm based on the structure of hypergraph. A set of
initial sorting results were obtained through adaptive metric, and then the sorting results were
constructed into a hypergraph structure. Based on the hypergraph, the neighborhood relationship
between the test samples and the top 100 target images can be captured. Finally, the neighbor-
hood relationship can be used to re-rank the results to improve person re-identification accuracy.

4.3 Reward and punishment re-ranking

Re-ranking based on reward and punishment is to introduce some reward and punishment factors
or constraints to modify the initial re-ranking results, so as to improve the rationality and accuracy
of the sorting results. In 2015, Leng et al. [34] proposed a bidirectional re-rankingmethod to correct
the initial ranking list based on reverse query results. The pseudocode is shown in Algorithm 1. In

Probe

Gallery

Sample Images Feature Representation

1 4 7 8{[C C ] [C ,C ]}，

5 6 9{[C C ] [C ]}，

1 4 9{[C C ] [C ]}，

5 6 7 8 9{[C ,C ,C ,C ] [C ]}

Similarity Metric

1 ( , )final
a bs x x

5 ( , )final
a bs x x

8 ( , )final
a bs x x

( , )final
i a bs x x

Ranking Computation Re-ranking

1R

5R

8R

iR

Ranking 
Aggregation

Final ranking list

Fig. 7 Flowchart of similarity matching and re-ranking based on polynomial feature map [29]
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this method, the k-nearest neighbor context information similar to the sample features is taken into
account by reverse query, which is helpful to improve the person matching accuracy. Chen et al.
[11] calculated some similarity scores to form the initial ranking list based on the deep features of
person image pairs. Then, a new penalty loss function formismatched sample sets and test samples.

was constructed to further enhance the learning of mismatched samples and minimize the cost
of sorting errors Liu et al. [65] proposed a coarse-to-fine ranking iterative algorithm. By adjusting

Fig. 8 Multi-similarity fusion based on graph model [66]
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the value of expected ranking parameters, training data was gradually improved and refined to
reduce the penalty for too many sick samples and form the optimal training data subspace. By
introducing penalty factors into the training data set, the method optimizes the training data and
achieves the optimal results. Ye et al. [70] proposed an optimized sorting framework using both
similar and dissimilar cues, as shown in Algorithm 2. This method uses similarity to get a set of
ranking results and uses dissimilarity to generate penalty factors. The initial ranking results
combine with penalty items to optimize the final ranking list. Yang et al. [69] defined spatiotem-
poral information and network consistency constraints, as well as camera network topology
constraints. Then the two constraints were introduced into the ranking process of similarity metric
results, which corrected the image similarity score and improved person re-identification in
camera network. Hou et al. [27] constructed an interactive aggregation update module using
the global spatial-temporal context information for person feature extraction. Combining classi-
fication and ranking, a cross entropy loss was defined, and the attention to hard samples was
enhanced in batch training to make the ranking results more reasonable.

As a further optimization step for person re-identification results, re-ranking is an important
method to improve recognition accuracy. Through the joint optimization of multiple initial
ranking results, the metric results of person multi-local area or person multi-feature are
comprehensively utilized to realize complementary information fusion and effectively improve
the rationality and reliability of the metric results of person re-identification. By making full
use of the advantages of the neighborhood structure of graphs, the re-ranking problem is
transformed into the optimization learning of graphs. The re-ranking based on reward and
punishment mechanism revises the initial ranking results by reward and punishment factors,

Table 4 The main challenges and solutions of metric learning methods in person re-identification

Challenges Solutions References

Poor Robustness Define new metrics Asymmetric metric: [10, 21, 73]
Hypergraph similarity metric: [2, 78]
Set-based metric: [14, 36, 57]

Improved metric learning
objective function

[56, 61, 83, 86]

Multi-metric fusion method [4, 25, 46, 54]
Deep metric learning algorithm Classification loss: [8, 20, 88]

Contrastive loss: [51, 62, 87]
Triplet loss: [26, 53, 68, 72]
Joint loss: [13, 40, 44, 84]
Cluster loss: [37, 74]

Re-ranking algorithm Aggregate re-ranking: [12, 29, 60, 76, 77]
Graph model re-ranking: [5, 66, 67]
Reward and punishment re-ranking: [11, 27,

34, 65, 69, 70]
Weak generalization ability Define new metrics [45, 85],

Improved metric learning
objective function

[25]

Re-ranking algorithm Aggregate re-ranking: [29]
Data imbalance Improved metric learning

objective function
[18, 89]

Re-ranking algorithm Aggregate re-ranking: [60, 76]
Difficult to apply across

image domains
Cross-domain metric learning

algorithm
[43, 59]

Limited sample size Small sample metric learning
algorithm

[1, 3, 19, 33, 55, 82]
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which strengthens the factors conducive to accurate ranking list, weakens the possible
interferences, and greatly reduces the possibility of error in re-ranking results. However, in
recent years, deep metric learning algorithm research has become the mainstream, and the
research progress of re-ranking algorithm is slow. Therefore, in future work, effective combi-
nation of deep metric learning and re-ranking algorithm should receive some attention.

5 Performance analysis and discussion

5.1 Relationship between challenges and methods

In above sections, we summarize the research progress of metric learning methods in person
re-identification from the perspective of learning theory. Each theoretical algorithm is pro-
posed to solve the corresponding problem. Therefore, in this section, we summarize the metric
methods and metric learning algorithms from the perspective of person re-identification
challenges, as shown in Table 4. At present, person re-identification based on metric learning
faces many problems, among which the more important ones include: poor robustness,
overfitting (weak generalization ability), data imbalance, difficult cross-domain application,
limited samples, etc.

Metric learning theory is usually associated with the challenges of person re-identification,
among which poor robustness is a common problem caused by many influencing factors
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(occlusion, view angle change, pose, illumination, etc.). To solve the problem of poor
robustness, the researchers proposed some improved algorithms, which can usually overcome
multiple interferences at the same time, rather than being limited to a specific interference. In
addition, in the literature that overcomes the problem of poor robustness, there are some
literatures that can deal with the problems of weak generalization ability and data imbalance.
Considering that the main goal of the proposed methods is to solve the robustness problem, we
do not classify these literatures as a solution of weak generalization ability and data imbalance.

The methods to solve the problems of poor robustness, weak generalization ability and data
imbalance have been combed and discussed in detail. Therefore, this section focuses on
analyzing the difficulties and challenges of metric learning in cross-image domain application
and limited sample size.

Difficulty in cross-image domain application of metric learning: Person re-identification
based on metric learning usually uses the training samples from two different visual domains
to obtain a metric matrix, and then metric the similarity between test sample and gallery
samples. However, the real video surveillance is often unable to meet the metric learning
requirements under the ideal situation, such as the target person moving through a complex
camera network instead of two simple visual domains, persons without label information.
Therefore, ref. [43, 59] have done some effective research on the difficulties of metric learning
model in cross-image domain or cross-scene application. Cross-domain no-label metric
learning implements the transfer of a known person re-identification system in a certain
domain to a new domain or scene, which is helpful to solve the problem of person re-
identification when the sample label is unknown in the target domain, and strengths the
expansibility and practical application value of the person re-identification system.

Difficulty with limited samples of metric learning: Due to the limitation of capture
conditions, the available sample quantity is limited, which brings great challenges to person
re-identification. Now, the researchers propose corresponding metric learning solutions from
two different perspectives: transfer learning and data augmentation. (1) Method based on
transfer learning. In 2016, Zheng et al. [82] proposed a local relative distance comparison
model to solve the problem that there are few available effective training samples in person re-
identification in open environment. First, the relative distance comparison information was
learned through the non-target image set. Then, the relative distance comparison was trans-
ferred from the non-target image set to the target image set based on the constraint of intra-
class change, inter-class change and group separation relative distance comparison. (2) Method
based on data augmentation. In 2018, Syed et al. [55] proposed an elastic multi-modal metric
method. First, multi-modal information of persons was constructed based on color and texture
features, and then the multi-modal information was used to generate false negative sample
modes, so as to enrich the negative samples in the training sample set. Then, the metric
learning matrix is trained by using the sample set after data augmentation. Dong et al. [19]
proposed iterative multi-kernel metric learning, which constructed a pseudo-training sample
set using correctly identified test samples to achieve data augmentation of the training samples.
Then the original training samples and the pseudo-training samples were used together for the
iterative learning of metric matrix to obtain the constantly updated metric matrix, which is
helpful to solve the problem of small size samples. T Ali et al. [1] proposed the maximum edge
metric learning of null space kernel. First, the maximum edge criterion was used to determine
the learning metric on the null space. All training samples with the same category were
mapped to a single point, so as to minimize the intra-class divergence. Then the algorithm
was extended to the kernel space by nonlinear function and the distance between classes was
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separated effectively. Through different transformations, the classification ability of person
features is strengthened, and the re-identification accuracy with small sample is improved.
Leng et al. [33] proposed a new semi-supervised collaborative metric learning. First, the input
sample was decomposed into two pseudo views, and two distance metric matrices were
learned through pseudo labels and reference information. Then, the two metric matrices were
used to measure the relationship between the training data and the unlabeled data, the two
groups of sorting results were obtained. Finally, the two groups of ranking results were used as
reference information to supervise the learning of the metric matrix. This method can obtain a
practical person re-identification model in the case of insufficient training samples or insuffi-
cient sample labels.

5.2 Performance analysis and discussion

In order to compare and analyze the performance of the metric learning in person re-
identification more intuitively, this section combs the experimental results of some typical
algorithms on common person datasets. Because the Ref. [6, 42, 71] have made a detailed
introduction to the person re-identification datasets, in this section, we have not explained
more about the person datasets. Experimental results of metric methods, classical metric
learning algorithm, deep metric learning algorithm and re-ranking algorithm are mainly
summarized, as shown in Tables 5, 6, 7 and 8.

Table 5 Performance comparison and analysis of some metric methods

Metric method Reference Experimental conditions Dataset Rank-
1

Rank-
5

Rank-
10

Rank-
20

Mahalanobis
distance metric

[49] Software:vs2010+opencv2.4.9
Hardware: 2.66GHz Intel core2

Quad CUP Q9400 and 4 GB
RAM

VIPeR 30.0 57.3 69.1 81.9
iLIDS 51.0 78.7 85.3 91.4
CUHK01 22.9 44.6 54.9 65.9

[85] – PRID2011 70.9 78.7 82.7 87.3
iLIDS 42.0 52.67 60.03 66.67

Asymmetric
distance metric

[10] – VIPeR 43.29 72.66 83.51 92.18
PRID450S 57.60 82.67 89.24 93.20
CUHK01 47.80 74.16 83.44 89.92

[73] – VIPeR 30.9 51.7 61.6 72.3
CUHK01 57.3 80.0 86.3 91.8
CUHK03 31.9 59.4 70.1 80.0

[21] – VIPeR 38.1 56.3 63.1 70.6
CUHK01 56.6 78.9 86.2 92.3
iLIDS 19.7 38.6 48.9 62.4

Hypergraphs-based
Similarity metric

[2] Software: Matlab
Hardware: 2.4 GHz Intel i7 CPU

and 8 GB RAM

VIPeR 34.18 66.60 79.75 90.19
CUHK01 35.01 58.25 69.28 80.62

[78] Software: ——
Hardware: 3.4GHz Intel CPU i7

and 12G RAM

VIPeR 45.35 71.49 83.99 92.53
CUHK01 64.45 83.53 91.11 95.26
GRID 23.68 43.92 52.56 61.76

Set-based metric
method

[36] – iLIDS 65.90 87.30 – –
Caviar

4REID
32.60 65.40 – –

[14] – PRID2011 76.0 94.0 98.0 99.0
iLIDS 57.3 79.3 87.3 93.3
MARS 66.3 82.2 – 89.9
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The common criteria for evaluating the performance of person re-identification algorithms
include the Cumulative Match Characteristic (CMC) and Rank-N table. The CMC curve
reflects the probability of finding the correct result among the first k matching results. The
increasing trend of the CMC curve indicates the better recognition effect. Rank-N table gives
the cumulative matching accuracy of key matching points in numerical form, such as Rank-1,
Rank-5, Rank-10 and Rank-20. For example, Rank-5 represents the probability that can be
correctly matched in the first 5 images. The higher probability value indicates better algorithm
performance. Because the Rank-N table is more intuitive than CMC curve, therefore, in this
paper, we compared the performance of different algorithms using Rank-N table.

The data in Table 5 show that the overall performance of Mahalanobis metric and improved
Mahalanobis metric has a certain gap compared with other methods. The asymmetric distance
metric in ref. [10] showed excellent performance in overcoming the influence of perspective
and pose variation. Due to the unsupervised restriction in ref. [21, 73], the identification
performance was reduced, but the overall performance was still improved compared with the
Mahalanobis metric. Hypergraphs-based similarity metric and set-based similarity metric make
comprehensive use of context relation and neighborhood relation, which improved the metric
results significantly.

The experimental data demonstrate that, compared with the classical metric learning
algorithm, the rank-1 accuracy of the deep metric learning is improved greatly. However,
the deep metric learning algorithm does not perform better than the classical metric learning
algorithm on the person datasets with insufficient training samples such as VIPeR. It indicates
that the deep metric learning algorithm is more applicable to the large-scale person dataset.
When rank-20 accuracy is compared, the performance difference between classical metric

Table 8 Performance comparison and analysis of re-ranking algorithms

Re-ranking Reference Experimental conditions Dataset Rank-
1

Rank-
5

Rank-
10

Rank-
20

Aggregate
re-ranking

[60] – VIPeR 40.51 69.15 81.04 91.17
CUHK01 57.02 80.43 87.90 93.40
CUHK03 55.89 86.26 93.74 98.00

[77] Software: MATLAB
Hardware: Xeon E5–2696 v2

CPU and a GTX TITAN GPU

VIPeR 35.8 69.9 80.4 89.6
CUHK01 52.0 71.8 79.9 85.9
iLIDS 22.0 43.3 52.0 73.3

[76] Software: MATLAB 2013
Hardware: 2.5 GHz CPU and

8 GB RAM

VIPeR 44.02 – 85.40 92.83
CUHK01 65.03 – 91.26 95.33

[29] Software: MATLAB
Hardware: 2.30 GHz Intel Core i7

CPU and 8 GB RAM

VIPeR 67.21 87.78 93.39 97.82
CUHK01 66.91 86.95 92.12 95.7

Graph model
re-ranking

[66] – VIPeR 52.59 82.50 91.14 96.84
[5] Software: MATLAB

Hardware: 1.7GHz Intel Core i3
CPU and 8GB RAM

VIPeR 34.26 57.34 67.86 80.78

[67] Software: MATLAB
Hardware: 2.8 GHz Intel i5 dual

core CPU

VIPeR 45.19 73.58 85.35 93.99
CUHK01 68.64 88.00 92.74 95.80

Reward and
punishment
re-ranking

[11] – VIPeR 52.85 81.96 90.51 95.73
CUHK01 57.28 81.07 88.44 93.46

[65] Software: MATLAB R2014a
Hardware: 3.20 GHz Intel Core i5

CPU and 8G RAM

VIPeR 30.23 58.73 69.18 79.32
iLIDS 48.30 74.50 86.50 96.20
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learning and deep metric learning is very small. The classical metric learning has low
dependence on large-scale training sets and low complexity, so it shows more obvious
advantages in obtaining candidate result sets of person re-identification in a wide range.
However, in person re-identification with high accuracy, the deep metric learning has more
advantages due to the diversity of training samples and the strong nonlinear feature extraction
ability of deep models.

In addition, compared with the classical metric learning algorithm, the rank-1accuracy after
re-ranking is improved to a certain extent. For example, the optimal rank-1 accuracy on VIPeR
dataset is 51.46% before re-ranking, and the optimal rank-1 accuracy reaches 52.85% after re-
ranking. Comparison of rank-20 accuracy shows that the algorithm performance is improved
significantly after re-ranking. It shows that re-ranking is effective for optimizing and correcting
the initial metric results.

Finally, from the perspective of time evolution, the proposed algorithm after 2018 has a large
performance improvement compared with the algorithm before 2016. This is mainly due to the
gradual optimization and improvement of the metric learning algorithm, as well as the researchers’
continuous comprehensive understanding of person re-identification. In general, with the contin-
uous enrichment of person datasets, deep metric learning has become the mainstream direction of
person re-identification based on metric learning theory. Re-ranking and fusion techniques play a
positive role in improving the effect of classical metric learning and deep metric learning.

6 Summary and prospect

In this paper, we summarize the research progress of metric learning methods in person re-
identification in recent years, and discuss various typical algorithms. Although the metric
learning theory in person re-identification has made remarkable progress, different metric
learning methods are usually suitable for different person re-identification tasks or application
scenarios. Therefore, it is still difficult to find a universally applicable metric or metric learning
method. In addition, the current metric learning theory has not been applied maturely in person
re-identification of actual video surveillance, and it still faces many challenges. In the future
research, there are still many contents that need to be explored and studied:

1) Small sample metric learning. In the real video surveillance, the persons are in a non-
cooperative state, so it is very difficult to capture high-quality available person images.
Under the small sample dataset, many deep metric learning methods are usually not fully
trained, resulting in weak generalization ability and poor robustness of the learned distance
metric matrix. In recent years, researchers have paid attention to the small sample person re-
identification problem, but more research is to propose solutions from the perspective of
sample data augmentation and transfer learning. However, there are few studies on themetric
or metric learning methods directly targeting small sample person dataset. Therefore, in
future work, in addition to better research on small sample data augmentationmethods, an in-
depth study should also be implemented from the perspective of metric learning.

2) Metric learning across image domains. Person re-identification under different resolu-
tions, occlusion, cross-scenes, visible-infrared, long time intervals, etc. is often referred to
as cross-domain image recognition [31]. Now, there are many studies on cross-domain
person metric learning under one certain situation. However, person re-identification
under real-world video surveillance is usually a synthesis of multiple cross-domain image
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recognition problems. Therefore, how to integrate multiple cross-domain situations to
define a more adaptive and robust metric or metric learning method has important
theoretical significance and practical value.

3) Semi-supervised and unsupervised metric learning. Many current person re-identification
methods, including metric learning, are often based on supervised information. However,
the data labeling for obtaining supervised information is costly. Therefore, semi-
supervised and unsupervised metric learning are more suitable for person re-
identification under real-world video surveillance, but the performance of current unsu-
pervised and semi-supervised metric learning is far inferior to supervised metric learning.
Therefore, designing reliable and efficient unsupervised or semi-supervised metric learn-
ing algorithms to improve metric learning performance in the absence of supervised
information is a key step in improving the performance of person re-identification.

4) New metric definition and re-ranking technology. In addition to the improvement of
metric learning algorithm, referring to the current distance metric concept, the definition
of a new distance metric plays an essential role in improving person re-identification, but
it is more difficult to study. In addition, how to use the intelligent optimization algorithm
to perform a deeper comprehensive judgment on the initial metric results is crucial to
improve the accuracy of person re-identification, but there have been few relevant studies
in the past two years.
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