
1155T : ADVANCED MACHINE LEARNING ALGORITHMS FOR BIO-
MEDICAL DATA AND IMAGING

Recognition of splice-junction genetic sequences using
random forest and Bayesian optimization

Abdel Karim Baareh1 & Alaa Elsayad2,3 & Mujahed Al-Dhaifallah4

Received: 3 February 2020 /Revised: 9 February 2021 /Accepted: 14 April 2021

# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recently, Bayesian Optimization (BO) provides an efficient technique for selecting the
hyperparameters of machine learning models. The BO strategy maintains a surrogate model
and an acquisition function to efficiently optimize the computation-intensive functions with
a few iterations. In this paper, we demonstrate the utility of the BO to fine-tune the
hyperparameters of a Random Forest (RF) model for a problem related to the recognition
of splice-junction genetic sequences. Locating these splice-junctions prompts further under-
standing of the DNA splicing process. Specifically, the BO algorithm optimizes four RF
hyperparameters: number of trees, number of splitting features, splitting criterion, and leaf
size. The optimized RF model automatically selects the most predictive features of the
training data. The dataset is obtained from the UCI machine learning repository where half
of the records represent two different types of splice-junctions and the other half does not
represent any splice-junction. Experimental results proved the advantage of the BO-RF with
99.96% and 97.34% training and test classification accuracies respectively. The results also
demonstrated the ability of the RF model to select the most important features, ensuring the
best possible results using Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
and decision tree (DT) models. Some practical procedures in model development and
evaluation such as out-of-bag error and cross-validation approaches are also referred to.

Keywords Splice junction recognition .Randomforest .Bayesianoptimization, feature selection,
support vector machine . K-nearest neighbor . Decision tree

1 Introduction

The human eukaryotic deoxyribonucleic acid (DNA) represents the building block of life that
holds the encoded genetic directives for living organisms. In the central dogma of molecular

https://doi.org/10.1007/s11042-021-10944-7

* Alaa Elsayad
a.elsayyad@psau.edu.sa

Extended author information available on the last page of the article

/ 
Published online: 30 April 2021

Multimedia Tools and Applications (2021) 80:30505–30522

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-10944-7&domain=pdf
http://orcid.org/0000-0001-8053-9759
mailto:a.elsayyad@psau.edu.sa


biology, the transcription process converts the DNA information into a precursor mRNA.
Then, the splicing process removes the non-coding regions (introns) and connects the coding
regions (exons) to form the contiguous coding sequence (mRNA) which is in turn translated
into protein as shown in Fig. 1. The proteins are built according to the instructions stored in the
DNA sequence. Accordingly, the understanding and analysis of DNA and RNA genetic
sequences play critical roles in the treatments of any genetic disorders [5, 30].

The main objective of this study is to build a recognition system to predict whether a
particular sequence of DNA nucleotides includes an exon-intron border, intron-exon border, or
neither of them. It is a challenging problem that requires the knowledge of characteristics,
dependencies, and the relationship of nucleotides in the splice site surrounding regions.
Usually, Genetic databases are imbalanced mixed with noise which weakens the learning
process [19]. In the literature, this problem was treated as a classification task. Table 1 lists
some recent studies that used different Artificial Intelligence (AI) models to automatically
recognize these splice-junctions. The present study combined the high potential Random
Forest (RF) model and the state-of-the-art Bayesian Optimization (BO) to build a splice-
junction recognition system and to rank the input nucleotides according to their predictive
power. RF model is an ensemble of decision trees with several successful applications in
healthcare applications [15] and the BO algorithm has emerged as an efficient tool for
optimizing computation-intensive functions. BO has proven highly effective in controlling
machine learning and deep learning models [17]. Precisely, in this study, the BO algorithm
optimizes four RF hyperparameters: number of trees, number of splitting features, splitting
criterion, and leaf size. The optimized RF model automatically selects the most predictive
nucleotides (features) of the training data. The use of the optimization algorithm gives
reassurance to the merit of the resulting model because the more accurate the model, the more
we can trust the resulting feature importance.

The BO algorithm is evaluated using the Gaussian process (GP), which is the standard
surrogate model and three different acquisition functions: probability-of-improvement. Lower-
confidence-bound, and expected improvement [9]. Our goal is to achieve the best optimization
results in the fewest number of iterations. The proposed method is evaluated on a real-world
dataset publicly available from the UCI repository which was obtained from the Genbank 64.1
primate data [31]. The optimized RF model automatically ranks the predictive features
according to their importance and this arrangement is evaluated using the BO-optimized

Fig. 1 Central dogma of molecular biology: RNA encoding and protein synthesis
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versions of three popular AI models: SVM, KNN, and DT trained using the cross-validation
approach. Overall, the contributions of this study are as follows:

& A hybrid machine learning model BO-RF for the recognition of the DNA splice junction
sequence.

& Evaluation of three BO acquisition functions: expected improvement, lower-confidence-
bound, and probability-of-improvement.

& Automatic feature ranking using the sensitivity analysis of the optimized RF model
& Performance evaluation of the optimized versions of RF, SVM, KNN, and DT models

using the RF-based selected features.

The remainder of this paper is organized as follows: Section 2 describes the proposed
methodology including the dataset description, the cross-validation approach, and the perfor-
mance metric. Section 3 briefly presents the RF modeling, the out-of-bag error, and feature
importance ranking. Section 4 reviews the BO algorithm including the definition of the
Gaussian process model and three acquisition functions. Finally, all experimental results and
discussions are presented in Section 5.

2 Methodology

For this study, we suggested a two stages method based on the RF classification model. In the
first stage, we fine-tuned the RF hyperparameters using three different BO acquisition

Fig. 2 Workflow for BO-RF modeling, automatic feature ranking, and model evaluation
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functions: expected improvement, lower-confidence-bound, and probability-of-improvement
based on the splice-junction dataset. The optimization process controlled four RF
hyperparameters: number of trees, number of splitting features, splitting criterion, and leaf
size. The objective was to minimize the out-of-bag (OOB) error function. The resulting
optimal RF model ranked all predictive features according to their contribution to the
classification process. In the second stage, the ranked features were evaluated using BO
optimized versions of SVM, KNN, and DT models. The ranked features were included in
the modeling process one by one according to their importance. These models were trained to
minimize the cross-validation error. Fig. 2 shows the workflow.

2.1 Dataset description

The proposed method is evaluated on a real-world dataset collected from Genbank
64.1(FTP site: genbank.bio.net) and is available in the UCI machine learning
repository [31].

The dataset consists of 3190 records with 60 features (DNA nucleotides) categorically
classified with no missing values. They represent splice junctions where RNA splicing occurs.
The 60 features represent the DNA nucleotides, starting at position −30 and ending at position
+30. Each one is filled by one of {A, G, T, and C}. Other characters indicate ambiguity among
the standard characters according to Table 2. Fields with ambiguities are processed as they are
without being replaced. The dataset contains 767 exon-intron EI records (donor site), 768
intron-exon IE records (acceptor site), and 1655 not splice site N records with percentages of
about 25% EI, 25% IE, and 50% N. The objectives of the proposed BO-RF classification
model are to determine whether or not a particular sequence has a splice site, to define its type:
EI (donor site) IE (acceptor site), or N (not a splice site), and to identify the most predictive
features in the training data.

2.2 Model training and evaluation

The entire dataset is initially divided into training and test subsets. Then, in the first stage,
the RF training process benefits from the OOB capability of the RF modeling methodol-
ogy [2]. The OOB approach is described in Sec. 3. But, in the second stage, the objective is
to compare the performances of the optimized versions of RF, SVM, KNN, and DT
models using the ranked features. This time, models are trained to minimize the cross-
validation error. K-fold cross-validation guarantees the participation of all training records
in model learning and validation [27]. The algorithm partitions the whole training records
into k separate subsets conducts k rounds of model training and validation, chooses one
partition for validation, trains the model on the remaining k-1 partitions, and then uses the
one that left-out to validate the model. For each fold, the algorithm calculates the

Table 2 Dataset feature descrip-
tion (ambiguity) Dataset Character DNA Meaning

D A or G or T
N A or G or C or T
S C or G
R A or G
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classification error for the in-fold data by a model, which is trained on the records of the
other k-1 partitions. The Graphical procedure of five-fold cross-validation is depicted in
Fig. 3. The trained models are evaluated and compared based on the overall accuracy of
training and test records. For a particular class y, the true positive (TP) equals the number
of actual y records that are correctly classified and the (TN) is the number of non-y records
that are properly classified to any non − y class. The overall accuracy is computed as
follows:

& General Accuracy of y class

TPy þ TNy

N
ð1Þ

where N is the total number of records. Then the overall accuracy in this multi-class
classification problem is defined by

& Overall Accuracy
∑
y
TPy

N
ð2Þ

Fig. 3 Graphical depiction of the five-fold cross-validation procedure: the complete dataset is randomly split into
five equal partitions. Four partitions are used to train the model and one for validation. The process is repeated
five times such that all training records participate in model training and validation

30510 Multimedia Tools and Applications (2021) 80:30505–30522



3 Random forest (RF)

In the last years, the RF model has emerged as a practical tool for classification, regression, and
visualization in particularly in bioinformatics [1, 13, 35]. It is an ensemble of high-performance
decision trees, where predictions are produced by the majority of votes. To keep low bias and low
dependence between trees, Breiman in [2] proposed two sources of diversity. First, each tree is trained
on different subsets from the training data (bootstrap). Second, at every splitting node, the algorithm
uses only a random subset of the available features. Individual trees are built without pruning, that is,
they are left to grow to their fullest depths. AssumingD ¼ x1ðf ; y1Þ;…; xNð ; yN Þg; represents the
N training data, where x represents the input feature vector xi= (xi, 1,…, xi, p)Twith p features, and yi is
the output class. Let the number of decision trees is ntree, number of splitting features is mfeature< p,
splitting criteria is fsplitting, and trees are allowed to growup such that it hasLSrecordsminimumnumber of
records in terminal leaves (leaf size). The RF learning procedure works as illustrated by Algorithm 1.
Fig. 4 shows the structure of the RF algorithm.All trees can be grown in parallel to reduce the bias and
variance of the model at the same time. RF provides a reliable feature importance estimate and offers
effective approximations of the test error without suffering the cost of repetitive model training
associated with cross-validation as described in the subsequent sections.

Fig. 4 Structure of random forest
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3.1 Out-of-bag error

Out-of-bag error (OOB) is an estimation technique for measuring the prediction error of the RF
model. Typically, the RF algorithm trains each tree using two-thirds of the training records
(called in-bag data), and validate the tree with the remaining third (called out-of-bag OOB
data) (Fig. 4). Eventually, each record contributes to the training of two-thirds of the trees and
validating the other third. These OOB predictions are compared to their known classes to
compute the OOB error to estimate the RF generalization. For a particular training record, the
OOB error is the mean prediction error using only the trees that did not have this record in their
in-bag data. Algorithm 2 describes the OOB prediction procedure.

For classification with zero-one error function, the generalization error rate is computed as
follows:

EOOB ¼ 1

N
∑
N

i¼1
I
�
yi≠bf OOB xið Þ ð3Þ

The Oob predictions bf OOB xð Þ allow to compute the class-wise error rate for each class, and

compute the OOB “confusion matrix” by cross-tabulating yi and bf OOB xið Þ.

3.2 Feature importance

The RF algorithm can measure the importance of all features according to their contributions
to the prediction of the output class [35]. This measure is calculated by directing all the OOB
records down the RF trees and assessing the predicted output. Then, for every feature k, its
values are randomly permuted in the OOB records, while preserving all other features fixed
and once again, the algorithm generates the predicted outputs (for permuted data),i.e., we have
two sets of OOB predictions: one set obtained for real data and one for feature-k-permuted
data. Let errOOBt refers to the error of a single tree t for the real OOB data and errOOBtkas
error of the permuted OOB data. Then, the importance of the feature xk is defined as follows:

Importance xkð Þ ¼ 1

ntree
∑
t

ntree

errOOBtk−errOOBtð Þ ð4Þ

The large value of this measure means great importance to the feature and vice versa.
However, the importance values can be high even for features that are not relevant
(predictive) of the class label, as long as the RF model can use them to overfit. It depends
on how the RF model handles training data.

30512 Multimedia Tools and Applications (2021) 80:30505–30522



3.3 RF hyperparameter estimation

The RF algorithm has four hyperparameters to be prespecified: the number of trees ntree,
number of splitting features mfeature, splitting criterion fsplitting, and leaf size LSrecords. Small
values of ntree lead to overfitting, while large values increase the model complexity. Typically,
ntree is set between 100 and 500. Regarding, mfeature small values increase the RF diversity but,
they may upsurge the error rate. Usually, it is set to the square root of the total number of
features. There are three common splitting criteria: Gini’s diversity index (GDI), Twoing rule,
and maximum deviance reduction (simply Deviance) [18]. The minimum number of records
per terminal leaf LSrecords controls the depth of individual trees. Figs. 5 shows the influences of
these hyperparameters on the performance of the RF model for the recognition of splice-
junction sites. Experiments were done using MATLAB package [21]. The dataset was divided
into 70% training and 30% test subsets. The criteria are the misclassification probabilities for
the OOB and test records. We set the default values to be 300 for ntree, 8 for mattrib, GDI for
fsplitting, and 1 for minimum leaf size. Figure 5a shows the effect of the number of trees. The
OOB error is 0.0305 with 263 trees. However, the minimum test error is 0.0230 with 137 trees.
In general, the two curves have similar behaviors. Figure 5b shows the effect of the number of
splitting features that are randomly selected at each splitting node where the minimum OOB

(a)

The minimum OOB error is 0.0305 with 263 trees and

the minimum test error is 0.0230 with 137 trees.

(b)

The minimum OOB error is 0.0336 with 8 features and 

the minimum test error is 0.0240 with 5 features.

(c)

The minimum OOB error is 0.0322  with Twoing 

criterion and the minimum test error is 0.0261 with GDI

(d)The minimum OOB error is 0.0327 with two records

per leaf and the minimum test error is 0.0230 with 13 

records per leaf. 

Fig. 5 The misclassification probabilities for OOB and test records for (a) number of trees, (b) number of
splitting features (c) splitting criterion (d) minimum leaf size

30513Multimedia Tools and Applications (2021) 80:30505–30522



error is achieved with 8 features and the minimum test error requires 12 features. Similarly,
Fig. 5c and d show the effects of splitting criterion and leaf size.

The optimal values of these hyperparameters ensure the construction of diverse and correct
RF trees. Literature shows that different optimization algorithms were used to optimize all or
some of these RF hyperparameters [10, 11, 26].

4 Bayesian optimization (BO)

BO algorithm is applied to select the hyperparameters of different AI models at hand based on
the accuracy of the subsequent model classifications (objective functions). The algorithm runs
iterative evaluations of a specified objective function exploring the solution space. The main
advantage of BO is its success in finding good solutions with only a few iterations [3]. Its
strategy maintains a surrogate model to represent the relationship between the hyperparameters
and the objective function to guide the movement in the solution space. This surrogate model
is progressively improved in a closed-loop method. Initially, the surrogate is prototyped based
on some seed points and then this prototype selects the next point to evaluate the objective
function. The resulting values improve the prototype itself, and so on until enough information
about the objective function is available and the global minimum is generated. BO algorithm
employs an acquisition function that uses the surrogate model to determine the next optimi-
zation. The Gaussian process is the most popular surrogate model while common acquisition
functions include the probability of improvement, lower confidence bound and expected
improvement.

4.1 Gaussian process model

Gaussian process (GP) is a probabilistic regression model that can represent a black-box
objective function f(x) using meanm(x) and kernel k(x, x′) functions. It is assumed that f and its
parameters x are assumed to have a common Gaussian distribution [28].

f xð Þ∼GP m xð Þ; k x; x
0

� �� �
ð5Þ

For simplicity, the mean function is assumed to be m(x) = 0, i.e., the model is completely
defined by its kernel function k. The ARD 5/2 Matérn function is a common kernel which is a
twice differentiable function and depends only on the distance between points x and x′ [24]:

KM52 x; x
0

� �
¼ σ2

f 1þ
ffiffiffi
5

p
r

σl
þ 5r2

3σ2
l

� �
exp −

ffiffiffi
5

p
r

σl

� �
; ð6Þ

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þp

T xþ x
0� �

the Euclidean distance between x and x′, σf is the function

standard deviation, σl is the characteristic length scale. Their values are found by maximizing

the marginal log-likelihood of the available data D1:t¼ xiðf ; yiÞgti¼1 where t is the iteration
index. Once the kernel is determined, the distribution at any new location xt + 1can be predicted
as follows:

P ytþ1jD1:t; xtþ1

� � ¼ N μt xtþ1ð Þ;σ2
t xtþ1ð Þ þ σ2noise

� � ð7Þ
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μt xtþ1ð Þ ¼ kT Kþσ2
noiseI

	 
−1
yT1:t ð8Þ

σ2
t xtþ1ð Þ ¼ k xtþ1; xtþ1ð Þ−kT Kþσ2

noiseI
	 
−1

k ð9Þ

where K¼
k x1; x1ð Þ ⋯ k x1; xtð Þ

⋮ ⋱ ⋮
k xt; x1ð Þ … k xt; xtð Þ

2
4

3
5

k ¼ k xtþ1; x1ð Þk xtþ1; x2ð Þ⋯k xtþ1; xtð Þ½ �:

Where σ2
noiserepresents the noise variance.

4.2 Acquisition function

BO algorithm employs a certain acquisition function α(x) to derive the optimization process in
the solution space. It is computed using the Gaussian μt and σ2

t (as in Eqs. (8), (9)).
Specifically, the algorithm works in a closed iterative approach. At each iteration, the point
that maximizes α(x) represents the best guess to sample the objective function and then, the
sampling results update the GP model then, the algorithm returns to maximize α(x) again but
with the updated GP to guess a new candidate and so on. The iteration is continued until
sufficient information about the objective function is available and then the global minimum is
reached. Algorithm 3 and Fig. 6 illustrate the concept of the BO process.

Fig. 6 A graph depicts the BO concept. The optimization refines progressively the GP model, which in turn is
used to generate the best guess to sample the objective function. Guess and sample iteration is continued until the
global minimum is reached
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Several acquisition functions have been introduced in the literature. They have different
approaches to balance between exploring areas with high variance σ2t and exploiting those
with low mean μt. In this paper, we evaluate the performance of three popular acquisition
functions as follows:

& Probability of improvement (PI)

The PI acquisition function αPI is the simple one that requires less computation [16]. It selects
the candidate point x that most likely maximizes αPI over the current best point xbestas follows:

αPI xð Þ≜P
�
f xð Þ < f xbestð Þ

αPI xð Þ ¼ Φ
f xbestð Þ−μt xð Þ

σt xð Þ
� � ð10Þ

where Φ(·) is the unit normal cumulative distribution function (CDF). The point that maxi-
mizes αPI is the best guess to minimize the objective function f.

& Lower confidence bound (LCB)

LCB acquisition function αLCB represents the statistical lower bound on the minimum lower
confidence envelope GLCB(x) of the objective function. It is computed by subtracting the
weighted value of the standard deviation σt from the value of the GP predictive mean μt as
follows:

GLCB xð Þ ¼ μt xð Þ−κσt xð Þ ð11Þ

Where the parameter κ manages the balance between exploitation and exploration, two is a
common value of κ [7]. Then, αLCB maximizes the negative of GLCB as follows:

αLCB xð Þ ¼ κσt xð Þ−μt xð Þ ð12Þ

& Expected Improvement (EI)

EI acquisition function is considered the most common one due to the work of Jones et al. [14].
It considers the amount of expected improvement when selecting the next candidate point as
follows:

αEI xð Þ ¼ E max 0; f xbestð Þ−μt xð Þð Þ½ � ð13Þ

αEI xð Þ ¼ f xbestð Þ−μt xð Þð Þ � Φ Zð Þ þ σt xð Þ � Φ Zð Þ σt xð Þ > 0ð Þ
0 σt xð Þ ¼ 0ð Þ

�
ð14Þ

where Z ¼ f xbestð Þ−μt xð Þ
σt xð Þ and Φ(·) is the probability density function (PDF) for the normal

distribution.
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5 Experimental results and discussion

This section presents some experiments that demonstrate the utility of BO for finding the
optimal hyperparameters for the RF prediction model. BO controls for RF hyperparameters:
number of trees, number of splitting features, splitting criterion, and leaf size. The available
data is divided into 70% training and 30 test subsets. Training data is used to construct the
optimized RF model that minimized the OOB misclassification probability. Then, the opti-
mized model is evaluated based on the test data. We compare the performances of three
different BO acquisition functions: the probability of improvement, lower confidence bound,
and expected improvement. Figure 7 shows the results of OOB misclassification probabilities
for the three BO acquisition functions against the evaluation number, where the number of
seed points is set to 10, and the objective function evaluation limit is set to 60 with no
deterministic conditions on the optimizable variables or coupled constraints on the resulting
models. Every hyperparameter has a prespecified range, number of trees from 100 to 500,
number of splitting features from 2 to 10, the splitting criterion options are (GDI, Towing, and
deviance) and finally, the leaf size ranges from 2 to 10. Fig. 7 shows that the probability of
improvement acquisition function achieves the minimum OOB error. The resulting
optimizable hyperparameters are the number of trees 375, splitting features 7, splitting criterion
‘Twoing’, and leaf size 1. Table 3 shows the values of OOB and the values of optimizable

Fig. 7 The OOB misclassification probability of the RF model optimized using three different BO acquisition
functions. Expected improvement achieves 0.030452 with 27 evaluations, lower confidence bound achieves
0.030004 with 46 evaluations, and the probability of improvement achieves 0.029557 with 33 evaluations

30517Multimedia Tools and Applications (2021) 80:30505–30522



hyperparameters as well as the training and test classification accuracies for the three acqui-
sition functions.

The probability of improvement function achieves 99.96% and 97.34% training and test
accuracies respectively. Lower confidence bound achieves 99.96% and 97.18% and expected
improvement achieves 99.37% and 97.49% respectively. In general, the results of the optimi-
zation of the three functions, as well as the results of the classification are very close to each
other. The optimal RF model generates the relative feature importance shown in Fig. 8. This
figure shows the 30 most important features in the training data based on the BO-RF model.
The model selects automatically features that decrease the OOB prediction error. In addition to
the RF model, the validity of this feature arrangement is examined using BO optimized
versions of SVM, KNN, and DT models as follows:

(1) SVM model builds a decision hyperplane with the maximal margin width to divide the
variable space into two regions (binary classifier) [6]. In the non-linear situations, the
model allows a misclassification slake variable ξ around the margin with a regularization
constraint C. In our experiments, the radial basis function (RBF) is selected as the kernel
in the SVM model [20]. It is a common kernel with only one adjustable parameter (σ).
The BO algorithm is applied to find the optimal values of C and σ that minimize the 10-
fold cross-validation error.

(2) KNN model labels a record based on its similarity to the training ones. For a new record,
KNN computes its distance from each of the training records and defines its neighbors.
Then, the model places this new record within the class that contains the greatest number
of K-nearest neighbors [33]. In this study, BO finds the optimal values for the number K,
the type of distance measure, the distance weight, and the exponent that minimizes the
10-fold cross-validation error.

(3) DTmodel creates a classification tree by specifying the optimal partition features with the
ability to handle both continuous and categorical variables. The model recursively
separates records into branches to construct a tree to improve the classification accuracy
[18]. In this study, the BO regulates the values of the maximum number of splitting, the
minimum leaf size, and the splitting criterion to minimize the 10-fold cross-validation
error.

A set of experiments was conducted to check the validity of the RF-based feature ranking
using SVM, KNN, and DT. In the first experiment, the training and test data contained only the
two most important features, and then BO optimized versions of the four models were trained
and tested. Then, the features are added one by one according to their ranking and each time
the training and testing processes are repeated. The accuracies of training and test subsets
determine the quality of the classification model that appropriate to the required splice

Table 3 Optimization results, the training and test accuracies for the three BO acquisition functions

Acquisition Function OOB
error

Evaluations Trees Splitting
Features

Criterion Min.
Leaf
Size

Training
Accuracy

Test
Accuracy

probability-of-improvement 0.029557 33 375 7 Twoing 1 99.96% 97.34%
lower-confidence-bound 0.030004 46 422 6 Twoing 1 99.96% 97.18%
expected-improvement 0.030452 27 500 6 Deviance 4 99.37% 97.49%
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recognition. The resulting training and test accuracies for all these experiments are depicted in
Fig. 9a and b respectively.

These curves demonstrate the high performance of all models using a few features
arranged by the BO-RF model. All models achieve training and test accuracies greater
than 70% using only the top two features. Using the top five features, they achieve
training and test accuracies by more than 90%. With the addition of more ranked
features, the performance of both RF and SVM improves, but the performance of DT
and KNN fluctuates. Decision trees’ performance changes by increasing the number of
features, but it is not as bad as the KNN. If the number of features exceeds 7, the KNN
begins to suffer from overfitting. On the contrary, Both RF and SVM RF and SVM
provide precious results with very few features and their performances continue to
improve and stabilize as the number of features increases. Using the top seven features,
RF and SVM models achieve training and test accuracies of more than 95%. Using the
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Fig. 8 Relative importance of the splice junction features using the BO-RF model
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full set of features, RF achieves 99.96% and 97.34% for training and test accuracies
respectively, while SVM achieves 99.95% and 96.44% training and test accuracies.

Both RF and SVM achieve very high performance with few features (ranked by the
RF model). In general, their performances are very close and outperforming the other
two models (KNN and DT). These results demonstrate that the RF-based model facili-
tates the selection of the most predictive features ensuring the best possible predictive
results using other prediction models. That is, the RF model can be used both as a
predictor and as a feature selector with high efficiency. During all previous experiments,
the BO methodology provided a very practical tool that enabled improving the perfor-
mance of different prediction systems.

6 Conclusion

Understanding the genetic sequence and processes in the central dogma ofmolecular biology is an
essential stage toward handling many genetic disorders. In this paper, we presented several
experiments towards applying a set of artificial intelligence models to understand the sequences
of nuclides and locating splicing sites. Experiments demonstrated the predictive power of an RF
model in the recognition of the DNA splicing sites as well as its high ability to identify the most
predictive features. That is, RF was used to achieve two objectives, firstly predicting the splicing
sites, and secondly, to determine the most important features. To ensure the best results, the BO
method has been used to adjust the model hyperparameters to achieve the minimum out-of-bag-
error. The more accurate the model, the more we trust the resulting feature ranking. The
optimization adjusted four hyperparameters; the number of trees, the number of splitting features,
splitting criterion, and leaf size. The optimization worked using the Gaussian process surrogate
with three different acquisition functions namely; the probability of improvement, lower confi-
dence bound and expected Improvement. The probability of improvement yielded the best results,
and the resulting RFmodel achieved classification accuracy for training and test data 99.96% and
97.34% respectively. The validity of RF-based feature ranking was tested using BO optimized

Fig. 9 Training and test accuracies vs. Number of features (ordered by their relative importance generated from
the BO-RF model) using BO optimized versions of RF, SVM, KNN, and DT classification models. a Training
Accuracies, b Test Accuracies
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versions of SVM, KNN, and DT models, where they all achieved training and test accuracy
greater than 70% using only the top two features and achieved more than 90% using the top five
ones. In general, RF and SVM provided high and steady performance. BO provides an efficient
and smart manner to fine-tune prediction models at hand.
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